

THE
COMMODORE 64

OMNIBUS

PETER LUPTON & FRAZER ROBINSON

CENTURY COMMUNICATIONS

LONDON

Copyright c Peter Lupton and Frazer Robinson 1984

NOTE:

All rights reserved

First published in Great Britain in 1985
by Century Communications Ltd,

12 - 13 Greek Street,
London WI V 5LE

ISBN 0 7126 06769

Printed in Great Britain in 1984 by
Billing & Sons Limited, Worcester.

Typeset by Spokesman, Bracknell

The programs in this book have been typeset
directly from the Commodore 64.

CONTENTS

Acknowledgements

Introduction

PART 1

INTRODUCING COM MODORE 64 PROGRAM M ING

1 Computers and Programs 1
2 Setting up your 64 3
3 First Steps 8
4 Programming 18
5 Program Control 34
6 Data and Programs 52
7 Pieces ofStrlngs 59
8 Functions 73
9 Logical Thinking 82
10 Memory Management 89
11 Sound and Music - Part 1 93
12 Character Graphics 119
13 High Resolution Graphics 146
14 Sprites 158

15 Permanent Storage 184

16 Advanced Techniques 204

PART 2

ADVANCED COM MODORE 64 PROGRAM M ING

17 BASIC and how i t works 211
18 Machine code on the 64 234
19 Bit-Mapped Graphics - Part 1 262

20 Bit-Mapped Graphics - Part 2 280
21 Display Interrupts 301

22 Programs and People 315

23 Sound and Music - Part 2 331

24 The 1541 Disk Drive 348

25 Advanced Disk Operations 364

26 The MPS801 Printer 403

APPENDICES

1 Abbreviations 419
2 BASIC Commands 420

3 BASIC Tokens and Abbreviations 431

4 Summary of DOS Commands 434

5 BASIC Error Messages 435

6 DOS Error Messages 441

7 Speeding Up Programs 446

8 Colour Codes 448

9 Musical Notation 449

10 N umbering Systems 453
1 1 Kernal Routines 458
12 The 6510 Instruction Set 464

13 SID Registers 472

14 VIC IT Registers 474

15 Screen Memory Maps 476

16 Character Codes 478

17 System Memory Map 483
18 Graphics Loader Programs 484

Index 497

ACKNOWLEDGE M E NTS

It is customary at th is poi nt to mention a l l th ose
peop le without whose he l p th is book wou ld not
h a v e b e e n p o ss i b l e . W e w o u l d l i k e t o
acknowledge the su pport and enth usiasm of Peter
Rhodes without whom none of our books wou ld
have been poss ib le. We haven't been ab le to say
so u nti l now - Thanks Peter!

INTRODUCTION

This book i s an omnibus edi tion of our two books,

The Commodore 64 Handbook
The Advanced Commodore 64 Handbook

We have taken the opportunity to correct one or
two errors which crept into the first editions, and to
clarify some obscurities noticed by our readers.
The combined volumes form a complete guide to
the Commodore 64.

The first section of this book provides a complete
introduction to BASIC and the features of the 64,
while the second introduces machine code
(providing a set of routines to speed up graphics)
and describes the use of disk drives and printers.

With this book at your side you will be fully armed
for the great adventure of64 programming!

Peter Lu pton and Frazer Robi nson 1 984

THE CO M M ODORE 64 O M N I B U S

PART 1

INTRODUCI NG CO M M ODORE 64

PROGRAMMI NG

C H APTER 1

CO M PUTERS AN D PROG RAM S

Despite everything you may have heard about
computers being hyperintelligent machines which
are on the point of taking over the world, a
computer i s not really intell igent at all . A
computer is at heart little more than a high-speed
adding machine, similar to an electronic calculator,
but with more sophisticated display and memory
facilities.

The feature that gives computers their immense
flexibility and potential is this: they can store lists
of instructions which they can read through and
obey at very high speed. These lists of instructions
are called programs, and most of this book is
concerned with how these programs are written.

The computer instructions which form programs
must follow certain rules, or the computer will not
be able to understand them. The rules for wri ting
programs resemble the rules of a spoken language,
and so the set of instructions is often said to form a
programming language. There are many different
computer programming languages; the one that
the Commodore 64 understands (in common with
most other personal computers) is called BASIC .
(The name BASIC is an acronym for Beginners'
All-purpose Symbolic Instruction Code.)

A programming language is much simpler than a
human language because computers, for all their
power, are not as good at understanding languages
as people are. The BASIC language used by the 64

2 The Commodore 64 Omnibus - Part 1

has less than 80 words. The rules for combining
the words - the (grammar' of the language - are
much more strict than for a language like English,
again because it is difficult to make computers that
can use languages in the relaxed sort of way in
which we speak English. These may seem like
limitations, but in fact as you will discover BASIC
is still a powerful language, and it is possible to
write programs to perform very complex tasks.

Finally, remember this. Your computer will not do
anything unless you tell it to, so whatever happens,
you're the boss. The 64 won't take over the world
unless you make it!

C H APTE R 2

SETTI NG U P YOU R 64

Before you can use your Commodore 64 you must
connect it to a power supply and to a television. To

t " I I I + +
I I \ \

I \ \
Cartridge Tuning TV Audio & Serial Cassette User

Socket Screw Lead Monitor Interface Interface Port

The Commodore 64 Connectors - Rear View

�,.� L/ ,
r I ,

Joystick On/Off Power
Sockets Switch Socket

The Commodore 64 Connectors - Side View

load and save programs you will also need to
connect a cassette unit to the 64. Before connecting
anything, make sure you know what should plug in
where. The diagrams above show all the connector
sockets of the 64.

4 The Commodore 64 Omnibus - Part 1

There are several sockets through which the 64
passes and receives information, and one through
which it gets the electrical power it needs to
operate. The sockets are not all labelled, so be sure
�o refer to the diagram before plugging anything
In.

POWER

The 64 needs a low voltage DC supply, and this is
obtained from the power supply unit supplied with
your computer. Plug this power supply into the
mains, and plug the output lead into the computer.
The socket for the power supply is at the right
hand side of the machine. Do not switch on yet!

DISPLAY

The Commodore 64 uses a standard domestic TV to
communicate with you, and for this almost any TV
will do. To get the best results, use a modern, good
quality colour TV. If you use a black and white set,
the colour displays produced by the computer will
appear as shades of grey.

To connect the 64 to the TV, plug the supplied
aerial lead into the aerial socket of the TV, and
plug the other end into the socket at the back of the
computer (check the diagram). The lead has a
different type of plug at each end, so take care that
you don't try to force in the wrong one.

CASSETTE RECORDE R

The Commodore 64 , l ike most other small
computers, uses cassette tapes to save programs or
information, so that you don't have to type them in
every time you need them.

You cannot use an ordinary cassette recorder with
the 64: you must use the special Commodore

Setting up your 64 5

cassette unit, which is available at extra cost. The
cassette unit plugs into a socket at the rear of the
computer. No separate power supply is needed for
the cassette unit as this is provided by the
computer.

DISK DRIVE

Programs can also be stored on floppy disks. A
floppy disk drive is faster than a cassette unit and
is more flexible in use . (It is also much more
expensive). The disk drive connects to the round
serial interface socket at the rear of the computer.
The disk unit requires its own power supply and so
must also be plugged into the mains.

PRINTER

If you have a printer, its lead plugs into the serial
interface socket at the rear of the computer. If you
are also using a disk drive you should plug the
printer lead into the spare socket at the rear of the
disk drive. The printer also has a separate mains
lead.

SWITCH ING ON

When you have connected everything together, you
are ready to switch on. The equipment must be
switched on in the right order, or there is a risk of
damaging the computer.

First switch on the TV.

Second, switch on the disk drive and then the
printer. (Remember that you should never switch a
disk unit on or off with disks inside it.)

Last, switch on the computer itself.

6 The Commodore 64 Omnibus - Part 1

Switching off should be carried out in the reverse
order: first the computer, then the disk drive and
printer, and last of all the TV.

TUNING

To get a display to appear on the TV screen, tune to
channel 36, or, on a pushbutton set, use a spare
channel and keep tuning until you see this appear
on the screen:

**** COMMODORE 64 BASIC V2 ****

64K RAM SYSTEM 3891 1 BASI C BYTES FRE E

READY.

If you are unable to tune the television, perform the
following checks:

1 Check that the aerial lead is connected.

2 Make sure the computer is connected to the
mains and switched on. The red power
indicator should be on.

3 Try tuning the TV again, and - if possible -
try a different TV.

Setting up your 64 7

With a little time and careful tuning, it is possible
to get a clear and stable display on nearly all types
of TV. If you are unsuccessful, consult your dealer.

If you are thinking of buying a TV especially for
use with your 64, it's worthwhile taking the
computer to the shop, as certain types of TV seem
to give better results than others.

For the best quality display, you could buy a
monitor. This is a display specifically designed for
use with a computer, and contains no circuitry for
TV reception. However, a good colour monitor can
cost twice the price of the computer!

The 64 provides a standard output for a monitor,
through the socket next to the cassette recorder
socket. Your dealer can advise you on the
connecting leads required.

C H APTE R 3

FI RST STEPS

Before you can make use of your Commodore 64,
you must find out how to communicate with it.

Communication is a two-way process: you must
give the 64 instructions, and you must be able to
find out how it responds to them. You give
instructions using the keyboard, and the 64
displays its response on the TV screen.

Type the following phrase on the keyboard:

PRINT "CBM 64 "

You will see the letters appear on the screen as you
type them. The flashing square - called the cursor
- will move to indicate where the next letter you
type will appear. Nothing else happens though -
the computer has not yet obeyed your instruction.

Now press the RETURN key. The words 'CBM 64'
appear on the screen, and the word 'Ready' is
printed to tell you that the 64 is waiting for your
next command. (If instead of printing 'CBM 64' the
computer prints '?SYNTAX ERROR' or 0, it means
you have made a typing mistake. Try again!).

So, to give the 64 a direct command you type it at
the keyboard and press RETURN. Try another
command:

PRINT "HELLO ! "

First Steps 9

Again, the letters between the quotation marks are
printed. You can tell the 64 to print any sequence
of letters, but you must remember to put them
between quotation marks. Try making it print
your name.

You don't have to type PRINT in full every time -
the question mark me ans the same to the
computer. Try :

? " HELLO ! II

(remembering to press RETURN, of course) .

MANAGING TH E DISPLAY

As well as typing on to the screen, there are a
number of different ways to alter the display.

The Cursor

The cursor can be moved around the screen using
the two keys labelled 'CRSR' at the bottom right of
the keyboard. Keep one or other of the keys
pressed to move the cursor in the direction of the
arrows at the front of the key. To reverse the
direction, hold down the SHIFT key while pressing
the cursor key.

This method of assigning two functions to a key is
exactly the same as on a typewriter, except that on
the Commodore 64, it is taken a stage further, with
one key meaning three or four different things
depending upon which other key you press as well.

Try moving the cursor around, (it will continue to
move for as long as you press the key) and watch
what happens when it gets to the edge of the
screen. When it reaches one side it re-appears at
the other side. But when the cursor reaches the
bottom of the screen, the display begins to move off

10 The Commodore 64 Omnibus - Part 1

the top of the screen. This vertical movement is
called scrolling. Notice that anything that
disappears when the picture scrolls cannot be
recovered.

To return the cursor to the top left hand corner of
the screen (known as the HOME position), press
the CLRlHOME key.

Corrections

If you notice - before you press RETURN - that
you have made a typing mistake , you can correct
the error by using the cursor keys. For example, if
you type:

PRONT "CBM 64 "

and then realise your mistake, position the cursor
over the offending 0 using the cursor keys, and
type an I. You can now press RETURN - there's
no need to move the cursor to the end of the line.
This is a general rule for the 64; pressing RETURN
will tell the computer to consider the line upon
which the cursor rests as a command. This means
you must be careful to delete any rubbish from the
line before pressing RETURN.

To remove large amounts of text , use the
INST/DEL key which will delete characters to the
left of the cursor for as long as it is held down. To
insert text in a line, hold down the SHIFT key and
press the INST/DEL key - this will create a space
for your addi tions.

Clearing the screen

This can be done in two ways. You can hold down
the SHIFT key and press the CLR/HOME key.

First Steps 1 1

Alternatively, hold down the RUN/STOP key and
press the RESTORE key to clear the screen, return
the screenlborder colours to dark blue/light blue
and display the READY message.

NUMBERS

As well as printing words, the Commodore 64 can
also handle numbers. Try:

PRINT 5 (RETURN)

You can do arithmetic.

Addition:

PRINT 5 +3

Subtraction:

PRINT 7-4

Multiplication:

PRINT 3*5

Division:

PRINT 15/6

Powers (exponentiation):

PRINT 3 i 2

You can ask the 64 to calculate longer expressions,
such as:

PRINT 3*5 + (5- 3)/ (2+1) * 7/8

12 The Commodore 64 Omnibus - Part 1

In working out expressions like this, the computer
follows strict rules about the order in which the
various arithmetical operations are performed.

First The expressions inside brackets are
evaluated.

Second Any powers (squares, cubes , etc .)
indicated by t are worked out.

Third

Fourth

The 64 performs the multiplications
and divisions.

The additions and subtractions are
performed.

If you are unsure, put brackets round the bit you
want calculated first. Try the following examples,
and see if you can work out the answers yourself to
check that you know what the computer is doing.

PRINT 2 * 2 + 2 * 2
PRINT 2 + 2 * 2 + 2
PRINT 6 + 3 / 5 - 4
PRINT 3 t 2 + 4 t 3 / 2
PRINT (3 + 4) * 2

COLOU R

The colour of the screen display and its border can
be changed to be any one of 16 colours, as can the
colour of the characters displayed on the screen.

To change the colour of the characters, hold down
the CTRL key and press one of the numeric keys -

. the cursor will change to the colour written on the
front of the key. Now type some characters - these
will appear in the same colour as the cursor. You
can change the colour of the characters at any time

First Steps 13

by holding down the CTRL key and pressing one of
the number keys again.

The keys 1 to 8, in conjunction with the CTRL key
will give eight colours. To obtain a further eight,
hold down the CBM logo key (at the bottom left
hand corner of the keyboard) and press one of the
number keys. The colours obtained with the
various keys are shown in Appendix 5.

The colour of the screen and border can be made to
take on any one of these colours, by using a BASIC
command. To see this happen, clear the screen
(press SHIFT and CLRJHOME) and type:

POKE 5 328 0,2 (and press RETURN)

If you typed correctly, the border will change from
light blue to red. The POKE command will be
explained more fully later on; for now it is enough
to know that it puts a number (in this case 2) into a
special area of memory which the 64 uses to
determine the border colour. 2 is the code for red, so
the border turns red.

You can also change the colour of the screen:

POKE 5 3281 ,7

This turns the screen yellow because 7, the code for
yellow, has been placed in the area of memory
which the 64 uses to determine screen colour.
Don't worry if you can't follow what is happening
all will be made clear later, since we will make
great use of the POKE command throughout this
book.

14 The Commodore 64 Omnibus - Part 1

RETU RNING TO NORMAL

If at any time you want to return to the dark
blue/light blue screenlborder combination, simply
hold down the RUN/STOP key and press the
RESTORE key.

TEXT

There are two other things you can do which alter
the appearance of the display.

When you first switch on and type, all the letters on
the screen are displayed as capitals, or upper case.
The 64 can also display text in lower case.

PRINT " THIS IS A TEST "

will print the message 'THIS IS A TEST'. Now,
hold down the CBM logo key and press the SHIFT
key - all the letters on the screen turn into lower
case, as do any subsequently typed letters. Thus:

pr i nt " th i s i s a tes t "

still works because the 64 understands both types
of text. However,

PRInt " STILL TESTING "

will not work - instructions to the 64 must all be in
the same case.

First Steps 15

REVERSE MODE

Up to now, all our characters have been in light
blue on a dark blue background. The 64 allows you
to display reversed text. To try this hold down the
CTRL key and press the 9 key (note that the words
RVS ON are written on the front of the key). From
now on, anything you type on that line appears
reversed , with dark characters on a l ight
background. To turn this off, hold down CTRL and
press the 0 key (RVS OFF) or press RETURN, since
reverse video is active only for one line at a time.

GRAPH ICS CHARACTERS

You will notice that displayed on the front of many
of the keys are two symbols or graphic characters.
These can also be displayed on the screen by
holding down the CBM key or the SHIFT key
together with the appropriate key. Pressing a key
in conjunction with the CBM key will display the
left hand graphics character; using the SHIFT key
instead selects the right hand character.

MULTIPLE COM MANDS

You can put more than one instruction in one
command if you separate the instructions with
colons (:). Try this: (see also the note which follows
the examples)

PRINT " { CLS} " : PRINT " 3+4= " 3+4
: PRINT

Or this:

16 The Commodore 64 Omnibus - Part 1

PRINT " { CLS} " : POKE 5 3 2 8 0 , 8 : POKE
5 3 28 1 , 5 : PRINT " { GRN} LURID COLOUR
SCHEME ! ! "

It doesn't matter if you run over the end of the line
on the screen, as long as there are no more than two
screen lines of characters (including the spaces) in
the command.

Note

In the two examples above, the characters within
the 'curly' brackets { } indicate which key to press
when typing in the listing - they should not be
typed, for example:

PRINT " { CLS } "

means type PRINT , followed by a quotation mark,
then hold down the SHIFT key and press
CLRlHOME, followed by a further quotation mark.
The screen will display a reverse heart character
within the quotation marks, which tells the 64 to
clear the screen. Similarly, " { GRN} " means hold
down the SHIFT key and press 6, to set Green.

This method of indicating certain key presses is
used throughout this book and a full list of the
abbreviations is given in Appendix 1, though most
should be obvious.

Entering a number of instructions together like
this can get very cumbersome. In the next chapter
we will discover a way of giving the computer a
very large number of instructions all at once - the
PROGRAM.

First Steps 1 7

SUMMARY

PRINT instructs the 64 to print something on the
screen.

PRINT "ABCDEFG "

prints the characters between the quotation marks.

PRINT 3 + 4

prints the result of the sum.

These can be combined:

PRINT " 3+ 4 * 5+7 = " 3+4 * 5+7

COLOURS The colour of the screen, its border
and the characters on the screen can
be set to any one of 16 colours.

MULTIPLE COMMANDS A number ofseparate
instructions may be included on one line but must
be separated by colons (:) .

C H APTER 4

PROGRAM M I NG

At the end of Chapter 3, we saw that it is possible to
give the computer a number of instructions at one
time by writing them one after another on one line.
We will now look at a much more powerful way of
doing this - using a program.

A computer program is a numbered list of computer
instructions which are entered together and stored
by the computer to be obeyed later. Let's look at the
last example of Chapter 3 and see how we can turn
it into a program. In Chapter 3 we had:

PRINT" { CLS } " : POKE 5 3 280 , 8 : POKE
5 3 2 8 1 , 5 : PRINT" { GRN} LURID COLOUR
SCHEME "

Rewri tten as a program it looks like this:

10 PRINT " { CLS } "
20 POKE 5 3 280 , 8
3 0 POKE 5 3 281 , 5
40 PRINT " { GRN} LURID COLOUR

SCHEME ! "

To enter the program into the computer, type each
line in turn (remembering to press RETURN after
each). You will see that the 64 does not obey the
instructions as they are entered, and that the
'READY' message does not appear after you press
RETURN. The computer recognises that each line

Programming 1 9

is part of a program, because each begins with a
number, and the program is stored for future use.

When you have typed in all the lines, you can
inspect the stored program by typing LIST (and
pressing RETURN, of course). The instructions are
listed in numerical order on the screen. You can
list parts of the program by specifying l ine
numbers. For example:

L I ST 3 0- 5 0 lists all lines from 30 to 50

L I ST 2 0 lists only line 20

L I ST - 3 0

L I ST 3 0 -

lists all l ines up to and
including line 30

lists all lines from line 30 to
the end of the program

If a program is very long, it will occupy more lines
than there is space for on one screen. So the screen
scrolls to display the program and this can be
slowed by holding down the CTRL key during
LISTing.

To order the computer to act on the program you
use another BASIC command: RUN. Type this in
(followed by RETURN). This tells the computer to
read through the stored program and obey each
instruction in order. You will see that the program
gives exactly the same results as the multiple
instructions in Chapter 3. (If it doesn't, and the 64
prints a message such as 'SYNTAX ERROR IN
LINE 20', there is a typing mistake in that line and
the 64 cannot understand the instruction. LIST
the line, and correct the mistake.)

20 The Commodore 64 Omnibus - Part 1

A program may be RUN as many times as you like.
It will be stored in the computer's memory until
you swi tch it off.

It is possible to begin execution of a program from a
line other than the first by specifying the line
number. For example RUN 20 begins executing
the program at line 20, and line 10, the instruction
which clears the screen, is ignored.

Programs can be altered or added to at will. To
alter an instruction, retype the line. If you enter:

3 0 POKE 5 3 2 8 1 , 2

the original line 30 is replaced by the new one, and
the next time you RUN the program the screen will
turn red instead of green. (To return to the original
screen colours, hold down the RUN/STOP key and
press RESTORE.)

Extra lines are added by typing them as before:

3 5 PRINT IIAN EXTRA LINE II

Notice that the computer inserts the extra line in
the appropriate place: it is not put at the end.

NOTE It is a good idea always to number
program lines in steps of 10 to allow
extra or forgotten lines to be inserted
without having to renumber the
whole program.

To delete a line, type the line number and press
RETURN. The line is deleted from the list in the
computer's memory.

Programming 2 1

Now see if you can alter the example program to
PRINT different words on the screen and in
different colours.

When you have exhausted the possibilities of this
program, you can use the command NEW to delete
the whole program. You will then be ready for the
next program.

CLOSE ENCOUNTERS

Here is a more interesting program for you to try -
it may also be useful if you're in the habi t of
attempting to communicate with aliens! Don't
worry if you don't understand all the instructions -
you will do when you've read the rest of the book
just type it in, R U N it and wait for a tClose
Encounter'!

10 W=8 5 0 : DIM NO (4 , 1)
20 DEF FNA (X) =INT (RND (1) * 16)
30 FOR Z=O TO 4
40 FOR J=O TO 1
5 0 READ NO (Z , J)
60 NEXT J , Z
70 PRINT CHR$ (1 4 7)
1 0 0 POKE 5 4 2 9 6 , 1 5
110 POKE 5 4 2 7 8 , 83
120 POKE 5 4 2 7 7 , 2 4 5
1 3 0 POKE 5 4 2 7 6 , 3 3
200 FOR L=O TO 15
210 GOSUB 5 0 0
2 2 0 FOR P = O TO 2 0 0 : NEXT P
230 POKE 5 4 2 7 6 , 3 2
240 FOR P=O TO 4 0 0 : NEXT P
2 5 0 POKE 5 4 2 7 6 , 3 3
26 0 W=W-5 0
270 NEXT L
3 0 0 GOSUB 5 0 0 : GOTO 3 0 0
5 0 0 FOR Z = O TO 4
510 POKE 5 4 27 3 , NO (Z , 0)

22 The Commodore 64 Omnibus - Part 1

5 2 0 POKE 5 4 27 2 , NO { Z , I)
5 3 0 B=FNA { X)
5 4 0 S=FNA { X)
550 POKE 5 3 28 0 , B
560 POKE 5 3 2 8 1 , S
570 FOR P=O TO W : NEXT P
580 NEXT Z
590 RETURN
6 0 0 DATA 18 , 2 0 9 , 21 , 3 1 , 16
610 DATA I 9 5 , 8 , 9 7 , 1 2 , 1 4 3

Check the program carefully for typing errors, and
then RUN it. If the program stops and the message
t? SYNTAX ERROR IN LINE xxx' is printed, it
means you have made a typing mistake in that
line. If any other error message is printed, check
the whole of the program for mistakes.

If you do not succeed in making contact with any
aliens, you may stop the program by holding down
the RESTORE key and pressing the RUN/STOP
key.

ARITH M ETIC IN PROGRAMS - VARIABLES

We discovered in Chapter 3 that the 64 will print
the answers to arithmetical problems in response
to commands such as:

PRINT 3 + 5

This sort of instruction can be included In a
program like this:

10 PRINT " { CLS } "
20 PRINT " 3+ 5 = " 3+5

but it would be difficult to make much use of this
for working out your personal finances.

Programming 23

What gives a computer the power to perform
complex data processing (or �number crunching')
tasks is its ability to do algebra: to use names as
symbols for numbers. This means that programs
can be written with names to symbolise numbers,
and then RUN with different numbers attached to
the names. These number-names are called
VARIABLES because they represent varyIng
numbers. Let's try an example.

r
H E I G HT AREA = WIDTH x H EI G HT

1 ____ -------1

��---- WIDTH --------..

The area of a rectangle is equal to the width of the
rectangle multiplied by the height. By using
names instead of numbers we can write a program
to work out the area of any rectangle. For example:

1 0 WIDTH = 8
2 0 HEIGHT = 1 2
3 0 AREA = WIDTH * HEIGHT
4 0 PRINT "AREA = II AREA

This program, when RUN, will print the area of a
rectangle 12 inches by 8 inches. By changing the
numbers in lines 10 and 20 we can obtain the area
of a rectangle of any size .

24 The Commodore 64 Omnibus - Part 1

VARIABLE NAM ES

Any number of letters can be used in a variable
name, but only the first two characters of the name
are considered by the 64; the rest are ignored. This
means, for example, that if you use these names:

FR

FRUIT

FRIEDEGG

the computer will treat them as the same variable,
FR.

All variable names must begin with a letter, but
the other characters may be numbers, for example
AI, E7, Ll. There must not be any spaces in a
variables name: this will confuse the computer.

NOTE You cannot use as a variable name
any of the BASIC command words, or
any name which includes a command
word. If you do, your program will not
run, but will give SYNTAX ERROR
messages whenever the name is used.
For example , LENGTH contains
L E N , and BREADTH contai ns
READ, both o f which are BASIC
words. Similarly, you cannot use the
BASIC reserved variables TI, TI$ and
ST, whch are reserved for use by the
64's i nternal operati ons . (S e e
Appendix 2 for a full list of all the
BASIC reserved words.)

Programming 25

TYPES OF VARIABLE

There are three different types of variable, two of
which represent numbers, the third representing
words. The types which represent numbers are
Real and Integer variables; the type representing
words are called String variables because they
contain sequences or tstrings' of characters. The
variables in the previous program are rea l
variables.

REAL VARIABLE S

These are used to represent numbers and can have
any value, whole numbers or fractions. Real
variables should be used in all arithmetical
programs. Real variables can have any value. For
example:

REAL = 3 . 7 2
S I ZE = 87 . 3 * 2 . 5

INTEGER VARIABLES

These can only represent whole numbers (or
integers), not fractions. They may be used when
counting events or objects, or to store constant
integer values. For example , a program which kept
a record of the number of chocolate bars in stock at
a shop could use integer variables to count them,
but the takings of the shop would have to be stored
in real variables, or fractions of pounds (Le .
pennies) would be ignored.

Integer variables must be identified by the % sign
after the variable name, as in CHOCBARS%. Here
are some examples:

26 The Commodore 64 Omnibus - Part 1

NUMBER% = 3+6
COUNT % = COUNT% + 1
CHOCBARS% = 1 0 0 0 0 0 0

If you try to give an integer variable a fractional
value only the whole number part is stored. So

1 0 NUMBER% = 7 . 5
2 0 PRINT NUMBER%

will print the value 7.

STRING VARIABLE S

A string variable is used to store words or letters or
numbers. The variable name for a string variable
must be followed by a dollar sign ($) to distinguish
it from the other types of variable. Examples are:

NAME$ = "WINSTON CHURCHILL"

STRING$ = "ABCDEFG"

Note that the letters defining the variable contents
are enclosed by quotation marks.

The maximum number of characters a string
variable can hold is 255. If you try to make a string
longer than that the 64 will display the message
(STRING TOO LONG ERROR'.

NOTE It is possible to have variables of
different types with the same name,
such as:

NAME
NAME %
NAME $

= 87 . 7 6
= 3
= "GEORGE WASHINGTON"

The computer will not be confused,
but you might, so be careful!

Programming 27

ARRAYS

Each of the three types of BASIC variable - real,
integer and string - may be used in the form of
what is called an Array . In normal use a variable
name represents one stored number or string. In
an array, the variable name represents a collection
of stored information, with one or more reference
numbers identifying the individual items. An
array can be pictured as a collection of boxes. Here
is a diagram of an array which uses one reference
number.

R E FER ENCE CONTE NTS N U M B ER

a LUCY

1 JU LI E

2 SH E I LA

3 N ICK

4 BRIAN

5 S U E

Array NAME$

The array is a string array and has 6 elements
numbered from 0 to 5. The array would be used
like this:

1 0 NAME$ (O) = " LUCY "
20 NAME$ (l) = " JULIE"
30 NAME$ (2) = " SHEILA"
4 0 NAME$ (3) = "NICK"
50 NAME$ (4) = " BRIAN"

28 The Commodore 64 Omnibus - Part 1

60 NAME$ (5) = " SUE "
1 0 0 FOR N = ° TO 5
110 PRINT N , NAME$ (N)
1 2 0 NEXT N

As mentioned before, an array may have more than
one reference number. The number of reference
numbers per i tem i s c al led the number of
dimensions of the array. Here is a program using
an array with two reference numbers per item:

10 DIM P$ (2 , 2)
2 0 P$ (O , O) = " FLORENCE "
3 0 P$ (O , l) = " NIGHTINGALE "
4 0 P$ (l , O) = " GEORGE"
50 P$ (l , l) = "WASHINGTON"
6 0 P$ (2 , 0) = " ISAAC "
70 P$ (2 , 1) = " NEWTON"
1 0 0 FOR A = ° TO 2
110 FOR B = ° TO 1
1 2 0 PRINT P$ (A , B) : " " .

,

1 3 0 NEXT B
1 4 0 PRINT
1 5 0 NEXT A

Here again the array can be thought of as a
collection of storage boxes, this time laid out in a
grid as shown opposi teo

You can use arrays wi th more than two
dimensions, but you will find the 64's memory will
not hold arrays of more than about four dimensions
(the exact number depends on the number of
elements in each dimension). The maximum
allowed value of each reference number may be
anything up to several thousand, but this depends
on how much memory is occupied by the program
itself, and by the other variables of the program.

Programming 29

B = 0 B = 1

A=O FlORENCE NIGHTINGALE

A = 1 GEORGE WASHINGTON

A= 2 ISAAC NEWTON

Array P$

A D I M command must be included at the
beginning of any program which will use arrays of
more than one dimension, or with more than eleven
elements (0-10). The command tells the computer
to reserve memory space for the array. You do not
need a D I M command if you are using one
dimensional arrays with no more than eleven
elements numbered from 0 to 10, as the 64 is able to
handle these automatically.

GETIING VALU ES INTO PROGRAMS

It would be very inconvenient to have to alter a
program to make it handle different numbers, so
there are a number of instructions which allow
�umbers or letters to be given to a prcgr�-n while it
IS running. The first of these is INPUT.

When the computer finds an INPUT statement in
a program, a question mark is displayed on the
screen. The computer waits for you to type in a
number or letter string, which it will then store as
a variable before continuing with the rest of the
program. Type NEW (RETURN) to delete any
program currently in the computer's memory and
then try the example overleaf:

30 The Commodore 64 Omnibus - Part 1

10 INPUT NUMBER
20 PRINT NUMBER

When you RUN this program you will see a
question mark on the screen. Type a number and
press RETURN: the number is printed.

NOTE If you typed anything other than a
number the computer would print the
message 'REDO FROM START'. It
would then display another question
mark and wait for you to type the
number in again. This is because the
variable NUMBER is a real variable
and can only store numbers. If you press
RETURN without typing anything, the
variable is unchanged, so in this case a
zero is displayed.

The INPUT instruction can handle strings too, if
you specify a string variable in the INPUT
command:

10 INPUT NAME$
20 PRINT NAME$

This program will accept both numbers and letters
and store them as a string variable . Pressing
RETURN enters a null string but this time nothing
is displayed.

Messages can be printed before the question mark
to tell the person using the program what to type
in. Change line 10 to:

10 INPUT II TYPE A WORDII ; NAME$

and RUN the program again. You can use any
message you like, but it must be contained within
quotation marks, and there must always be a

Programming 3 1

semicolon between the message and the variable
which will store the number.

It is possible to use one INPUT command to input
two or more numbers or strings.

1 0 INPUT "NAME , AGE " ; NAME$, AGE
20 PRINT NAME$
3 0 PRINT AGE

The variables must have commas separating them
in the INPUT command; and when you type in the
information you must use a comma to separate the
items. If you press RETURN before entering all
the items the 64 will print two question marks and
wait for the remaining items. If you enter too
many items the surplus ones will be ignored and
the 64 will print (?EXTRA IGNORED'.

Let's use what we know about variables and
INPUT to improve the area program. Clear the
computer's memory by typing NEW (RETURN),
and then type in this program.

10 REM IMPROVED AREA PROGRAM
20 PRINT " { CLS } "
3 0 INPUT " ENTER WIDTH " ; WIDTH
4 0 INPUT " ENTER HEIGHT" ; HEIGHT
5 0 AREA = WIDTH * HEIGHT
6 0 PRINT : PRINT "AREA = " AREA

This program will read the two numbers you type
in for width and height and print the area of the
rectangle. U sing INPUT has made the program
much more flexible: we don't have to alter the
program to use different numbers.

32 The Commodore 64 Omnibus - Part 1

REMARKS

Line 10 of the last program is a remark or
comment statement. These are used to hold
comments, notes and titles to make the purpose of a
program and the way in which it works clear to
someone reading the l i st ing. Remarks are
identified by the word REM before the remark and
have no effect when the program is RUN.

You should always put plenty of remarks in
programs, because although you may understand
how a program works when you write it, three
months later you may have forgotten. If you need
to modify a program at some time after writing it,
remarks will make it much easier to remember
how the program works.

SUMMARY

PROGRAMS

A program is a numbered sequence of computer
instructions.

LIST

RUN

NEW

displays the lines of a program.

starts the execution of a program.

deletes a program from the computer's
memory. ·

VARIABLES

Variables represent numbers and words In
programs.

There are three types of variable:

Real

Integer

String

INPUT

Programming 33

representing any numbers.

representing whole numbers, and
distinguished by % at the end of the
variable name.

representing words or numbers, and
distinguished by $ after the name.

is used to enter numbers or words into
variables while a program is running.

Variables may be collected in arrays, with the
same variable name, but with distinguishing
reference numbers.

REMARKS

REM is used to put remarks into programs for
the programmer's benefit.

C H APTE R 5

PROGRAM CONTROL

In the last chapter we defined a program as a
numbered list of instructions to the computer,
which are obeyed in order from beginning to end.
In this chapter we will find out how to write
programs in which some instructions are executed
more than once . This makes programs more
efficient, as instructions which must be repeated
need to be written only once. We will also discover
that the computer can make decisions.

REPETITION

A section of program can be repeated many times
using the instructions FOR and NEXT. Try this
example :

1 0 FOR COUNT = 1 TO 1 0
2 0 PRINT COUNT
3 0 NEXT COUNT

which prints the numbers from 1 to 10 on the
screen. The FOR ... NEXT instructions work like
this :

FOR ..• NEXT LOOPS

The section of program between the FO R and the
NEXT commands is repeated for each value of
COUNT, and COUNT is automatically increased
by one every time the NEXT command is met.

Program Control 35

The variable in a FOR ... NEXT loop need not be
increased by one; any increase or decrease can be
specified using the command STEP. Try changing
line 10 to:

1 0 FOR COUNT = 0 TO 30 STEP 3

Then RUN the program again. COUNT is now
increased by 3 each time the loop is repeated. The
STEP can also be negative, so that the numbers
get smaller:

1 0 FOR COUNT = 5 0 TO 0 STEP - 2 . 5

It is not necessary to specify the variable after
NEXT;

30 NEXT

would work just as well. However when you write
longer programs you will find that they are clearer
if the variables are always specified. The 64 will
not be confused, but you will be as you write the
program!

To recap, the instructions are used like this:

FOR V = X TO Y STEP Z

is used to begin a loop (V is a variable and X, Y and
Z may be variables or numbers), and

NEXT V

marks the end of the loop.

The variables used in FOR ... NEXT loops may be
real or integer variables, but not string variables,
and not elements of arrays.

36 The Commodore 64 Omnibus - Part 1

NESTED LOOPS

FOR . . . NEXT loops can be nested - that is, one
loop can be contain one or more other loops. Here is
an example :

10 FOR A = 1 TO 3
2 0 FOR B = 1 TO 4
3 0 PRINT A, B
4 0 NEXT B
5 0 NEXT A

For any nested loops, it is very important that the
enclosed loop is completely within the outer loop,
otherwise the program will not work. To clarify
this, let's examine the order in which instructions
are obeyed in the program.

START [1; 10 FOR A = 1 TO 5
r+ 20 FOR B = 1 TO 5

L 30 PRINT A, B
40 NEXT B
50 NEXT A
END

The two loops are arranged so that one is
completely within the other. If lines 40 and 50
were swapped over, the result would be as shown
opposite.

You can see that the two loops overlap and the
order in which the instructions should be obeyed is
not clear.

This rule always applies to FOR ... NEXT loops -
the loops must always be one within the next.

Program Control 37

START � 1 0 FOR A = 1 TO 5
20 FOR B = 1 TO 5
30 PRINT A , B
40 NEXT A
5 0 NEXT B
END

Nine is the maximum possible number of FOR •.•

NEXT loops which can be nested one within
another. If you write a program with too many
loops nested within each other, when it is RUN the
64 will print the message 'OUT OF MEMORY
ERROR'.

NOTE Where two or more nested FO R ...

NE XT l oops h ave the i r N E X T
commands one after the other they may
be combined by specifying both or all the
variables after one NEXT. The previous
program would therefore end:

4 0 NEXT B , A

Again the order of the variables in line
40 is the reverse of the order in which
the corresponding F O R commands
occur.

JUMPS

The computer can be instructed to jump from one
program line to another using the command
GOTO. Enter this program

10 GOTO 3 0
2 0 PRINT " LINE 2 0 "

38 The Commodore 64 Omnibus - Part 1

30 PRINT " LINE 3 0 "

When it is RUN the message 'LINE 20' is not seen
because the GOTO instruction in line 10 sends the
64 straight to line 30. (Note that GOTO can be
typed with or without a space - GO TO works
equally well.)

The jump can be to a lower numbered line. The
following program will go on for ever, unless you
stop it by pressing the RUN/STOP key:

10 PRINT "ON AND " ;
20 GOTO 1 0

This i s called an endless loop, and is to be avoided!

PAUSES

There are two ways to instruct the computer to
pause during the RUNning of a program.

For pauses, the duration of which is not critical, we
can use a FOR ... NEXT loop which does nothing at
all except count its way through the steps. The
following program is an example :

10 FOR 1 = 0 TO 5 0 0 0
20 NEXT I
30 PRINT "ABOUT 5 SECONDS "

This technique is fine for crude pauses, but for
accurate timing, it is better to employ a second
technique.

TH E SYSTEM CLOCK

Whenever you switch on your 64, a built in clock
starts running, and will continue to run until you
switch off the machine. The clock continually

Program Control 39

updates the variable TI every 60th of a second, as
the following program demonstrates.

10 PRINT " { CLS } "
20 PRINT " { HOM} " TI
3 0 GOTO 2 0

Since TI is updated every 60th of a second, one
minute has elapsed when the value of TI has
increased by 3600. We can use this as a timer for
precise pauses within a program, for example :

1 0 INPUT " DELAY IN SECONDS " ; D
2 0 T = T I
3 0 IF TI>= T+ (D* 6 0) THEN GOTO 5 0
4 0 GOTO 3 0
50 PRINT D " SEC DELAY ! ! ! "

An easier way of using the system clock is to use
another system variable TI$. TI$ is a six character
string which indicates time since the computer was
swi tched on in hours, minutes and seconds. The
first two digits are hours, the middle two minutes,
and the right hand pair seconds.

TI$ can also be used to reset the system clock, with
a statement like :

TI S = " 0 0 0 0 0 0 "

We can see TI$ in operation in this short program:

10 PRINT " { CLS } "
20 T I S = " 0 0 0 0 0 0 "
30 PRINT " { HOM} " T I S
40 GOTO 3 0

Here i s a longer program which makes use of the
system clock to simulate a digital alarm clock:

10 PRINT " { RED} " : POKE 5 3 2 8 1 , 0

40 The Commodore 64 Omnibus - Part 1

1 5 GOSUB 7 0 0
2 0 PRINT" { CLS } "
3 0 PRINT " {HOM} "
40 PRINT TAB (1 6) LEFT$ (TI $, 2) " . "

MIO$ (TI $, 3 , 2) " . " RIGHT$ (TI $, 2)
5 0 IF AS=O THEN 1 0 0
6 0 IF TI$=AT$ THEN POKE 5 3 2 80 , 2 :

POKE 5 4 2 9 6 , 1 5
1 0 0 GET K$: IF K$ = " " THEN 3 0
1 1 0 IF K$= " { Fl } " THEN 2 0 0
1 2 0 IF K$= " { F 3 } " THEN 3 0 0
1 3 0 IF K$=" { F5 } " THEN 4 0 0
1 4 0 I F K$= " { F7 } " THEN 5 0 0
1 5 0 GOTO 3 0
1 9 3 REM
1 9 4 REM ************
1 9 5 REM * *
196 REM * SET TIME *
1 9 7 REM * *
198 REM ************
199 REM
2 0 0 INPUT " { CLS } { CO} { CO} { CO} { CO }

{ CO } CURRENT TIME " ; CT$
210 IF CT$ = " " THEN 2 0
2 2 0 A$=CT$: GOSUB 1 0 0 0
2 3 0 IF OK=l THEN TI$ =CT$: GOTO 2 0
2 4 0 GOTO 2 0 0
2 9 3 REM
29 4 REM *************
2 9 5 REM * *
296 REM * SET ALARM *
297 REM * *
298 REM *************
299 REM
3 0 0 INPUT " { CLS } { CO } { CO } { CO} { CO }

{ CO } ALARM TIME " ; AT$
3 1 0 I F AT$ = " " THEN 2 0
3 2 0 A$=AT$: GOSUB 1 0 0 0
3 3 0 IF OK=l THEN AS= l : GOTO 2 0
3 4 0 GOTO 3 0 0
3 9 3 REM

394
3 9 5
3 9 6
3 9 7
3 9 8
3 9 9
4 0 0
410
4 2 0

4 3 0

4 4 0
4 5 0
4 9 3
494
495
496
497
498
499
500
510
520
69 3
69 4
69 5
69 6
69 7
698
69 9
7 0 0
7 1 0
7 2 0
7 3 0
7 4 0
7 5 0
993
994
995

Program Control

REM **************
REM * *
REM * ALARM TIME *
REM * *
REM **************
REM
I F AS= O THEN 3 0
I F AF=1 THEN 4 3 0
PRINT " {HOM} { CD } { CD } "TAB (2 8)
LEFT$ (AT$, 2) " . "MID$ (AT$, 3 , 2)
" . " RIGHT$ (AT$, 2 } : GOTO 4 4 0
PRINT n { HOM} { CD) { CD} "TAB (2 8)
" " : REM 1 0 SPACES
AF=I-AF
GOTO 3 0
REM
REM *************
REM * *
REM * ALARM OFF *
REM * *
REM *************
REM
POKE 5 3 2 8 0 , 1 4 : POKE 5 4 2 96 , 0
AS=O
GOTO 4 3 0
REM
REM ***************
REM * *
REM * ALARM NOI SE *
REM * *
REM ***************
REM
POKE 5 4 2 7 8 , 83
POKE 5 4 2 7 7 , 2 4 5
POKE 5 4 2 7 6 , 3 3
POKE 5 4 27 3 , 1 8
POKE 5 4 27 2 , 2 0 9
RETURN
REM
REM ***************
REM * *

4 1

42 The Commodore 64 Omnibus - Part 1

9 9 6 REM * CHECK ENTRY *
997 REM * *
998 REM * * * * * * * * * * * * * * *
999 REM
1 0 0 0 OK=O
1 0 1 0 IF VAL (LEFT$ (A$, 2)) < 2 4 THEN

1 0 3 0
1 0 2 0 GOTO 1 0 6 0
1 0 3 0 I F VAL (MID$ (A$, 3 , 2)) <6 0 THEN

1 0 5 0
1 0 4 0 GOTO 1 0 6 0
1 0 5 0 IF VAL (RIGHT$ (A$, 2)) <6 0 THEN

OK=l
1 0 6 0 RETURN

Program Description

Line 10 sets the foreground colour to red and the
screen colour to black.

Line 40 prints the current value of TI$ as hours,
minutes and seconds, separated by a full stop.

Lines 100 to 150 control the mode of the clock:

F1 allows you to set the current time using lines
200 to 240.

F3 allows you to set the alarm time using lines
300 to 340.

F5 displays the alarm time if it is set, or, if it is
already displayed, cancels the display.

F7 turns the alarm offin lines 500 to 530.

The program loops continuosly through the first
section checking for key presses and comparing the
current time with the set alarm time. If a key is
pressed, the program jumps to the appropriate
section. If the alarm is set and the current time

Program Control 43

matches the alarm time, the screen border turns
red and a noise (set up in lines 700 to 750) is
switched on.

When an entry is made to set the time, it is checked
for validity by the subroutine at line 1000, which
indicates to the calling program that the entered
time conforms to the 24 hour clock format, by
setting the variable OK to 1.

DECISIONS

The commands IF and THEN are used in programs
to make decisions. A variable is tested, and one of
two alternative actions is taken, depending on the
result of the test.

1 0 FOR X = 1 TO 1 0
20 PRINT X
30 IF X = 5 THEN PRINT fiX = 5 "
4 0 FOR P = 0 TO 2000 NEXT P
5 0 NEXT X

The format of IF ..• THEN is:

IF (condition) THEN (instructions)

The condition after IF may be one of many possible
alternatives. Example are :

IF COUNT = 1 0

Continue when vari able (COUNT) equals a
number, in this case 10.

IF COUNT < 1 00

Continue when variable less than a number.

IF COUNT > NUMBER

44 The Commodore 64 Omnibus - Part 1

Continue when variable greater than a number.

IF NUMBER < > VALUE

One variable not equal to another (greater than or
less than).

IF X >= Y

Greater than or equal to.

IF X <= y

Less than or equal to.

Two condi tions may be combined, as in:

IF X = 1 OR X = 2

IF A = 3 AND NAME$ = " CBM 6 4 "

In all of these, the items being compared may both
be variables, or one may be a variable and the other
a number. (There's not much point in comparing
two numbers!) For further details see Chapter 9,
Logical Thinking. The instructions after THEN
are carried out if the condition is met, otherwise
the program continues at the next line.

IF ... THEN can also be used to control jumps:

1 0 INPUT "WHAT NUMBER AM I
THINKING OF " ; N

2 0 IF N < > 3 THEN PRINT
"WRONG " : GOTO 1 0

3 0 PRINT " CORRECTt"

If the jump is the only instruction after THEN, the
word GOTO can be omitted:

1 0 INPUT "WHAT AM I " ; A$

Program Control

20 IF A$ = " CBM 6 4 " THEN 60
30 PRINT : PRINT A$ " ? NO , TRY

AGAIN "
40 PRINT
50 GOTO 1 0
60 PRINT : PRINT "GOOD GUESS ! "

45

EXAMPLE PROGRAM - SORTING NUM BERS

As an example of what can be done using loops and
decisions, here is a program which sorts ten
numbers into ascending order.

10 REM SORTING PROGRAM
20 DIM NUM (10) , S (1 0)
30 REM INPUT 10 NUMBERS
4 0 PRINT " { CLS } "
50 FOR N=l TO 10
60 INPUT " ENTER A NUMBER" ; NUM (N)
7 0 NEXT N
1 0 0 REM COpy NUMBERS TO ARRAY S
110 FOR C=l TO 1 0
1 2 0 S (C) = NUM (C)
1 3 0 NEXT C
2 0 0 REM SORT NUMBERS
210 COUNT = 0
2 2 0 FOR N=l TO 9
2 3 0 IF S (N+ 1) >= S (N) THEN 2 8 0
2 4 0 TEMP = S (N+1)
2 5 0 S (N+ 1) = S (N)
260 S (N) = TEMP
270 COUNT = COUNT + 1
280 NEXT N
3 0 0 IF COUNT < > 0 THEN 210
310 FOR Z = l TO 1 0
3 2 0 PRINT NUM (Z) , S (Z)
3 3 0 NEXT

46 The Commodore 64 Omnibus - Part 1

The REMarks are used to indicate the functions of
the different sections of the program, which works
like this:

Line 20 dimensions the two arrays used in the
program. (This is not strictly necessary for ten
numbers, but it would be if any more were to be
sorted.)

Lines 40 to 70 input ten numbers from the
keyboard and store them in the array NUM() ,
using a FO R .. . NEXT loop.

Lines 110 to 130 copy the numbers from NUM() to
a second array 8() which will be sorted, while
NUM retains the numbers in the order in which
they were typed in. Again, a FOR ... NEXT loop is
used.

The lines from 210 to 280 sort the numbers in the
array 8(10) into ascending order. A FOR ... NEXT
loop compares each element of the array 8 with the
next, and swaps them over if they are in the wrong
order. A variable , COUNT, keeps track of the
number of these swaps and, if at the end of the loop
this isn't zero, the loop is repeated.

Lines 3 10 to 330 complete the program by
PRINTing the two sets of numbers.

SUBROUTINES

A subroutine i s a section of program which is
executed at a number of different times in the
course of a program, but is written only once. The
computer is diverted from the main program to the
subroutine, and returns to the main program at the
point from which it left.

The command GOSUB followed by a line number
or a variable diverts the computer to the

Program Control 47

subroutine in much the same way as the GOTO
command. The difference is that the end of a
subroutine is marked by a RETURN command
which sends the computer back to the instruction
after the GOSUB command. As an example of two
very simple subroutines, type in the following
program:

10 GOSUB 1 1 0
20 C = A+B
30 GOSUB 210
40 END
1 0 0 REM SUBROUTINE TO INPUT A & B
110 INPUT "A , B " ; A , B
1 2 0 RETURN
2 0 0 REM SUBROUTINE TO DISPLAY

RESULT
210 PRINT " { CLS } "
2 2 0 PRINT
2 3 0 PRINT A " + " B " = " C
240 RETURN

Lines 10 to 40 are the main program. Line 10 calls
the subroutine at line 110, line 20 adds A and B
and stores the result as C, and line 30 calls the
subroutine at line 210. Line 40 marks the end of
the program - as the last line to be executed is not
the last line of the program we have to tell the 64
not to go on to the next lines, which contain the
su brou tines.

The subroutine at line 110 inputs two numbers and
stores them as A and B. The subroutine at line 210
clears the screen and prints the two numbers and their sum.

When the program is RUN, the computer begins,
TS �lways, at the lowest numbered line, line 10.

hIS line calls the first subro utine , and the

48 The Commodore 64 Omnibus - Part 1

computer is diverted to line 110. Line 120 returns
the computer to the instruction after the GOSUB,
which is in line 20. The program proceeds as
normal to line 30, which causes another diversion
to line 210. Line 240 returns the computer to line
40, and the program ends.

So, a GOSUB command causes a diversion from
the sequence of a program to a subroutine, and the
RETURN command ends the diversion.

The use of subroutines saves a lot of effort in
wri ting programs, as the program lines in the
subroutine need to be written only once, instead of
being retyped at every point in the program where
they are needed. There is no limit to the number of
times a subroutine may be called.

Another advantage of subroutines is that they can
make the design of a program simpler. If you use
subroutines for the repetitive and less important
parts of a program the main program becomes
much easier for you, the programmer, to follow,
and is therefore much easier to write.

Subroutines, like loops, may be nested - that is, the
subroutines may call other subroutines, which may
in turn call others. A maximum of twenty-four
subroutines may be nested like this. However a
subroutine may n o t b e cal led b y a n o t h e r
subroutine which has been called by the first one,
or an endless loop occurs, and the program will
crash when the 64 runs out of the memory it uses to
store all the line numbers for the RETURNs.

STOPPING A N D STARTING

In the last example program the new command
END was used to indicate the last line of the
program to be executed. The command tells the
computer to stop running the program. There is a

Program Control 49

second comm and, STO P , which also h alts
programs, but the two have slightly different
effects. END stops the program running, and the
'Ready' message is displayed, but when STOP is
used the program halts and the message 'BREAK
IN LINE xxx' is printed (xxx is the line number of
the STOP instruction). Unless you need to know
where the program halted, END is the one to use.

If a program has been stopped by one of these
instructions, or by holding down CTRL and
pressing C, it may be restarted with the instruction
CONT. The program will continue from the
i n structi on after the l ast one to have been
executed. CONT may only be used immediately
after the program has been stopped: if you have
altered the program the message '?CAN'T
CONTINUE ERROR' will be displayed. You may
not use CONT within programs, as this will give a
'?SYNTAX ERROR'.

ON ... GOSUB (GOTO)

Both GOSUB and GOTO may be used in a second
type of decision command which selects one of a
number of destinations depending on the value of a
chosen variable.

ON N GOTO 1 0 0 , 2 0 0 , 3 0 0

results in

GOTO 1 0 0 i f N = 1

GOTO 2 0 0 i f N = 2

GOTO 3 0 0 i f N = 3

Similarly:

50 The Commodore 64 Omnibus - Part 1

ON P GOSUB 5 0 0 , 2 0 0 , 5 0 0 , 4 0 0 , 1 0 0

selects the P'th destination in the list and calls it as
a subroutine. If the value of the variable is greater
than the number of destinations in the list, or if it
is zero or less, no destination is selected and the
program continues at the next instruction.

SUMMARY

, LOOPS

The loop structure has the form:

FOR V = A TO B STE P C ... NEXT in which
the instructions between the FO R and NEXT
commands are repeated once for each value of V
indicated by the FOR ... STEP command. A, B
and C may be variables or numbers; V must be a
variable. Loops may be nested one within
another.

DECISIONS

IF (condition) THEN (instruction) decides
between two actions. The condition after IF is
usually a test of a variable. There may be more
than one instruction after THEN, in which case
colons (:) must be used to separate them. The
complete IF ... THEN command must be in one
line.

GOTO need not be included if it would be the only
command after THEN, but it must be if there is
another command before it:

1 0 0 IF ACE = 1 THEN 2 0

but 1 0 0 IF ACE = 2 THEN KING =
7 : GOT02 0

Program Control 5 1

SUBROUTINES

Diversions from a program, using GOSUB and
R E T U R N . G O S U B c a l l s t h e s u b r o u ti n e ,
RETURN at the end of the subroutine returns the
computer to the instruction after the GOSUB.

ON .. . GOSUB ON .. . GOTO

Selects a destination from a list:

ON N GOTO A , B , C

This causes a jump to the N'th destination - if
there is an N'th item in the list.

ON P GOSUB X , Y , Z

causes a GOSUB to the P'th item in the list.

END halts the running of a program.

STOP halts a program and prints 'BREAK IN
LINE xxx':

CONT will restart a program if the program has
not been altered.

C H APTER 6

DATA AND PROGRA M S

So far we have not examined all of the ways in
which information can be given to programs, nor by
which programs can print out information on to the
screen. There are several ways of getti n g
information into programs which we will examine
in this chapter, and we will also examine in more
detail the use of PRINT and other commands to
display data.

There is a BASIC command, GET which reads a
single character from the keyboard.

GET

The GET command can be used in two ways:

Firstly, it can be used to check which key, if any, is
being pressed as the program runs through, as in
this example:

10 GET A$
20 PRINT A$
30 GOTO 1 0

Note that i f no key i s pressed, a blank line is
printed and the program loops round to check again

. for a key press. The program will continue to loop
in this way until a key is being pressed at the same
time as line 10 is being executed.

Data and Programs 53

The GET command can also be used to halt a
program in order to wait for a key to be pressed.
The character of the key which is then pressed is
stored as a specified variable. We can demonstrate
this with a modified version of the last program:

10 GET A$
15 IF A$ = " " THEN 1 0
20 PRINT A$
30 GOTO 10

The extra instruction i n line 15 causes the program
to loop between lines 10 and 15 until a key is
pressed. When a key is pressed the character of
that key is assigned to the variable A$.

If you change the variable in line 10 from a string
variable to a numeric variable, then only the
number keys, and the keys used in relation to
numbers (. + and -) may be pressed. Pressing any
other key will cause the computer to halt the
program and print a 'SYNTAX ERROR' message.

The GET command is useful in programs which
ask the operator to select an option, or answer Yes
or No:

10
20
30

40

PRINT" PRESS C TO CLEAR SCREEN"
GET YN$: IF YN$ = " " THEN 2 0
IF YN$ = " c " THEN PRINT
" { CLS } " : END
GOTO 10

READ AND DATA

To enter large amounts of data which will be the
same each time the program is RUN we use the
final type of data entry command, READ. Look at
this program:

54

10
20
30
4 0
5 0

6 0
1 0 0 0
1 0 1 0
1 0 2 0
1 0 3 0
1 0 4 0
1 0 5 0

The Commodore 64 Omnibus - Part 1

DIM MTH$ (1 2) : DIM DAYS (1 2)
FOR M = 1 TO 1 2
READ MTH$ (M)
READ DAYS (M)
PRINT MTH$ (M) " HAS " DAYS (M) "
DAYS "
NEXT M
DATA JANUARY , 3 1 , FEBRUARY , 28
DATA MARCH , 3 1 , APRI L , 3 0
DATA MAY , 31 , JUNE , 30
DATA JULY , 3 1 , AUGUST , 3 1
DATA SEPTEMBER , 3 0 , OCTOBER , 3 1
DATA NOVEMBER , 3 0 , DECEMBER , 3 1

The information for this program is written into
the program in lines 1000 to 1050. Each item of
DATA is separated from the next by a comma (or
the end of a line). The information is copied into
the arrays MTH$ and DAYS by the R E A D
commands in line 30 and 40.

This method of entering information is much easier
to use than simply writing it into the program by
setting variables. Imagine the typing involved in
entering lots oflines like

MTH$ (2) = " FEBRUARY "

With DATA lines you can lay out the information
in a clear tabular form and check it much more
easily. You can also alter it if you need to wi thou t
touching the main program.

When a program is running, the computer uses a
tpointer' stored in its memory to keep track of how
many DATA items it has read. Every time a
READ command is met, the DATA item indicated
by the pointer is copied into the variable, and the
pointer moves on to the next item. This means you

Data and Programs 55

must have a DATA entry corresponding to each
occurrence of READ: the program will stop if there
are too many READ commands, and the 64 will
print 'OUT OF DATA ERROR'. The command
RESTORE can be used to reset the data pointer to
the first D AT A item in the program.

The variables used in the READ command must
match the type of data in the corresponding DATA
entry. A READ with a string variable will read
anything as a string, but READ with a number
variable must find a number in the DATA entry or
a 'SYNTAX ERROR' will result. Integer variables
must find integral numbers; real variables may
read decimal fractions as well.

MORE ABOUT PRINTING

So far, we have described the use of PRINT (or ?)
simply to display single items of data on the screen.
The 64 has a number of extra facilities which allow
you to control the screen layout and produce clear
and orderly output from programs.

PUNCTUATING PRINT STATEMENTS

You can PRINT more than one item on a single
line by including 'punctuation' in the P R I NT
command. You can use commas to separate the
items, in a PRINT statement, and the effect is
rather like the 'tab' function of a typewriter.
Output on the screen is formatted at every tenth
column. For example,

PRINT "A" , " B " , " C " , " D "

will give a display:

A B C D

56 The Commodore 64 Omnibus - Part 1

The first item in the PRINT statement appears in
column O. The next item - the first after a comma
appears in column 10. The other items appear in
columns 20 and 30.

The semicolon (;) can be used in a similar fashion.
This leaves no space between successive items in
the PRINT statement.

PRINT "A" ; " B " ; " C " ; " 0 " ; " E " ; " F "

will display:

ABCOEF

The same rules apply when printing numbers, and
real and integer variables, except that a space is
printed on either side of each number. The leading
space takes the minus sign when negative numbers
are displayed.

The effect of commas and semicolons is not confined
to the PRINT statement in which they appear. If
you end one PRINT statement with a comma or
semicolon then the data printed by the next
PRINT command will appear on the same line,
with spaces as appropriate.

You can exercise fu rth e r control over the
formatting of screen displays using two more
BASIC commands - SPC and TAB.

SPC(N)

SPC(N) tells the 64 to PRINT N spaces.

PRINT " { CLS } I AM" SPC (l O) " CBM 6 4 "

will print 10 spaces between �I AM' and �CBM 64'.

Data and Programs 57

TAB(N)

The TAB command instructs the 64 to move the
cursor N spaces from the left side of the screen
before printing. For example,

PRINT TAB (17) " CBM 6 4 "

displays fCBM 64' in the middle of a screen line.

The difference between S P C a n d T A B i s
straightforward. TAB moves the cursor to a
column position on what is, in effect, its current
line - so has a maximum value of 39. SPC, on the
other hand, moves the cursor onwards by up to 255
spaces, so can embrace several lines if necessary.
What neither do is to overprint blank spaces - so
that they will not delete data which is left on the
screen when new data is PRINTed.

There is a function POS corresponding to the TAB
command which returns the number of the column
in which the cursor is placed. For example;

PRINT SPC (I O) ; : PRINT P�S (0)

gives the value 10, since the cursor was in column
10 after the first PRINT command. (The number
in brackets has no significance - any number or
letter can be used.)

CURSOR CONTROL

Just as we can use the cursor keys to move the
cursor round the screen, so can we use a program to
move it. The 64 interprets four characters as
control codes governing the cursor movement.

58 The Commodore 64 Omnibus - Part 1

The characters can be used wi thin strings, for
example:

1 0 PRINT " { CLS } "
2 0 PRINT "TOP L INE"
3 0 CD$ = " { 1 0 * CD} "
4 0 CU$ = " { 1 2 * CU} "
5 0 FOR DELAY = 0 TO 3 0 0 0 : NEXT
6 0 PRINT CD$ "MIDDLE LINE "
7 0 FOR DELAY = 0 TO 3 0 0 0 : NEXT
8 0 PRI NT CU$ " BACK TO THE TOP ! "

prints the three messages in various parts of the
screen using the strings CD$ and CU$ to move the
cursor.

The way in which data is presented on the screen is
an important part of the program and can make the
difference between a program being easy to use, or
frustrating and confusing.

SUMMARY

GET is used to assign a keystroke value from the
keyboard to a variable. GET does not normally
wait for a key to be pressed before continuing, and
it is usual to include programming to ensure that it
does.

READ and DATA are used to copy large amounts
of information into variables without writing lots
of program lines.

PRINTING

There are a number of special commands which
allow control of the format of data displayed on the
screen.

C H APTER 7

PI ECES OF STRI NGS

String variables are used to store sequences -
'strings' - of characters. There are a number of
BASIC commands which are used to manipulate
strings, and these are described in this chapter.

We saw in Chapter 4 that a string variable can
store a sequence of characters. For example:

NAME $ = "WILLIAM SHAKESPEARE "
GAME $ = " SPACE INVADERS "
REFERENCE$ = "ABC 1 2 3D"

A string can hold up to 255 characters. These may
be letters, figures, punctuation marks, spaces; in
fact any of the characters the 64 can print. The
number of characters in a string can be counted
using the function LE N. Try this:

10 NAME$ = " JOHN SMITH"
20 PRINT LEN (NAME$)

This program prints the number 10, which is the
number of characters in NAME$ (including the
space).

TYING STRINGS TOGETH ER

Strings can be added together.

10 A$ = " FLORENCE "
20 B$ = "NIGHTINGALE "
30 SPACES = " "

60

4 0
5 0

The Commodore 64 Omnibus - Part 1

NAME$ = A$ + SPACE$ + B$
PRINT NAME$

Notice that strings don't add like numbers. B$ +
A$ does not give the same result as A$ + B$.
Adding strings is called concatenation and this is
how really long strings are constructed - but don't
forget that you can't have a string longer than 255
characters. If a program tries to add too many
characters together, the 64 will print a tSTRING
TOO LONG ERROR' message on the screen and
stop the program.

CUnlNG STRINGS

There are three BASIC functions which are used to
extract information from strings. The functions
are:

LEFT$ RIGHT$ and MID$

LE FT$ and RIGHT$ are both very similar in
operation. LEFT$ is used to read characters from
the beginning of a string; RIGHT$ reads from the
end of the string. The functions are used like this:

LEFT$ (string, number)

The string in the brackets may be a variable or an
actual sequence of characters between quotation
marks (") , and the number may be a number or a
variable.

For example:

PRINT LEFT$ ("ABCDEFG " , 4)

displays tABCD', and

10 S$ = "UVWXYZ "
20 N=3

Pieces of Strings

30 R$ = RIGHT$ (S$, N)
40 PRINT R$

displays 'XYZ'.

61

The third function, MID$, is a Ii ttle more- complex,
as we have to specify not only the string and the
number of characters to be read, but also where in
the string the characters are to be found.

PRINT MID$ (" 1 2 3 4 567 8 " , 3 , 4)

prints four characters, beginning at the third, of
'12345678': so it prints '3456'. If you do not specify
the number of characters to be read, all characters
to the right of and including the specified character
are included. Therefore:

PRINT MID$ ("ABCDEFGHIJK " , 4)

displays 'DEFGHIJK'.

N U M BE RS AND LETTERS

Computers cannot handle characters (numbers,
signs and letters) directly - they use numbers to
symbolise the characters. Each letter, and each of
the other ch aracters the 64 can p r i n t , i s
represented by a different code number. There are
several systems used in different computers for
deciding which code number represents which
letter. The 64 uses a system called ASCII - the
Ameri can Standard C o d e fo r I n fo rm a t i o n
Interchange - which i s the most common system
for micros. The table in Appendix 16 shows how
the ASCn code relates to letters and numbers. In
fact the 64 also uses a variant of AScn in certain
circumstances, but more of that later.

62 The Commodore 64 Omnibus - Part 1

From this table we see that the 64 uses a code
number 65 to represent the letter A, code number
66 for B and so on. Even numerals have codes. For
example the character '9' has the code number 57.

Well, what use is this knowledge? There are two
functions in BASIC which allow us to convert
characters to numbers and numbers to characters.

The function CHR$ converts a number to a string
containing the corresponding character:

1 0 C = 6 5
2 0 A$ = CHR$ (C)
3 0 PRINT A$

This displays the letter 'A'. You can use a variable
with CHR$, as in the example, or a number:

PRINT CHR$ (4 2)

This displays an asterisk (*).

CHR$ can only give one character at a time, and
the number or the variable inside the brackets
must be less than 255, or the computer will
complain of an 'ILLEGAL QUANTITY ERROR'.

The function ASC complements CHR$. ASC finds
the ASCn codes of characters.

1 0 B = ASC ("B tI)
2 0 PRINT B

displays '66', which is the ASCn code for the letter
B. You can also use string variables with ASC:

1 0 B$ = " B tl
2 0 PRINT ASC (B$)

Pieces of Strings 63

also displays '66'. If the variable contains more
than one character, ASC gives the code for the first
character only:

PRINT ASC ("ABCDE ")

displays '65'.

FIGURES IN STRINGS

A string can contain any characters - including
numerals. There are two functions which can be
used to make strings of number characters from
actual numerals and to find the numeric value of
the number characters in a string. .

The function STR$ creates from a number a string
containing the characters ofthat number:

10 A$ = STR$ (1 2 3 4 5)
20 PRINT A$

This converts the single number 12345 into a
string by assigning the characters 12345 to A$ and
displays the string.

The complementary function to STR$ is VAL.
V AL evaluates the numerical characters in a
string:

10 A$ = " 1 2 3 4 56 "
20 A = VAL (A$)
30 PRINT A

This displays the number '123456'.

If the string evaluated contains letters as well as
numbers then only the numbers which appear to
the left of all the letters are converted by VAL.
This means that:

64 The Commodore 64 Omnibus - Part 7

PRINT VAL (" 1 2 3ABC4 5 ")

displays '123'.

The signs + and - may appear before the number
characters. They will be treated by VAL as the
sign of the number.

TESTING STRINGS

Strings can be compared with each other ,in the
same way as numbers, using IF . . . THEN. A
routine like this one can be used to check that an
entry is suitable for the program:

1 0 INPUT " WHAT ' S THE PASSWORD" ; P$
2 0 IF P$ < > " BEANS" THEN PRINT

"WRONG ! ! ! " : GOTO 1 0
3 0 PRINT " { CLS }O . K . "

Another use for comparing strings is when the
GET command is used in conjunction with a
'menu'. (In computing, a menu is a list of options
displayed on the screen to the program operator.)
The next program displays a simple menu of
display options, GETs the selection from the
keyboard and then calls the selected routine .
Memory location 650 controls the repeat key
function on the 64, and normally contains a 0,
allowing only the cursor, space and INSTIDEL keys
to repeat. Placing (POKEing) a value of 128 in this
location causes all keys to repeat.

1 0 PRI NT " { CLS} "
2 0 PRINT : PRINT " SELECT OPTION"
3 0 PRINT : PRINT " S • • SCREEN COLOUR"
4 0 PRINT : PRINT " B • • BORDER COLOUR"
50 PRINT : PRINT " K • • KEY REPEAT"
6 0 GET K$: IF K$= " " THEN 6 0

Pieces of Strings

7 0 IF K$= " S " THEN REG= 5 3 28 1 : GOTO
1 0 0 0

8 0 IF K$= " B " THEN REG= 5 3 28 0 : GOTO
1 0 0 0

9 0 IF K$= " K " THEN 2 0 0 0
1 0 0 GOTO 6 0
1 0 0 0 O=PEEK (REG)
1 0 1 0 IF 0=2 5 5 THEN 0= 2 3 9
1 0 2 0 POKE REG , O+ l
1 0 3 0 GOTO 6 0
2 0 0 0 I F PEEK (6 5 0) =0 THEN POKE

6 5 0 , 1 2 8 : GOTO 6 0
2 0 1 0 POKE 6 50 , 0 : GOTO 6 0

Warning

65

Be carefu l when using STR$ and making
comparisons. If you compare " 1 2 3 " with
STR$ (1 2 3) you will find that the 64 thinks they
are not the same. This is because any number
which is shown as a result of using STR$ is
preceded by a space (or a minus sign if negative).
This seems to be a feature shared by a l l
Commodore machines. However, you can get round
the problem by using MID$ to remove the first
character of the string:

A$ = MIO$ (STR$ (1 2 3) , 2)

As well as testing to see if two strings are the same,
you can use the 'greater than' and 'less than' (>
and <) tests to compare strings.

10 IF " B " > "A" THEN PRINT " OK "

This works because the letters are stored as
numbers. The 64 is in fact comparing the ASCII
codes of the letters in the strings. This is very

66 The Commodore 64 Omnibus - Part 1

useful because it allows strings to be sorted into
alphabetical order:

1 0 PRINT " { CLS } "
2 0 DIM W$ (2 0)
3 0 C = O : L = 0
4 0 INPUT " ENTER A WORD" ; W$ (C)
5 0 I F W$ (C) = " ZZ Z " OR C = 2 0 THEN

C = C-l : PRINT " { CLS } " : GOSUB
1 00 0 : GOTO 1 0 0

6 0 C = C+l : GOTO 4 0
9 9 REM SORT STRINGS
1 0 0 S = O : L = 20
110 FOR Z=O TO C
1 2 0 IF W$ (Z+l » W$ (Z) THEN 1 7 0
1 3 0 TEMP$ = W$ (Z +l)
1 4 0 W$ (Z+ l) = W$ (Z)
1 5 0 W$ (Z) = TEMP$
1 6 0 S = S+l
17 0 NEXT Z
1 8 0 IF S <> 0 THEN 1 0 0
1 9 0 PRINT " { CLS } "
2 0 0 GOSUB 1 0 0 0 : END
9 9 9 REM DI SPLAY NUMBERS
1 0 0 0 PRINT " { CLS } "
1 0 1 0 FOR P = 0 TO C
1 0 2 0 PRINT TAB (L) W$ (P)
1 0 3 0 NEXT P
1 0 4 0 RETURN

This program works in the same way as the sorting
program at the end of Chapter 5. You can input up
to twenty strings, which may contain more than
one word. If you wish to sort fewer than 20 strings,
then enter ZZZ as the last string; this will tell the
program that there are no more strings to come.

If you run this program a few times you will
discover how effective string sorting can be. Notice
that any characters will be sorted into ASCII order,
so strings like *I@£?% and I@$&)# will be sorted.

Pieces of Strings 67

You will find that lower case letters are treated as
completely different, because of course they are
represented by different codes, and the 64 is
interested only in the codes. The lower case letters
have higher codes than the capitals, so they appear
at the end of the sorted list. (You can switch in and
out of lower case by pressing the CBM key and the
SHIFT key simultaneously).

Finally, here is a more light hearted demonstration
of string handling, combining most of the ideas in
this chapter to give you a game of Hangman. You
can of course change the (dictionary' to suit
yourself.

5
6
7
8
9
10
20

30

40
50
60
70
80
90
93
9 4
9 5
9 6
97
98
99
100

110

REM ***********
REM * *
REM * HANGMAN *
REM * *
REM ***********
REM
POKE 5 3 280 , 5 : POKE 5 3 2 8 1 , 1 3 :
PRINT" { GR1) "
PRINT " { CLS} { CD } " TAB (1 5) " {RVS }
HANGMAN { ROF } "
DIM D$ (3 0)
G=l : W= O : CF=O : W$ = " "
FOR Z=OT030
READ D$ (Z) : NEXT Z
FOR Z=O TO 9
READ D (Z) , A (Z) : NEXTZ
REM
REM ****************
REM * *
REM * DRAW GALLOWS *
REM * *
REM ****************
REM
Gl$=CHR$ (17 6) +CHR$ (19 5) +CHR$
(19 5) +CHR$ (17 4)
G2$=CHR$ (2 2 1)

68

1 2 0

The Commodore 64 Omnibus - Part 1

G3$=CHR$ (18 3) +CHR$ (18 3) +CHR$
(18 3) +CHR$ (18 3) +CHR$ (18 3) + " { CU)
"

1 3 0 PRINT " { CO} { CO } { CO} { CO } "
1 4 0 PRINT TAB (6) Gl $
1 5 0 FOR Z = O T05 : PRINTTAB (6) G2$: NEXT
160 PRINT TAB (4) G3 $
1 8 3 REM
184 REM ********************
185 REM * *
186 REM * RANDOM SELECTION *
187 REM * *
188 REM ********************
189 REM
1 9 0 N = INT (RNO (1) * 3 1)
2 0 0 C$ = O$ (N)
210 L = LEN (C$)
2 2 0 FOR Z = l TO L
2 3 0 PRINT TAB (1 4) " - " i : NEXT
2 4 0 PRINT " { HOM} { CO } " TAB (3 0) " GUESS

" i G
2 4 3 REM
2 4 4 REM ********************
2 4 5 REM * *
246 REM * INPUT YOUR GUESS *
247 REM * *
2 4 8 REM ********************
2 4 9 REM
2 5 0 GET G$: IF G$= " " THEN 2 5 0
2 5 5 I F G$< "A" OR G$> " Z " THEN 2 5 0
260 FOR Z=l TO LEN (U$)
2 6 5 IF G$=MIO$ (U$, Z , l) THEN 2 5 0
2 7 0 NEXT Z
2 7 5 G=G+ l : U$=U$+G$: GOSUB 4 0 0
2 8 0 IF W=1 0 THEN M$= " {RED} YOU

LOSE ! ! " : GOSUB 3 6 0 : GOTO 3 1 0
2 9 0 I F C=L THEN M$= " {RED} YOU

WIN ! ! " : GOTO 3 1 0
3 0 0 GOTO 2 4 0
3 1 0 PRINT" { HOM} { CD } "M$

3 2 0

3 3 0
3 4 0
3 5 0
3 6 0
3 7 0
380

39 3
39 4
3 9 5
3 9 6
397
398
399
4 0 0
4 1 0

4 2 0
4 3 0
4 4 0
4 5 0
4 6 0
4 7 0
4 8 0
9 9 3
9 9 4
9 9 5
9 9 6
9 9 7
9 9 8
9 9 9
1 0 0 0

1 0 1 0

Pieces of Strings

PRINT " { HOM} { 18 * CD} " TAB (l l) "
ANOTHER GO (YIN) ? "
GET A$: I F A$= '"' THEN 3 3 0
I F A$= " Y " THEN RUN
PRINT " { CLS } " : END
PRINT " { HOM} { 1 4 * CD} " TAB (1 4);
FOR Z=l TO L
PRINT MID$ (C$, Z , l) " " i : NEXT :
RETURN
REM
REM * * * * * * * * * * * * * * *
REM * *
REM * CHECK GUESS *
REM * *
REM * * * * * * * * * * * * * * *
REM
FOR J=l TO L
IF MID$ (C$, J , l) =G�THEN CF= l :
C=C+ l : PRINT " { HOM} { 1 4 * CD} "
TAB (1 2+2 *J) G$
NEXT J
IF CF=l THEN 480
W$ =W$ +G$

69

PRINT " { HOM} { 2 2 * CD} " TAB (5) W$
POKE A (W) , D (W) : POKEA (W) + 5 4 2 7 2 , 6
W = W+l
CF = O : RETURN
REM
REM *
REM * *
REM * DATA FOR DICTIONARY *
REM * *
REM *
REM
DATA " BYTE " , " BAS IC" , " BINARY " ,
"MEMORY " , " POKE " , " PEEK " , " DATA" , "
PRINT " , " LI ST "
DATA " BUFFER " , " SEQUENTIAL " ,
"REGI STER " , "CURSOR" , " SERIAL " , " P
ARALLEL "

70 The Commodore 64 Omnibus - Part 1

1 0 2 0 DATA " RAM " , " ROM" , " SPRITE " ,
"ASCI I " , "ARRAY " , " STRING " , " SYNTA
X" , " INTEGER "

1 0 3 0 DATA" SCROLL " , " GOSUB " , " GRAPHIC " ,
"RESTORE" , " LOOP " , "VARIABLE " , "VE
RIFY " , " BEANS "

1 9 9 3 REM
199 4 REM *
199 5 REM * *
1 9 9 6 REM * DATA FOR CHARACTER *
1 9 9 7 REM * *
1 9 9 8 REM *
1 9 9 9 REM
2 0 0 0 DATA 8 1 , 1 3 5 3 , 9 1 , 1 3 9 3 , 11 2 , 1 3 9 2
2 0 1 0 DATA 1 1 0 , 1 3 9 4 , 9 3 , 1 4 3 3 , 99 , 1 4 7 3
2 0 2 0 DATA 1 0 3 , 1 4 7 2 , 10 1 , 1 4 7 4 , 10 3 , 1 5 1 2
2 0 3 0 DATA 1 0 1 , 1 5 1 4

Program Description

20 - 90 Set up display, read the data for the
dictionary into array D$(Z), read the
data for the characters comprising the
(victim' into array D(Z) and the corres
ponding screen memory locations into
array A(Z).

100 - 160 Draw the gallows using keyboard
graphics characters (see Chapter 11).

190 - 240 Select a word at random from the
dictionary and display a series of
hyphens , one for each letter of the
word.

250 - 380 Input a guess and check it for validity.
Each time a letter is used it is placed
in string U$, which is then used to
prevent a letter being picked more
than once (l ines 260-2 70). Also
controls the game and finishes it after

Pieces of Strings 71

10 attempts have been made. If you
lose, the correct answer is displayed
by lines 360 - 380.

400 - 480 Check your guess against the chosen
word and if correct, the appropriate
letters are revealed in the answer. If
not, one section of the victim is drawn
by line 460.

SU M MARY

A string is a sequence of characters. These can be
stored in string variables, which are distinguished
by $ after the variable name.

LEN(string) gives the number of characters in a
string.

Strings can be added together:

PRINT "ABC " + " DEF " + " GHI "

displays (ABCDEFGHI'.

LEFT$, RIGHT$ and MID$ are used to separate
parts of strings.

LEFT$ (string,N) takes the first N characters
of the string

RIGHT$ (string,M) re ads the l a st M
characters

MID$ (string,P,Q)reads Q characters, starting
at character P

ASCII code is used by the 64 to symbolise letters.
There is a table of the ASCII codes for the
characters in Appendix 16.

72 The Commodore 64 Omnibus - Part 1

CHR$ converts a number to the equivalent
character:

PRINT CHR$ (6 5)

displays tA'.

ASC gives the ASCII code for a character:

PRINT ASC (II A II)

displays t65'.

STR$ turns a number into a string of number
characters:

10 A$ = STR$ (1 2 3)
2 0 PRINT A$

V AL evaluates the numerical characters In a
string:

PRINT VAL (" 1 2 3ABC7 89 ")

displays t123'.

COMPA RISONS.

Strings can be compared using IF ... THEN and the
relational operators = , < , and > . This is useful
for testing inputs and sorting strings.

C HAPTE R 8

FU NCTIO N S

A (function' in computing is an instruction which
performs a calculation on a number. There are a
number of functions available on the Commodore
64. For example, in Chapter 7 several functions
were described which operate on numbers to give
strings, on strings to give other strings, or on
strings to give numbers. In this chapter we will
look at some more of the functions available on the
Commodore 64.

SQUARE ROOTS

The square root of a number is calculated by the
function SQR(N). (The square root of a number or
variable N is the number which when multiplied
by itself, or squared, gives N.) Try:

PRINT SQR (4)

The 64 displays 2, because 2 squared (2*2) is 4.

10 FOR N = 1 TO 1 0
2 0 PRINT N , SQR (N)
3 0 NEXT

prints the numbers 1 to 10 and their square roots.

74 The Commodore 64 Omnibus - Part 1

ABSOLUTE VALU ES

The function ABS finds the absolute value of a
number : the value of the numerical part ,
disregarding the sign . The function changes
negative numbers to positive numbers, but has no
effect on positive numbers.

PRINT ABS (1 2 3 . 4 5 6)

displays t123.456' - no change. But

PRINT ABS (- 5 4 3 . 3 4 5)

displays t 543.345 ' - the minus sign has been
removed. ABS rounds up to six decimal places.

I NTEG E R CONVERSION

The function INT removes the fractional part of a
number and returns the next lower whole number.
Try:

PRINT INT (1 2 3 . 4 56 7)

Only the whole number part - 123 - is displayed.

Be careful with numbers less than zero. The INT
function finds the first whole number lower then
the number you give it. This means that for
negative numbers the answer is not the whole part
of the initial number, but one less (or minus one
more!) . Therefore:

PRINT INT (- 2 . 87 5)

Functions 75

displays t-3'.

SIGNS

SGN(N) returns a value which indicates the sign of
a number or variable N. If the number is positive,
the result is 1; if the number is zero, the result is
zero; and if the number is less than zero, SG N
returns -1 .

PRINT SGN (5)
PRINT SGN (0)
PRINT SGN (-7)

displays t1'
displays to', and
displays t -1' .

TRIGONOMETRY

The trigonometrical functions of sine, cosine,
tangent and arctangent are av a i lab le I n
Commodore BASIC. They are written:

SIN(N)

COS(N)

TAN(N)

ATN(N) where N is a number or a variable.

Note that the angles on which these functions
operate must be given in radians, not in degrees.
A radian is the ratio of the length of an arc of a
circle to the radius. In the diagram overleaf, the
angle A in radians is L/R. The circumference of a
circle is 21T times its radius (21TR), so it follows that
360 degrees is equivalent to 21T radians.

From this we can work out that 1 degree is 21T/360
radians (about 0.175), and 1 radian is 360/2 1T
degrees (about 57.3°). To convert from degrees to

76 The Commodore 64 Omnibus - Part 1

L " I
I
I
I
I
,
,

..

The a n g le A i s UR rad i ans

'"
'"

,

... . '"

R

radians mUltiply by 21T/360. The value of 1T can be
obtained on the CBM 64 by using the 1T symbol
(press SHIFT and t). To convert from radians to
degrees mUltiply by 360/21T .

So, the sine of 45 degrees (0.7071) is given by:

10 RAD = 2 * 1T/36 0
20 PRINT S IN (4 5 *RAD)

The arctangent of 1 (45 degrees) is given by:

10 RAD = 2 * 1T/36 0
20 ANGLE = ATN (l) /RAD
3 0 PRINT ANGLE

LOGARITH M S

Natural logarithms are provided by the function
LOG().

PRINT LOG (1 0) displays '2.30258509'

PRINT LOG (50 0 0) displays '8.5171932'

Functions 77

The antilogs of natural logarithms are calculated
by EXP(N). Try:

PRINT EXP (LOG (1 0 0 »
The answer is 100.

Logs can be used to calculate roots. This program
finds the cube root of8.

10 A = 8
20 R = LOG (A) /3
3 0 PRINT EXP (R)

The answer is 2, because 2 cubed (2*2*2) is 8.

This program calculates fifth roots.

10 N = 2 4 3
2 0 R = LOG (N) /5
30 PRI NT EXP (R)

The program will display t3', because 3 to the power
5 (3 t 5 or 3*3*3*3*3) is 243.

RAN DOM N U M BE RS

The 64 has a function which provides random
numbers. The function is RND(X), which prints a
number between 0 and 1 . The tseed' value - X -
can be any number or letter, but does directly
influence the value of the random number that
results. Try PRINTing RND(1) a few times. You
will get a different number each time.

The random numbers provided by RND are not
truly trandom' - it is very difficult and expensive to
make a machine which will give perfectly random
numbers. If you switch your 64 off and on, and
immediately type PRINT RND (1) , you will get the
same number every t ime (o n our 64 i t's

78 The Commodore 64 Omnibus - Part 1

0.185564016). The random numbers are calculated
from a starting number, or seed, and any seed will
always produce the same sequence of numbers.
The random number calculation can be controlled
by altering the number or letter in the brackets.

You can give the computer a new seed for i ts
random number generator by putting a negative
number in the function. Try PRINT RND (-X) . The
resulting number is not much use, but the effect of
the command is to give a new seed number to the
random number generator. Try PRINTing five
numbers with RND(l) and make a note of them. If
you then re-seed the random number generator
with 1 by P R I NTing RND(- 1) again , and
rePRINT five numbers with RND(l) , you will get
the same sequence as before . Each negative
number sets off a different sequence.

There is a way of obtaining a more nearly random
sequence of (random' numbers. If the seed given to
the random number generator is different each
time, the sequences will be different. We can get
an unknown, varying seed by using the 64's built in
timer. The preset variable TI (or TIME) is
incremented automatically every 60th of a second.
If you use TI to seed the random number generator
you will obtain a different number every time.
This means that:

PRINT RND (-TI)

will give an unknown seed to the random number
generator .

. To sum up, if the number given to the RND
function is greater than zero, a number from a
sequence of (random' numbers is returned by the
function. If the number given to the function is

Functions 79

negative, a new sequence of random numbers is
produced.

Dice Throwing

We can use random numbers in programs to
imitate the throwing of dice. Try this:

10
20

30
40
50
60

70
80
90

A = RND (-TI)
PRINT " { CLS } PRESS ANY KEY TO
THROW THE DICE "
GET K$: IF K$= " " THEN 3 0
PRINT " {CLS } "
DICE = INT ((RND (0) * 6) + 1)
D$ = " YOUR NUMBER I S " +
STR$ (DICE)
PRINT D$
FOR DELAY = 0 TO 5 0 0 : NEXT
GOTO 2 0

This program will throw the die every time you
press a key. Pressing the STOP key will stop the
program.

DEFIN ING YOU R OWN FUNCTIONS

Commodore BASIC allows you to define functions
of your own, which can be used throughout a
program. Functions are defined by the command
DEF FN. They can then be used like any other
functions in calculations and tests.

10 DEF FNA (N) = iT * N t 2
20 PRINT " PROGRAM TO CALCULATE

AREAS OF CIRCLES "
30 PRINT
40 INPUT " ENTER THE RADIUS " ; R
50 PRINT : PRINT "AREA OF A CIRCLE

RADIUS "R" I S " FNA (R)
60 I F FNA (R) < 1 0 0 0 0 0 THEN 3 0

80 The Commodore 64 Omnibus - Part 1

This program uses a function FN AREA which is
defined in line 10. The variable N in the definition
is a tdummy' variable - any variable name can be
used when the function is used later in the
program. The function is used in lines 50 and 60.

The name of a function may be any legal variable
name. It may have any number of letters, but, as
with variables, only the first two characters are
noticed by the 64.

SU MMARY

There are several built-in functions in Commodore
BASIC which operate on numbers or variables:

SQR(N) calculates the square root of a number N.

ABS(N) returns the absolute value of a number -
changing negative numbers into positive ones, and
leaving positive numbers unchanged.

INT(N) returns the integer value of N, removing
any fractional part.

SGN(N) gives 1 ifN is positive, 0 ifN is zero and -1
ifN is negative.

The trigonometric functions:

SIN(N)

COS(N)

TAN(N)

ATN(N)

Functions 8 1

return the values for the angle N (which must be in
radians).

LOG(N) returns the natural logarithm of a
number, N.

RND(N) returns a pseudo random number between
o and 1 .

RND(-N) will re-seed the random number
generator

DEF FN allows you to define your own functions
wi thin programs.

CHAPTE R 9

LOGICAL TH I N KI N G

As well as doing ari thmetic, the Commodore 64 can
perform tests to compare numbers and strings. We
have already seen this when using IF •.. THEN. In
this chapter we will examine in more detail the
way in which the 64 makes comparisons.

Consider the program line:

2 2 0 IF A = 3 THEN 5 0 0

The line instructs the 64 to branch to line 500 if the
variable A holds the value 3 . What does the 64 do
when it encounters this program line?

The first thing the computer must do is decide
whether A is equal to 3; or to put it another way,
whether tA = 3' is true. The 64 tests this, and if the
expression is true, it returns an answer of -1 ; if the
expression is false, the answer is o. If the result is
true (-1) , the commands after THEN are obeyed. If
the answer is false (0) the program will continue
with the next line.

Why are we telling you all this? Because the
computer can compare numbers and return true or
false values without IF. Try this short program:

10 A = 3
20 PRINT A = 3

The program displays t_1'. If you change line 10 to

Logical Thinking 83

1 0 A = 5 (or any other number)
the program will print O.

This applies to all the other comparisons listed in
Chapter 5 as condi tions for IF:

Equal

< Less than

> Greater than

< > Not equal

> = Greater than or equal

< = Less than or equal

Try this:

10 A = 5
20 PRINT A <= 7

If you try out the other tests, you will find they all
behave in the same way.

LOGIC

If two tests are combined, the same true and false
answers are still obtained:

10 A = 5
2 0 PRINT (A < 7) AND (A > 3)

Now, if the computer evaluates simple relational
expressions such as A < 7, A>3 as -l or 0, what
happens when two are combined, and what does the
AND do?

There are three BASIC commands which can be
used with relational expressions: AND, OR and

84 The Commodore 64 Omnibus - Part 1

NOT. Forgetting about numerical representations
of true and false for the moment, let's look at what
these commands do.

U sing AND to relate two expressions, as in the
example above, it seems fairly obvious that the
final result will be true only if both smaller
expressions are true. This is in fact what happens.
Here is a table of the possible combinations, with
the two simple expressions represented by X and Y.
(This type of table is called a 'truth table'.)

x Y X AND Y

TRU E TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

Truth Table for AND

The command OR also does the obvious thing,
returning -1 if X or Y or both are true.

x Y X OR Y

TRU E TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

Truth Table for OR
NOT changes from true to false, and vice versa, so:

Logical Thinking 85

1 0 A = 3
2 0 PRINT NOT A>1 0

prints - 1 (true). Here is the truth table for NOT.

X NOT X

TRUE FALSE

FALSE TRUE

Truth Table for NOT

All this is fairly easy to follow. But the 64 is using
numbers to represent true and false. How does it
work out the answers?

To understand this, you must understand how the
computer stores numbers in binary notation
(Appendix 10 contains an explanation). AND, OR
and NOT are actually applied by the 64 to the
binary representations of the numbers. The truth
tables for the three operators remain the same, but
true and false are replaced by 1 and O. The truth
table for AND therefore changes to the form shown
on page 86.

Each number contains more than one binary digit
(or (bit'). The 64 applies AND, OR and NOT to the
numbers by comparing bits at the same place in
each number. Suppose A and B were two 4-bit
numbers:

A = 1 1 0 0 B = 1 0 0 1

86 The Commodore 64 Omnibus - Part 1

A B A AN D B

1 1 1

1 0 0

0 1 0

0 0 0

Numerical Truth Table for AND

The digits for (A AND B) are found by comparing
the corresponding digits of A and B. So, bit 1 of A
AND B (counting from the right) is (0 AND 1) ,
which is O. Bit 2 is 0 AND 0 which is also o.
Proceeding thus, we find

A AND B = 1 0 0 0

By similar means we can show that ifP is 1010 and
Q is 001 1, P OR Q is 1011 ; and ifZ is 0101, NOT Z
is 1010.

Returning to the computer's comparisons of true
and false, we can now see why the numbers 0 and
-1 are used. To represent negative numbers the
machine uses the two's complement system. This
means that -1 is stored as 1 1 1 1 , while 0 is stored as
0000 (the computer actually uses 1 6 bits to
represent each, but it's easier to follow with only 4).
This means that true is a number which is all
ones, and false is all zeros, so the AND, OR and
NOT commands can work on the individual bits
and produce the right answer.

Logical Thinking 87

It may seem that all this knowledge is of little use
when programming in BASIC, but it can be used to
simplify some programs which involve tests.

3 2 0 IF (A+B » 6 THEN Z=7
330 IF (A+B) <=6 THEN z=o

could be replaced by the single line:
3 2 0 Z = - ((A+B » 6) * 7

and the two lines:

5 0 0 IF P=Q THEN T= 5
5 1 0 IF P<>Q THEN T=3

are equivalent to:

5 0 0 T = 3-2 * (P=Q)

AND can be used to keep numbers within certain
limits by masking. Think about what would
happen if any binary number was ANDed with the
number 00001111 . The four highest bits of the
result (the left four) would be zero, whatever the
other number, because 0 AND X is always O. The
four lower bits would be the same as those of the
other number. For example:

10101010 AND 00001 1 1 1 = 00001010

We can therefore use AND to copy only a part of a
number. Look at this example:

2 3 0 A = A + 1
2 4 0 I F A > 1 5 THEN A = 0

15 in binary is 00001111 . If A is increased to 16
(00010000) then A AND 15 will be O. We could
replace the two program lines with

2 3 0 A = (A+l) AND 1 5

88 The Commodore 64 Omnibus - Part 1

These uses of relations and logical operators may
seem more confusing than using IF to perform
tests, but they are also faster, which means that in
a long program, or one which will loop many times,
considerable time savings can be made.

SUMMARY

The Commodore 64 can not only handle numerical
calculations: i t can solve logical problems too.
Relational tests such as those performed after IF
are represented numerically:

True

False

is represented by the number -l .

is represented by the number o.

There are three logical operators:

AND

OR

NOT

A AND B is true if both A and B are
true.

A OR B is true if either A is true or B is
true or both are true.

NOT A is true if A is false.

CHAPTER 1 0

M E M ORY MANAG E M ENT

The memory of a computer i s built up from a large
n umber of storage units, each of which can hold one
number. Each storage unit is called a memory
location, and location has a unique reference
number called its address. In a microcomputer like
the Commodore 64, each memory location can hold
an eight-bit binary number, which can have a
value between 0 and 255. Larger numbers need
more than one location. (If you are not sure about
binary numbers, they are explained in Appendix
10.) Eight bits of storage are called a byte in
computer jargon, so the memory locations of the 64
hold one byte of data each.

The microprocessor used in the Commodore 64 (the
6510) is able to make use of 65535 memory
locations (65535 is 216, or 64k). You will have
noticed that the message displayed when you
switch on the computer announces that 389 1 1
bytes are free for use by BASIC programs. What
happens to the others?

The first 1k of memory is used as a storage area by
the machine code programs that interpret your
BASIC programs and operate the machine. The
next 1000 bytes are used to store the display
picture - 1 byte for every character. A second
block of memory, locations 55296 to 56295, holds
the colour data for each character.

BASIC programs begin at location 2048, and all the
memory up to 40k is free for BASIC programs and

90 The Commodore 64 Omnibus - Part 1

variables. The remainder of the memory contains
the routines that operate the computer and run
BASIC programs.

There are two types of memory used in a computer.
Random access memory, or RAM, is used to store
data, and its contents can be changed as the data
changes. Read only memory, or ROM, cannot be
altered, and is used to store the programs needed
for the computer to work at all ; the BASIC
interpreter for example.

There are two BASIC commands, POKE and
PEEK, which are used to look at individual
memory locations. PEEK is used to find out the
contents of a location, and POKE writes a new
number into the memory. You can try out PEEK
and POKE by using them to control the display.
Clear the screen, move the cursor down 1 line, and
type:

POKE 1 0 2 4 , 1
POKE 5 5 2 9 6 , 1

The first POKE puts the code for an A in the first
position of the screen. The second puts the code for
white in the corresponding position in the colour
memory (these will be explained in the next
chapter). You should see a white A at the top of the
screen. If you now type:

PRI NT PEEK (1 0 2 4)

the computer will print the answer 1 , telling you
that the number in location 1024 is a 1 (it should
be, as you've just put it there!) .

What makes the POKE and PEEK commands so
important is that not all the memory addresses of
the 64 are used for memory. Some of the addresses
are used to point to the control registers of the

Memory Management 91

special chips which control the sound and graphics
facilities. This means that the chips can be
controlled simply by writing a number into these
control registers using the POKE command. You
discovered in Chapter 3 that the screen and border
colours could be changed by POKEing numbers
into locations 53280 and 53281. These locations
are two of the registers of the Video Interface Chip,
or VIC, which provides all the display functions of
the Commodore 64. In the following chapters we
will describe how to use the VIC, and also the
Sound Interface Device, or SID, which manages the
sound and music facilities of the 64.

EMPTY SPACE

As you write longer programs, you will find that
even the 38k of program space provided by the 64 is
not unlimited. If a program uses large arrays for
data storage, the memory can be eaten up at an
alarming rate. The function FRE(X) tells you how
much memory is left unused.

If the amount free is greater than 32767, FRE(X)
will return a negative number, so use the formula:

PRINT FRE (X) + 6 5 5 3 5

The argument of the function has no effect - any
number or variable can be used.

If you check the memory immediately after
switching on your 64, the free space will be 38908
bytes. Enter a program, and try it again, and a
smaller number will be printed. If you RUN the
program and use FRE(X) a third time the number
printed will be smaller still, as the 64 has taken
memory space to store the variables.

92 The Commodore 64 Omnibus - Part 1

THE CLR COMMAND

The CLR command may occasionally be useful.
The command clears all the variables stored by a
program, but leaves the program itself intact. You
can then start a program with the maximum
amount of memory free. C LR also resets the
variable pointers, and should therefore be used
after moving the top of BASIC memory by
POKEing new values into locations 55 and 56.
This technique is used in Chapter 12 to protect
relocated character sets from BASIC programs.

CHAPTER 1 1

SOU N D AN D M U SIC - PART 1

The Commodore 64 h as exceptional sound
generating facilities. The built-in Sound Interface
Device (SID) is a synthesiser on a chip, with three
voices, a range of eight octaves, and extensive
control of the waveforms and envelopes of each
voice. It is possible to filter the sound, and even to
mix sound generated by the 64 with sound fed in
from an external source.

The 64 has no built-in loudspeaker, but uses the
loudspeaker of the television or moni tor to which it
is connected, and can also be played through a hi -fi
system.

WHAT IS SOUN D?

Sound is the effect on our ears of vibrations in the
air caused by a vibrating object such as a guitar
string or a loudspeaker.

Vibrating Guitar String

94 The Commodore 64 Omnibus - Part 1

If we plot a graph of the way a vibrating object
moves over time we get an undulating shape which

Time

Ampl itude

Simple Wave

is called a (wave'. What you hear depends on the
properties of the wave: the rate at which the object
vibrates (the frequency of the v ibrat ion)
determines the pitch of the sound, and the
amplitude determines the volume.

High and Low Frequencies

Large and Small Amplitudes (Loud and Soft)

Not all sounds have the same shape of wave, and
this wave-shape, or waveform, has a great effect on
the quality of the sound. The Commodore 64 can

Sound and Music - Part 1 95

generate four different waveforms, which are
shown in the diagrams:

� /'... /'... "'7"�
Triangle Waveform

Sawtooth Waveform

I I
Pulse Waveform

~
Noise Waveform

The final property of sounds which can alter the
way we hear them is the variation of the volume
over time. Four parameters are used to describe
the shape of the 'envelope' of the sound wave:
Attack, Decay, Sustain and Release. Attack is the
rate at which the sound rises from nothing to full
volume when the note begins. Decay is the rate of
falling off to a steady volume. Sustain is the
volume at which the sound steadies, and Release
describes the rate at which the sound falls off to
nothing. The diagram on the next page shows the
envelope properties.

96 The Commodore 64 Omnibus - Part 1

v
o
I
u
m
e

... ----.. ---... ... ---....
Attack Decay Susta in Release

The Envelope Parameters

USING TH E SOUN D G E N E RATOR

Because the Commodore BASIC does not support
special commands to do the job, the sound has to be
controlled by POKE commands direct to the SID
chip. This is not as difficult as it seems, but it does
make programs using sound look confusing.

Each of the three voices is controlled by seven
registers of the SID chip . These control the
frequency of the generated note, its waveform and
the envelope shape of the sound. There are a
further eight registers which control the volume of
the three voices together, and the filter which may
be used to modify the sound once it has been
defined.

The registers controlling the first voice are at
memory locations 54272 to 54278 . Try this
program to see how these registers are used (don't
bother to type in all the REM lines):

1 0
2 0
1 0 0
1 1 0
1 2 0
2 0 0

REM
REM
REM
POKE
POKE
REM

FIRST SOUND PROGRAM
USES VOICE 1 ONLY
SET FREQUENCY
5 4 27 2 , 3 7
5 4 27 3 , 17
SET VOLUME

Sound and Music - Part 1

2 1 0 POKE 5 4 2 9 6 , 1 5
3 0 0 REM SET ATTACK/DECAY &

SUSTAIN/RELEASE
3 1 0 POKE 5 4 2 7 7 , 54
3 2 0 POKE 5 4 27 8 , 168
400 REM TURN ON THE SOUND WITH

SAWTOOTH WAVEFORM
4 1 0 POKE 5 4 2 7 6 , 3 3
5 0 0 REM WAIT A WHILE
5 1 0 FOR T = 1 TO 5 0 0 : NEXT T
6 0 0 REM SWITCH OFF SOUND
6 1 0 POKE 5 4 2 7 6 , 3 2
6 2 0 POKE 5 4 2 9 6 , 0

97

When you RUN the program you should hear a
note from the loudspeaker of your television (make
sure the volume control is not turned right down).

CONTROLLING THE SID CHIP

The registers of the SIn chip controlling the three
voices are as follows:

Voice 1 Voi ce 2 Voice 3 No. Property Contro l led

54272 54279 54286 0 Frequency - Low Byte

54273 54280 54287 1 Frequency - H igh Byte

54274 5428 1 54288 2 Pulse Waveform
Properties - Low Byte

54275 54282 54289 3 Pulse Waveform
Properties - H igh Byte

54276 54283 54290 4 Control Register -
Waveform and On/Off

54277 54284 5429 1 5 Attack and Decay

54278 54285 54292 6 Sustai n and Release

98 The Commodore 64 Omnibus - Part 1

Registers 0 and 1 (which are locations 54272 and
54273 for Voice 1 , for example) control the
frequency of the sound. The frequency heard
relates to the number in the registers like this:

Frequency = Number * 0.06 (beats/second)

There is no need for complex calculations to work
out notes as there is a table on page 152 of the
Commodore 64 User Manual which gives the
numbers for all notes over a range of8 octaves. The
frequency used in the previous program gave the
note middle C.

Register 4 selects the waveform to be used. The
possible values are:

17 Triangle
33 Sawtooth
65 Pulse
129 Noise

To see in more detail how these registers are used
we will use the previous program to test the effects
of altering the parameters of the sound.

FREQUENCY

Save the program onto tape - you will need it again
- and then change the program by typing in the
following alterations.

1 0 5 INPUT " FREQUENCY NUMBER" ; F
110 POKE 5 4 27 2 , F - INT (F/ 2 56) * 2 56
1 2 0 POKE 5 4 2 7 3 , F/2 5 6
1 0 0 0 GOTO 1 0 0

Try entering different frequency numbers and see
how the sound changes; the higher the number the
higher the note. You won't hear much for values of
less than about 500, and the highest possible note

Sound and Music - Part 1 99

is 65535. Notice the effect of doubling the number,
or of increasing it by 112. Try the sequence 4000,
5000, 6000, 8000. To stop the program hold down
RUN/STOP and tap RESTORE.

To hear the full range of frequencies, type in these
new lines:

50 F = 2 5 0
1 0 5 F = F * 2 t (1/1 2)
510 FOR T = 1 TO 5 0 : NEXT
550 IF F < 61800 THEN 1 0 5

Delete line 1000, and RUN the program.

WAVEFORMS

The program uses the Sawtooth waveform which
gives a slightly buzzy tone. To hear the Triangle
waveform, modify the program again by typing:

4 1 0 POKE 5 4 27 6 , 1 7

To hear the Noise waveform, alter line 410 to:

410 POKE 5 4 2 7 6 , 1 29

The fourth waveform, Pulse, is slightly more
complicated than the others. You will remember
that the waveform is:

I I
It is possible to alter the proportions of the wave by
altering the width of the peaks, to produce a
variety of alternative waveforms.

This is done by specifying the width of the peak as a
proportion of the whole cycle. The proportion is set

100 The Commodore 64 Omnibus - Part 1

I I LJ LJ �
Alternative Pulse Waveforms

by POKEing a number between 0 and 4095 into
registers 2 and 3 for the voice concerned (locations
54274 and 54275 for Voice 1) . A value of 0 or 4095
would give a straight line:

Pulse width 4095 Pulse width 0

A value of 2047 would make the peak width 50% of
the total, giving:

I �F
Pulse Width = 2047 (50%)

To try out the pulse waveform, reload the first
program and make the following changes.

3 5 0 REM SET PULSE WIDTH
360 INPUT " PULSE WIDTH % " ; P
370 P = P* 4 0 . 9 5
380 POKE 5 4 27 4 , P AND 2 5 5
390 POKE 5 4 27 5 , P/2 5 6
410 POKE 5 4 2 7 6 , 6 5
6 1 0 POKE 5 4 2 7 6 , 6 4
1 0 0 0 GOTO 3 6 0

Sound and Music - Part 1 101

The program requires inputs between 0 and 100,
representing the pulse width as a percentage of the
total. Try a few different values. The smoothest
tone is given by a value of 50, which gives the
balanced waveform with equal high and low times.
As the numbers increase or decrease from 50, the
sound becomes sharper and more ttinny'.

VOLUME

The volume of the the sound of all three voices is
controlled by location 54296. The possible values
are from 0 to 15, with 0 giving no sound and 15
maximum volume. Reload the first program again
and type these lines:

210 INPUT "VOLUME" ; V
2 2 0 POKE 5 4 29 6 , V
1 0 0 0 GOTO 2 1 0

ENVELOPE

The final way of altering the sound of a voice
channel is by altering the Envelope, or volume
profile. This is done with the four parameters
Attack, Decay, Sustain and Release . For the last
time, reload the first program. Type in the
modifications below:

310 INPUT "ATTACK " ; A
3 2 0 INPUT " DECAY " ; D
3 3 0 INPUT " SUSTAIN" ; S
340 INPUT "RELEASE " ; R
350 POKE 5 4 2 7 7 , « A AND 1 5) * 16)

OR (D AND 1 5)
360 POKE 5 4 2 7 8 , ((S AND 1 5) * 16)

OR (R AND 1 5)
510 FOR T = 1 TO 5 0 0 : NEXT T
6 2 0 GOTO 3 1 0

1 02 The Commodore 64 Omnibus - Part 1

Attack and Decay are controlled by register 5 for
each voice (54277 for Voice 1) . The four most
significant bits of the register control Attack; the
four least significant bits control Decay. Sustain
and Release are similarly controlled by register 6
for each voice (for Voice 1 it's 54278) , with Sustain
controlled by the most significant bits.

R UN the program and experiment to find the
effects of different envelope parameters. Each of
the four variables can have a value from 0 to 15 .
The value used for Sustain controls the volume of
the note after the Attack and Decay phases. The
durations of Attack, Decay and Release for the
range of values which can be set are shown below:

VALU E ATTACK DECAY RELEASE

0 2 ms 6 ms 6 ms
1 8 ms 24 ms 24 ms
2 1 6 ms 48 ms 48 ms
3 24 ms 72 ms 72 ms
4 38 ms 1 1 4 ms 1 1 4 ms
5 56 ms 1 68 ms 1 68 ms
6 68 ms 204 ms 204 ms
7 80 ms 240 ms 240 ms
8 1 00 ms 300 ms 300 ms
9 250 ms 7 50 ms 750 ms
1 0 500 ms 1 .5 s 1 . 5 s
1 1 800 ms 2 .4 s 2 .4 s
1 2 1 s 3 s 3 s
1 3 3 s 9 s 9 s
1 4 5 s 1 5 s 1 5 s
1 5 8 s 24 s 24 s

Attack, Decay and Release

Sound and Music - Part 1 103

FILTERING

In addition to the three voices, the SID chip has a
built-in filtering facility which filters the output
from all three voice channels together. The filter is
controlled by the four registers 54293 to 54296.
Three different filters may be used, either singly or
in combination. The three are a High-pass filter,

1 00%

0%
Freq uency

High-Pass Filter

which allows high frequency sounds to be output
but suppresses the lower frequencies, a Low-pass
filter which suppresses high frequencies, and a

1 00%

0%
Freq uency

Low-Pass Filter

Band-pass filter which allows only the frequencies

1 00%

0%
Freq uency

Band-Pass Filter

within a limited range to pass. Two filters may be
combined to produce more complex filtering.

The filters are selected by bits 4, 5 and 6 of location
54296. You will remember that this is the location

104 The Commodore 64 Omnibus - Part 1

controlling the volume, but as the volume can only
vary between 0 and 15, only the lower four bits of
the register are needed to hold the volume setting.
The full details of the use of location 54296 are
shown in the table.

1 00%

I 0 % �. -----------------------------

Frequency

High-Pass and Low-Pass Filters Combined

1 00%

I J 0% �. ____________ C-____________________ __

Frequency

High-Pass and Band-Pass Filters Combined

B IT M EA N I NG VALU E

0 - 3 Vol u me 0 - 1 5

4 Low Pass F i lter 1 6

5 Band Pass F i lter 32

6 H i g h Pass F i lter 64

7 Tu rn off Voice 3 1 28

Setting Filters - Location 54296
So, to select the High pass filter and a volume of 7,
the register must be POKEd with a value of 64 +
7, which is 71 .

The cut-off frequency of the filter is controlled by
the registers at locations 54293 and 54294. There

Sound and Music - Part 1 105

are 1 1 bits altogether for the frequency setting; the
lowest 3 bits of 54293 hold the 3 least significant
bits of the frequency, while the eight most
significant bits are held in 54294.

Location 54295 is used for two purposes: to select
which of the three voices are to be filtered, and to
set a resonance value.

B IT M EANING VALU E

0 Fi lter Voice 1 1

1 Fi lter Voice 2 2

2 Fi lter Voice 3 4

3 Fi lter External Sig n a l 8

4 - 7 Resonance 1 6 - 240

Selecting Filters - Location 54295
The resonance value controls the sharpness of the
cut-off. The higher the number, the sharper is the
filter cut-off of the unwanted frequencies.

Low and High Resonance Filters

THE CONTROL REGISTER

The control register (register 4 for each voice,
location 54276 for Voice 1) does more than control
the waveform used by the voice. Each of the eight
bits of the register has a different meaning.

106 The Commodore 64 Omnibus - Part 1

BIT 7 B IT 6 BIT S BIT 4 B IT 3 B IT 2 BIT 1

Noise Pulse Saw- Tri- Test R ing Sync
tooth angle Mod

1 28 64 32 1 6 8 4 2

The Voice Control Register

BIT O

Gate

1

The four most significant bits of the register control
the waveform of the voice. Only one of these bits
should be set to '1' at any time.

TEST switches off the oscillator if bit 3 is set to 1 .
This i s of little use in sound generation.

RING MOD and SYNC allow the production of
more complex waveforms than the standard
waveforms available . These are described below.

The GATE bit turns the sound on and off. When
GATE is set i-l,J 1 , the Attack/Decay/Sustain cycle
starts. The note is sustained until GATE is set to 0,
when the Release phase of the note begins. It is
important not to alter the waveform when clearing
GATE, or the �ound will change during the Release
phase.

SOUND EFFECTS

The SID chip can not only be used for playing
music, but for producing all kinds of sound effects
and strange noises. By varying the frequency
while a note is playing, siren effects can be
achieved. It is possible to alter the waveform while
a note is playing by setting the appropriate bits of
the control register (remember not to clear the
GATE bit of the register, or the sound will be cut
oro. The SID chip has extra facilities for producing
more complex sounds than those we have heard so

Sound and Music - Part 1 107

far; these are accessed by using the RING MOD
and SYNC bits of the voice control registers.

SYNC

The SYNC bit of the control register of each voice
synchronises the output of the voice with the
frequency of one of the other voices. The voices are
paired thus:

Voice 1 is synchronised wi th Voice 3
Voice 2 is synchronised wi th Voice 1
Voice 3 is synchronised wi th Voice 2

The SYNC function controls the waveform of the
voice by repeatedly restarting the wave at the
frequency of the controlling voice. If Voice 1 is
producing a triangle wave like this:

Voice 3 Freq uency

and Voice 3 has the frequency indicated, then if
Voice 1 is synchronised with Voice 3 the output will
look like:

That is, the waveform becomes a repetition of part
of the Voice 1 waveform at the frequency of Voice 3.
If the frequency of Voice 3 is greater than that of
Voice 1 similar effects result, as shown overleaf.

The waveform of the synchronised voice can be set
to any one of the four possibilities, though best

108 The Commodore 64 Omnibus - Part 1

results are obtained from the triangle and sawtooth
waveforms. The properties of the synchronising
voice other than its frequency have no effect at all
on the sound produced. The use of SYNC can
produce many new waveforms of great tonal
interest as the two frequencies are varied with
respect to each other. The following program will
allow you to try out different combinations of
frequencies in the two voices.

10 INPUT"VOICE 1 " ; VI
20 V3= 3 5
3 0 FOR 8=5 4 2 7 2 TO 5 4 2 9 6 : POKE

8 , 0 : NEXT
40 POKE 5 4 2 9 6 , 1 5
5 0 POKE 5 4 27 3 , VI
60 POKE 5 4 287 , V3
70 POKE 5 4 2 7 7 , 8 4
8 0 POKE 5 4 29 1 , 8 4
90 POKE 5 4 2 7 8 , 168
1 0 0 POKE 5 4 29 2 , 168
110 POKE 5 4 2 7 6 , 19
120 FOR 8=1 TO 1 0 0 0 : NEXT
2 0 0 POKE 5 4 2 7 6 , 0
210 POKE 5 4 29 0 , 0
5 0 0 GOTO 1 0

Try altering the frequency of Voice 1 . Notice that
when the frequency is equal to that of Voice 3, the
sound is unaltered, and when the Voice 1 frequency
is a multiple or a factor of the Voice 3 frequency the
sound is less interesting. Best results are achieved
when the frequencies are close to each other.

Sound and Music - Part 1 109

RING MODULATION

If bit 3 of a voice control register is set, the output
of the voice is ring modulated with the frequency of
one of the other voices, resulting in a non
harmonic mixture of frequencies. To use ring
modulation, the triangle waveform must be used
for the voice to be modulated. The properties of the
modulating voice, other than its frequency, have no
effect. As for SYNC, the voices pair thus:

MOD U LATED VOICE MODU LATING FREQU ENCY

Voi ce 1 Voice 3

Voice 2 Voice 1

Voi ce 3 Voice 2

Ring Modulation - The Voice Pairings

Try out the effect of setting RING MOD by altering
the SYNC program thus:

1 1 0 POKE 5 4 2 7 6 , 2 1

Note again that for best results the two frequencies
should be close to each other but not identical, and
neither should be a multiple of the other.

OTHER SID REGISTERS

There are four registers on the SID chip which have
not yet been mentioned. These are:

54297 POT X

54298 POT Y

54299 OSC 3
54300 ENV 3

1 10 The Commodore 64 Omnibus - Part 1

POT X and POT Y are used with games paddles,
and have no application to music. OSC 3 holds the
level of the output signal from Voice 3, and ENV 3
contains the volume of Voice 3 as modified by the
envelope. These registers can be used to modify the
volume of the SID, or the frequency of one of the
voices. To test the effects of this, modify the SYNC
program by deleting lines 10, 20 and 500, and
adding the following lines:

5 0 POKE 5 4 2 7 3 , 3 5
6 0 POKE 5 4 2 8 7 , 3
1 1 0 POKE 5 4 2 7 6 , 3 3
1 2 0 POKE 5 4 2 9 0 , 6 4
1 3 0 POKE 5 4 2 7 2 , PEEK (5 4 2 9 9)
1 4 0 GET K$: I F K$ = " " THEN 1 3 0

The program uses the level of Voice 3 , read from
54299, to alter the frequency of Voice 1 . As it is
written, the program uses the Pulse waveform in
Voice 3, and modifies the low byte of the Voice 1
frequency. Try altering the waveform, by altering
the number POKEd into 54290 in line 120 to 16, 32
or 128. The effects can be made much more
dramatic by using OSC 3 to control the high byte of
the Voice 1 frequency. Alter line 130 to:

1 3 0 POKE 5 4 2 7 3 , PEEK (5 4 2 9 9)

The effect of using a noise waveform for Voice 3 is
worth hearing!

To hear the effect of using ENV 3, make these
modifications to the program:

8 0 POKE 5 4 2 9 1 , 1 7 0
1 0 0 POKE 5 4 2 9 2 , 0
1 3 0 POKE 5 4 2 7 3 , PEEK (5 4 3 0 0)

Here the envelope of Voice 3 is used to control the
high byte of the frequency of Voice 1 . The Attack

Sound and Music - Part 1 1 1 1

and Decay values for Voice 3 are initially set to 10.
Sustain is set to zero, and Release therefore has no
effect. The values of Attack and Decay can be
controlled by altering line 80. You will find that
values below 8 for Attack and Decay are too fast for
the effect to be noticeable.

We have now dealt with all the functions of the SID
chip. The table in Appendix 13 summarises the
functions of all the registers.

MAKING M USIC

Now that we have dealt with the theory of
Commodore 64 sound generation, we will look at
the practical applications of the SID chip. The first
and most obvious use of the synthesiser chip is as a
synthesiser. The example program below turns
your 64 into an electronic organ, giving you full
control over the waveforms of the voices and the
filtering:

1 0
20
30
40
50
6 0
7 0

9 9 0
9 9 2
9 9 4
9 9 6

REM
REM
REM
REM
REM
REM
REM

REM
REM
REM
REM

* * * * * * * * * * * * * * * * * * *
* * * * * *
* * * SYNTHESI SER * * *
* * * * * *
* * * * * * * * * * * * * * * * * * *

*
* SET UP NOTE TABLE *
*

1 0 0 0 DIM N (2 5 5 , 1)
1 0 1 0 READ K
1 0 2 0 I F K = 0 THEN 1 1 0 0
1 0 3 0 READ N (K , O) , N (K , l)
1 0 4 0 GOTO 1 0 1 0

1 12 The Commodore 64 Omnibus - Part 1

1 0 9 0 REM
1 0 9 2 REM ***********************
1 0 9 4 REM * CLEAR S I D REGI STERS *
1 0 9 6 REM ***********************
1 0 9 8 REM

1 1 0 0 FOR L = 5 4 2 7 2 TO 5 4 2 9 6 : POKE
L , 0 : NEXT

1 1 1 0 SID = 5 4 2 7 2
1 1 2 0 VOL = 6
1 1 3 0 FOR VV= l TO 3 : F$ (VV) = "N" :

NEXT

1 9 9 0 REM
199 2 REM **************
1 9 9 4 REM * FIRST MENU *
1996 REM **************
1998 REM

2 0 0 0 PRINT " { CLS } { CD } { CD } " TAB (1 5)
" {RVS } SYNTHES I SER { ROF } "

2 0 1 0 PRINT : PRINT : PRINT " VOICE
{ RVS } 1 { ROF } / { RVS } 2 { ROF } / { RVS } 3
{ ROF} "

2 0 2 0 PRINT : PRINT : PRINT " FILTER
{ RVS } F { ROF } "

2 0 3 0 PRINT : PRINT : PRINT " PLAY
{ RVS } P { ROF } "

2 1 0 0 GET K$: IF K$ = " " THEN 2 1 0 0
2 1 1 0 IF K$= " F " THEN GOSUB 3 0 0 0 :

GOT020 0 0
2 1 2 0 I F K$= " l " THEN VV= l : V=O : GOSUB

2 5 0 0 : GOTO 2 0 0 0
2 1 3 0 I F K$ = " 2 " THEN VV= 2 : V=7 : GOSUB

2 5 0 0 : GOTO 2 0 0 0
2 1 4 0 I F K$= " 3 " THEN VV= 3 : V=1 4 :

GOSUB 2 5 0 0 : GOTO 2 0 0 0
2 1 5 0 I F K $ = " P " THEN PRINT

" { CLS } " : GOSUB 5 0 0 0 : GOTO 2 0 0 0
2160 I F K $ = " { F8 } " THEN POKE

S+24 , 0 : END

Sound and Music - Part 1 1 13

2 2 0 0 GOTO 2 1 0 0

2 4 9 0 REM
2 4 9 2 REM ************************
2 4 9 4 REM * SET VOICE PROPERTIES *
2496 REM ************************
2498 REM

2 5 0 0

2 5 1 0
2 5 2 0
2 5 3 0

2 5 4 0

2 5 5 0

2560

2 6 0 0
2 6 1 0

2620

2 6 3 0

2 6 4 0
2650
27 0 0

2710
2 7 2 0
27 3 0

2 7 4 0

2 7 5 0

PRINT " { CLS } { CD} { CD } " TAB (1 2)
" { RVS } VOICE PROPERTIES { ROF } "
PRINT : PRINT "VOICE "VV ;
PRINT TAB (2 0) "WAS " W$ (VV)
PRINT : PRINT "WAVEFORM : "
TAB (1 0) " {RVS } S {ROF}AWTOOTH"
PRINT TAB (10)
" {RVS } T { ROF}RIANGLE "
PRINT TAB (1 0)
" { RVS } P { ROF} ULSE "
PRINT TAB (1 0)
" { RVS } N { ROF }OISE"
GET K$: IF K$ = " " THEN 2 6 0 0
I F K $ = " S " THEN W (VV) = 3 2 :
W$ (VV) = " {RVS } SAWTOOTH" : GOTO
2 8 0 0
IF K $ = " T " THEN W (VV) = 1 6 :
W$ (VV) = " {RVS } TRIANGLE " : GOTO
2 8 0 0
I F K $ = " N " THEN W (VV) = 1 2 8 :
W$ (VV) = " { RVS }NOI SE " : GOTO
2 8 0 0
I F K $ <> " P " THEN 2 6 0 0
W$ (VV) = " {RVS } PULSE "
PRINT : PRINT TAB (5) W$ (VV) :
PRINT
W (VV) = 6 4
P = P (VV)
PRINT " PULSE % (WAS " P (VV)
") " ; : INPUT P
I F P < 0 OR P > 1 0 0 THEN PRINT
" { CU} " ; : GOTO 2 7 1 0
P (VV) = P

1 14 The Commodore 64 Omnibus - Part 1

2 7 6 0 P = P (VV) * 4 0 . 9 5
2 7 7 0 POKE SID+V+ 2 , (P AND 2 5 5)
2 780 POKE SID+V+ 3 , INT (P/256)
2 7 9 0 GOTO 2 8 1 0
2 8 0 0 PRINT : PRINT TAB (5) W$ (VV) :

PRINT
2810 PRINT "ATTACK (WAS "

A (VV) ") " ; : I NPUT A (VV) : A =
(A (VV) AND 1 5) * 1 6

2 8 2 0 PRINT " DECAY (WAS "
D (VV) ") " ; : INPUT D (VV) : D =
(D (VV) AND 1 5)

2 8 3 0 PRINT " SUSTAIN (WAS " S (VV)
") " ; : INPUT S (VV) : S= (S (VV)
AND 1 5) * 16

2840 PRINT " RELEASE (WAS " R (VV)
") " ; : INPUT R (VV) : R= (R AND
1 5)

2 8 5 0 POKE SID+V+ 5 , A+D
2860 POKE S I D+V+6 , S+R
2870 PRINT" { CD}FILTER

{RVS } Y { ROF} / { RVS } N { ROF} (WAS "
F$ (VV) " l It ; : INPUT F$ (VV)

2880 I F F$ (VV) = " Y " THEN RF=RF OR
(2 t (VV- 1 » : GOT029 1 0

2890 I F F$ (VV) < > " N" THEN
PRINT " { CU} { CU} { CU} " : GOTO 2870

2900 RF=RF AND (2 5 5 - 2 t (VV-l »
2 9 1 0 POKE SID+ 2 3 , RF
29 50 RETURN

2 9 9 0 REM
2 9 9 2 REM *************************
2 9 9 4 REM * SET FILTER PROPERTIES *
2 9 9 6 REM *************************
2998 REM

3 0 0 0 PRINT " { CLS } { CD } { CD } " TAB (1 2)
" { RVS }FILTER PROPERTIES"

Sound and Music - Part 1

3 0 1 0 PRINT : PRINT "HIGH PASS
{ RVS } Y { ROF } / { RVS }N{ROF } (WAS
"HP$ " l It ; : INPUT HP$

3 0 2 0 VOL = VOL AND 1 9 1

1 1 5

3 0 3 0 I F HP$ = " Y " THEN VOL=VOL OR 6 4
3 0 4 0 PRINT : PRINT " BAND PASS

{ RVS } Y { ROF } / { RVS }N{ROF} (WAS
" BP$ " l It ; : INPUT BP$

3 0 5 0 VOL=VOL AND 2 2 3
3 0 6 0 I F BP$ = " Y " THENVOL=VOL OR 3 2
3 0 7 0 PRINT : PRINT " LOW PASS

{ RVS } Y { ROF } / { RVS }N{ROF} (WAS
" LP $ ") " ; : INPUT LP$

3080 VOL = VOL AND 2 3 9
3 0 9 0 I F LP$ = " Y " THEN VOL=VOL OR 1 6
3 1 0 0 PRINT : PRINT " FILTER FREQUENCY

(WAS " FQ " l It ; : INPUT FQ
3110 I F FQ > 2 0 4 8 OR FQ < 0 THEN

PRINT " { CU} { CU} { CU } " : GOTO
3 1 0 0

3 1 2 0 POKE S ID+ 2 1 , FQ AND 7
3130 POKE S I D+ 2 2 , INT (FQ/8)
3 1 5 0 PRINT : PRINT " RESONANCE

(WAS " RS " l It ; : INPUT RS
3160 IF RS < 0 OR RS > 15 THEN 3 1 5 0
3 1 7 0 POKE S + 2 3 , (RF AND 1 5) OR 1 6 *RS
3 5 0 0 RETURN

4990 REM
4 9 9 2 REM * * * * * * * *
4 9 9 4 REM * PLAY *
4996 REM * * * * * * * *
4998 REM

5 0 0 0 PRINT " { HOM} { CD} { CD} " TAB (18)
"RPLAY "

5010 PRINT
" {HOM} { CD} { CD} { CD} { CD} { CD} { CD}
{ CD} PLAYING VOICE" VV

5 0 2 0 PRINT " { CD} { CD} { CD } { CD} { CD}
{ RVS } F l { ROF} VOICE I"

1 16

5 0 3 0

50 4 0

5 0 5 0
5 0 6 0

5 0 7 0
5 0 8 0
5 0 9 0
51 0 0
5 1 1 0
5 1 2 0
5 1 3 0
5 1 4 0
5 1 5 0
5 1 6 0
5 1 7 0

5180
519 0
52 0 0
5 2 1 0
530 0

5 3 1 0

5 3 2 0

54 0 0

5 5 0 0

The Commodore 64 Omnibus - Part 1

PRINT : PRINT "
VOICE 2 "
PRINT : PRINT "
VOICE 3 "
POKE SID+2 4 , VOL

{RVS } F 3 { ROF}

{ RVS } F 5 { ROF}

PRINT " { HOM} { CD } { CD} { CD } { CD}
VOLUME"VOL AND 1 5 " {CL} "
GET K$: IF K$=" " THEN 5 0 7 0
HI=N (ASC (K$) , l)
IF HI=O THEN 5 1 5 0
POKE SID+V+ 4 , W (VV)
POKE SID+V+ l , H I
POKE SID+V , N (ASC (K$) , O)
POKE S ID+V+ 4 , W (VV) + l
GOTO 5 0 7 0
VX=VOL AND 1 5
IF K $ <> " { CU} " THEN 5180
IF VX < 15 THEN VX = VX+ l :
GOTO 5 2 0 0
IF K $ <> " { CD} " THEN 5 3 0 0
IF VX > 0 THEN VX = VX-l
VOL = (VOL AND 2 4 0) OR VX
GOTO 5 0 50
IF K$= " { Fl } " THEN POKE
SID+V+ 4 , W (VV) : VV=l : V= O :
GOTO 5 0 1 0
IF K$= " { F3 } " THEN POKE
SID+V+ 4 , W (VV) : VV=2 : V=7 :
GOTO 5 0 1 0
I F K$ = " { F5 } " THEN POKE
SID+V+ 4 , W (VV) : VV= 3 : V=1 4 :
GOTO 5 0 1 0
IF K$=CHR$ (1 3) THEN POKE
SID+2 4 , 0 : RETURN
GOTO 5 0 7 0

6 0 0 0 0 DATA 8 1 , 2 3 3 , 7 , 87 , 9 7 , 8 ,
51 , 2 2 5 , 8

6 0 0 1 0 DATA 6 9 , 1 0 4 , 9 , 5 2 , 2 4 7 , 9 ,
8 2 , 1 4 3 , 1 0

Sound and Music - Part 1

6 0 0 2 0 DATA 8 4 , 4 8 , 1 1 , 5 4 , 2 1 8 , 1 1 ,
8 9 , 1 4 3 , 1 2

6 0 0 3 0 DATA 5 5 , 7 8 , 1 3 , 8 5 , 2 4 , 1 4 ,
5 6 , 2 3 9 , 1 4

6 0 0 4 0 DATA 7 3 , 2 1 0 , 1 5 , 7 9 , 1 9 5 , 1 6 ,
4 8 , 1 9 5 , 1 7

6 0 0 5 0 DATA 8 0 , 2 0 9 , 1 8 , 4 3 , 2 3 9 , 1 9 ,
6 4 , 3 1 , 2 1

6 0 0 6 0 DATA 4 2 , 9 6 , 2 2 , 9 2 , 1 8 1 , 2 3 ,
9 4 , 3 0 , 2 5

6 0 0 7 0 DATA 1 9 , 1 5 6 , 2 6 , 2 0 , 4 9 , 2 8
6 0 0 8 0 DATA 9 5 , 1 2 , 7 , 4 9 , 1 1 9 , 7
6 0 1 0 0 DATA 0

1 1 7

The program gives you control over the settings of
the three voices and the filter, so that you can
experiment with different tones. The method of
processing the key strokes and turning them into
notes uses a two dimensional array to hold the
values of the high and low frequency bytes of each
note. The array has 255 elements, corresponding to
the ASCII codes of the keys (not all of which are
used). This allows the note to be played after only
one IF ... THEN test, to see if the key pressed was a
valid one. This use of an array is wasteful of
memory; about 1K of memory is reserved for the
array and not used; but it has the advantage of
speed, as a quick response to the keyboard is
essential in this application.

The top two rows of the 64's keyboard are used as
the (organ' keyboard. The diagram overleaf shows
the relation of the 64 keyboard to the organ
keyboard.

The information relating the keys to the notes is
held in the DATA statements at the end of the
program (lines 60000-60100). The data is loaded
into the array N(255,1) by lines 1000 to 1040.
Lines 1 100 to 1 130 in iti al ise the program
variables. The first menu page is controlled by the

1 18 The Commodore 64 Omnibus - Part 1

3 4 6 7 8 0 + £ HOME

+- Q W E R T Y U l O P @ ,. f DEL

lines from 2000 onward. The program offers the
choice between altering the properties of a voice,
setting the filter or playing a tune. You must of
course set a voice before trying to play anything.
Pressing F8 (the SHIFT key and function key 7)
will end the program.

Lines 2500 to 2950 give you control over the
properties of the three voices. You may enter new
settings, or keep the existing settings by simply
pressing RETURN. Lines 3000 to 3500 allow you
to set up the filter in a similar manner.

The routine in lines 5000 to 5500 handles the
playing of notes. The top two rows of the keyboard
act as the synthesiser keyboard. You can switch
between voices using the function keys Fl, F3 and
F5. The volume is controlled by the Cursor Up and
Down key - Cursor Up for louder, Cursor Down for
softer.

You will find more about making music with the
the SID chip in Chapter 23 .

CH APTE R 1 2

CHARACTE R GRAPHICS

The simplest way to produce graphics displays on
the Commodore 64 is to use the special characters
available from the keyboard. These characters can
be obtained by holding down either a SHIFT key
and pressing the character key to obtain the right
hand symbol of the two shown on the face of the
key, or by holding down the Commodore logo key
and pressing the character key to obtain the left
hand symbol of the two. You can produce simple
but effective displays by using these symbols and
the cursor control characters in PRINT commands.
Try this short program. Shifted characters are
represented by {X}, characters requiring the
Commodore key are shown as [X]. The program
should print a smiling face. The symbol o is used to
represent a space :

1 0 PRINT " {o} [YYYYY] { p }
2 0 PRINT " [H) {W} o o o {W} [N]
3 0 PR I NT " [H) 0 0 { Q} 0 0 [N]
40 PRINT" [H) 0 0 0 0 0 [N]
5 0 PRINT " {M} o { J* K } o [N]
6 0 PRINT " 0 {M} [PPP] { N }

CHARACTERS AND N U M B ERS

In Chapter 7 the ASCII code for representing
characters by numbers was introduced. The screen
displays of the Commodore 64 are stored in the
memory of the machine as a block of 1000 memory
locations, each holding a number which indicates
the character at the corresponding point on the

120 The Commodore 64 Omnibus - Part 1

screen. This method of storing the display data is
called 'memory mapping', as the screen memory
area acts as a map of the display. A second area of
memory, also of 1000 locations, holds information
on the colour of each character. (There are
diagrams - or 'maps' - of the screen memory areas
in Appendix 17)

The numbers used to indicate the characters on the
screen are not the same as those used by the CHR$
command described in Chapter 7, as the ASCII
character set includes control characters such as
the cursor characters while the screen character set
uses all 256 numbers to represent displayable
symbols. There are two sequences of characters,
one for displaying upper case letters ancl graphics,
the other for upper and lower case displays. The
two character sets and their numbering systems
are shown in the table in Appendix 16 . The
numbers for the colours are shown in the table
below. The numbers are the same as those given in
Chapter 3 for the background and border colours,
and are shown again in the table opposite and in
Appendix 8.

In normal use , the screen memory of the
Commodore 64 is in store locations 1024 to 2023,
while the colour memory extends from location
55296 to 56295. Using this information you can
display characters on the screen without using
PRINT, by POKEing the character number into
screen memory, and POKEing a number into the
corresponding location of the colour memory. For
example:

POKE 1 0 2 4 , 3 3 : POKE 5 5 2 9 6 , 1

would display a white exclamation mark at the top
left corner of the screen. This method of controlling
the display gives you better control over the
positioning of the symbols on the screen than the

Character Graphics 12 1

PRINT command, and can make altering a display
much faster.

CODE COLO U R CODE COLO U R

0 Black 8 Orange

1 White 9 Brown

2 Red 1 0 Light Red

3 Cya n 1 1 Dark Grey

4 Purple 1 2 Mid Grey

5 Green 1 3 Light Green

6 Bl u e 1 4 Light B lue

7 Yel low 1 S Light Grey

The Colour Codes

CODEBREAKER

This program plays the well known game. You
have ten attempts to find out the secret code which
the 64 generates, guided by the clues which the
program displays after each attempt. Simple
character graphics are used to create the display.

1 REM * * * * * * * * * * * * * * *
2 REM * *
3 REM * CODEBREAKER *
4 REM * *

5 REM * * * * * * * * * * * * * * *

6 REM

7 CM= 5 5 2 9 6 : SM= 1 0 2 4
1 0 POKE 5 3 2 8 0 , 1 1 : POKE 5 3 2 8 1 , 1 2

122 The Commodore 64 Omnibus - Part 1

2 0 PRINT " { CLS } { CD } " TAB (1 4)
" { BLU} CODEBREAKER{ GRY } " :
PRINT : PRINT

3 0 PRINT " THE COMPUTER WILL
SELECT A CODE OF FOUR"

3 5 PRINT " COLOURS , CHOSEN FROM 8 .
EACH COLOUR MAY " ;

4 0 PRINT " BE USED MORE THAN
ONCE : " ;

41 PRINT " { RVS } { BLK} { ROF}
{ RVS } {GRN} { ROF} { RVS} { RED}
{ ROF} { RVS } { BLU} (ROF } { GRY } " :
PRINT

4 5 PRINT " YOU MUST CRACK THE CODE
IN LESS THAN 1 0 "

50 PRINT "ATTEMPTS " : PRINT
55 PRINT "AFTER EACH ATTEMPT YOU

WILL BE GIVEN A"
60 PRINT " CLUE OF UP TO 4 BLACK

AND WHITE DISCS : " : PRINT
6 5 PRINT "A { BLK}e{GRY } MEANS A

CORRECT COLOUR IN THE RIGHT
PLACE . It : PRINT

70 PRINT itA {WH I } e{GRY } MEANS A
CORRECT COLOUR IN THE WRONG
PLACE . It : PRINT

7 5 PRINT It USE THE KEYS 1 TO 8 TO
ENTER YOUR GUESS" : PRINT :
PRINT

85 PRINT TAB (9) " (RED } { RVS } PRESS
ANY KEY TO START {ROF} It ;

9 0 GETA$: IF A$ = It " THEN 9 0
1 0 0 GOSUB 1 0 0 0
1 1 0 FOR G= O TO 9 : G$= lt lt : CO$ =C$
1 1 5 PRINT TAB (1 0) G+l ;
1 2 0 GOSUB 2 0 0 0
1 3 0 NEXT
1 4 0 Z $ = " { RVS } { RED} YOU LOSE

{ ROF } It : GOTO 2 4 2 0

9 9 3 REM

9 9 4
9 9 5
9 9 6
9 9 7
9 9 8
999

1 0 0 0
1 0 1 0
1 0 2 0

1 0 3 0
1 0 4 0

1 0 5 0

1 9 9 3
1 9 9 4
1 9 9 5
1 9 9 6
1 9 9 7
1998
1999

2 0 0 0

2 0 2 0
2 0 3 0
2 0 4 0
2 0 5 0

2 0 6 0
2080
2 0 9 0

2 0 9 2
2 0 9 3
2 0 9 4
2 0 9 5
2 0 9 6

Character Graphics

REM * * * * * * * * * * * *
REM * *
REM * SET CODE *
REM * *
REM * * * * * * * * * * * *
REM

C$ = " "
FOR I=l TO 4
C$ = C$ + RIGHT$ (STR$ (INT (
RND (0) * 8) +1) , 1)
NEXT I
PRINT " { CLS } { CD} " TAB (1 4 }
" { BLU}CODEBREAKER{ GRY } " :
PRINT : PRINT
RETURN

REM
REM * * * * * * * * * * * * * * *
REM * *
REM * INPUT GUESS *
REM * *
REM * * * * * * * * * * * * * * *
REM

GN$ = " INPUT GUESS " +
RIGHT$ (STR$ (GUESS) , l }
FOR I=O TO 3
GET I $

123

IF I $< " l " OR I $> " 8 " THEN 2 0 3 0
POKE CM+17 6+ (I * 2 } + (G* 80) ,
VAL (I $) -l
POKE SM+176+ (I * 2 } + (G* 80) , 1 6 0
G $ = G$+ I $
NEXT I

REM
REM * * * * * * * * * * * * * * * * * * *
REM * *
REM * RIGHT COLOUR *
REM * AND RIGHT PLACE *

124 The Commodore 64 Omnibus - Part 1

2 0 9 7 REM * *
2 0 9 8 REM *******************
2 0 9 9 REM

2 1 0 0
2 1 1 0

2 1 2 0
2 1 3 0

2 1 4 0

2 1 5 0

219 2
2 1 9 3
2 1 9 4
219 5
2196
2 1 9 7
2198
2199

2 2 0 0
2 2 1 0
2 2 2 0

2 2 3 0
2 2 4 0

2 2 5 0

2 2 6 0
2 2 7 0

2 2 9 3
2 2 9 4
2 2 9 5
2 2 9 6
2 2 9 7

FOR 1 = 1 TO 4
IF MID$ (G$, I , l) <>
MID$ (CODE$, I , l) THEN 2 1 5 0
C 1 = C1+1
G$ = LEFT$ (G$, I -1) + " 9 " +
MID$ (G$, I+1)
CO$ = LEFT$ (CO$, I -1) + " 9 " +
MID$ (CO$, I + 1)
NEXT I

REM
REM *******************
REM * *
REM * RIGHT COLOUR *
REM * BUT WRONG PLACE *
REM * *
REM *******************
REM

FOR 1=1 TO 4
FOR J=l TO 4
IF MID$ (G$, I , l) =MID$ (CO$, J , l)
AND MID$ (G$, I , 1) <> " 9 " THEN
C2=C2+1 : GOTO 2 2 4 0
GOTO 2 2 6 0
G $ = LEFT$ (G$, I -1) + " 9 " +
MID$ (G$, I +1)
CO$ = LEFT$ (CO$, J-1) + " 9 " +
MID$ (CO$, J+1)
NEXT J
NEXT I

REM
REM ****************
REM * *
REM * DI SPLAY CLUE *
REM * *

Character Graphics

2 2 9 8 REM * * * * * * * * * * * * * * * *
2 299 REM

2 3 0 0 I F Cl=O THEN 2 3 2 0

125

2 3 1 0 FOR I = l TO Cl : CLUE$= CLUE$ +
" { BLK}e{GRY } " : NEXT

2 3 2 0 IF C2=0 THEN 2 3 4 0
2 3 3 0 FOR I=lTO C 2 : CLUE$ = CLUE$ +

" {WHI }e{GRY } " : NEXT
2 3 4 0 PRINT TAB (3 0) CLUE$ " { CD} "
2 3 5 0 I F Cl=4 THEN 2 4 0 0
2 3 6 0 Cl=O : C2=0 : CLUE$ = " " : RETURN

2 3 9 3 REM
2 3 9 4 REM * * * * * * * * * * * * * * *
2 3 9 5 REM * *
2 3 9 6 REM * REVEAL CODE *
2 3 9 7 REM * *
2398 REM * * * * * * * * * * * * * * *
2 3 9 9 REM

2 4 0 0 Z $ = " { RVS } { RED} YOU WIN
{ ROF } "

2 4 2 0 PRINT " THE CODE WAS " ;
2 4 3 0 FOR I = l TO 4
2 4 4 0 POKE CM+97 4+ (I * 2) ,

VAL (MID$ (C$, I , l » - l
2 4 4 5 POKE SM+9 7 4+ (I * 2) , 1 6 0
2 4 5 0 NEXT
2 4 6 0 PRINT TAB (2 7) "ANOTHER YIN? " ;
2 4 6 5 PRINT " {HOM} { CD} " TAB (1 3) Z $;
2 4 7 0 GETA$: IF A$ = " " THEN 2 4 7 0
2 4 8 0 I F A$ = " Y " THEN 1 0 0
2 4 9 0 PRINT " { CLS } " : END

Lines 10 to 85 display the instructions with and
example. (The solid circle character in lines 65 and
70 - and lines 2310 and 2330 - is obtained by
holding down either SHIFT key and pressing Q.)
Lines 1000 to 1050 set up a code of four numbers

126 The Commodore 64 Omnibus - Part 1

between 1 and 8. Each number may appear more
than once in the code.

You enter your guess in lines 2000 to 2090,
pressing the keys between 1 and 8. After each
keypress the appropriate colour code is placed in
the colour memory, and a reversed space (character
160) is placed in screen memory. After four
consecutive keypresses the guess is checked. Lines
2100 to 2150 check for a correct colour in the right
place. Cl is incremented for every such item in the
guess, and the item is set to t9' to indicate that
there is no need to check it further.

Lines 2200 to 2250 check for an item of the right
colour in the wrong place. Every such item in the
guess is set to t9' once it has been recorded to avoid
considering it more than once.

The routine at 2300 to 2360 builds up a string
CLUE$ containing a black spot for every correct
colour in the right place, and a white spot for every
correct colour in the wrong place. Note that the
clue gives no information on the position of the
correct items - that would make things too easy!

If you crack the code, or have run out of guesses,
the routine at 2400 to 2480 lets you know and
reveals the code. You may then play another game,
or stop the program.

CHARACTER DEF IN ITIONS

The shapes of all the displayable characters are
defined by numbers held in a special area of
memory. The 64 allows you to create new symbols
by entering new definitions for the characters to
replace those held in memory. Each symbol in the
character set is defined by the contents of eight
memory locations, which correspond to a grid of
eight rows; each row consisting of eight dots which

Character Graphics 127

may be set to the foreground or the background
colour. (Each of these dots is called a pixel, which is

Memory
Location :

0

1

2

3

4

5

6

7

Bit: 7 6 5 4 3 2 1 0

The Character Grid

a contraction of picture element. The display is
built up from 64000 of these pixels.) Each location
defines one row of the character, and each bi t of the
number in the location represents one pixel. If the
bit is set to 1 , the pixel is displayed in the
foreground colour; if the bit is set to 0 the pixel
remains in the background colour.

In normal use, the character definitions are held in
4K of read-only memory (ROM) beginning at
location 53248 . There are two sets of 256
characters: this first set includes graphics symbols
and upper case letters; the second set (which begins
at 55296) has both upper and lower case letters,
with fewer graphics characters. To find the eight
bytes defining any character, multiply the code
number of the character by eight, and add the start
location of the character set:

Character location = (Code * 8) + Start of set

128 The Commodore 64 Omnibus - Part 1

So, the definition of the letter X (character code 24
- see Appendix 16) in the first character set is
given by:

Location = (24 * 8) + 53248 = 53440

There is one problem to be overcome before you can
read the character definitions. The Commodore 64
uses the memory area at 53248 for two purposes; to
hold the character definitions and also to hold some
of the input/output routines of the operating
system. (This doesn't mean there are two sets of
numbers in each location: there are actually two
units of memory which take turns in using the
same address.) To read the character memory, you
must first disable the input/output activities and
switch in the character ROM. This can only be
done wi thin a program, as the keyboard will not
work once you have disabled the input/output
routines.

To disable input/output and switch in character
ROM, use the two commands:

POKE 5 6 3 3 4 , PEEK (5 6 3 3 4) AND 2 5 4
POKE 1 , PEEK (I) AND 2 5 1

To return to normal after reading the character
memory, use the commands:

POKE 1 , PEEK (I) OR 4
POKE 5 6 3 3 4 , PEEK (5 6 3 3 4) OR 1

This short program will display the eight numbers
defining the X.

10 POKE 5 6 3 3 4 , PEEK (563 3 4) AND
2 5 4

2 0 POKE 1 , PEEK (I) AND 2 5 1
3 0 FOR A = 0 TO 7
4 0 C (A) = PEEK (A+ 5 34 4 0)

Character Graphics

50 NEXT A
6 0 POKE 1 , PEEK (l) OR 4
7 0 POKE 5 6 3 3 4 , PEEK (5 6 3 3 4) OR 1
1 0 0 FOR B = O TO 7
110 PRINT C (B)
1 2 0 NEXT B

129

The program should display the numbers 102, 102,
60, 24, 60, 102, 102, O. Having found the eight

1 28 64 32 1 6 8 4 2 1

The Character X

1 02

1 02

60

24

60

1 02

1 02

o

numbers, we can convert them to binary form and
fill in the grid to produce a letter X.

Notice that the bottom line of the character is left
blank. This is to leave a space between lines of text
on the screen. You can inspect the other characters
by modifying the character number used by the
program.

REDEF IN ING CHARACTERS

You may be wondering how it is possible to create
new characters when the standard character
definitions are held in ROM - it's difficult to write

130 The Commodore 64 Omnibus - Part 1

new numbers into read-only memory! The answer
is that we have to tell the 64 to look somewhere else
for the character shapes, and define the new
characters in RAM. The video of the 64 is all
controlled by the Video Interface Chip (or VIC) ,
and this chip has control registers which tell i t
where to find the screen and the character sets. To
make use of user defined characters you must first
copy all the characters in a set into the RAM, and
tell the VIC chip where to find them. You can then
alter some (or all) of the characters to your own
designs.

The control register of the VIC which holds the
position of the character set is at memory location
53272. Only the lower 4 bits of the register form
the character pointer, the other four are used to
record the position in memory of the screen. The
VIC chip can only look at 16K of the memory at
once, so the character set and the screen must be in
the same 16K bank. As the 64 has 64K of memory,
there are four possible alternatives. Which of the
four banks is addressed by the chip is set by the
sequence:

POKE 56578 , PEEK (5 6 57 8) OR 3
POKE 5657 6 , (PEEK (565 7 6) AND 2 5 2) OR X

where X is a number from 0 to 3 , with the
meanings shown in the table opposite.

We said above that in normal use the screen
memory is at 1024, and the characters begin at
53248. These numbers are definitely not in the
same 16k bank, but this is a special case. The ROM
holding the standard symbols is in fact very
cunningly arranged to appear in two other places

. as well: at 4096 (in the first bank) and at 40864 (in
the third). Because of the organisation of the
hardware, the VIC chip can find the ROM at three
places, while the processor uses these memory

Character Graphics 131

X BAN K MEMORY RANG E

3 0 0 - 1 6383

2 1 1 6384 - 32767

1 2 32768 - 49 1 5 1

0 3 49 1 52 - 65535

VIC Bank Selection

areas for something else! (There is a diagram of the
64's memory - a memory map - in Appendix 17.)

Having set the bank you want the VIC to address,
you can set the position of the character set by the
command:

POKE 5 3 2 7 2 , (PEEK (5 3 2 7 2) AND 2 4 0) OR C

C must be an even number between 0 and 14, and
has the meaning shown in the table overleaf.

It is best to move the character memory by using a
program, because if you try moving it by typing the
command at the keyboard all the displayed
characters will turn into garbage. The next
program alters the position of character memory to
14336, and copies the first character set into these
locations:

1 0 0 REM MOVE CHARACTER SET
1 1 0 POKE 5 2 , 56 : POKE 56 , 56
1 2 0 POKE 5 3 27 2 , (PEEK (5 3 27 2) AND

2 4 0) OR 1 4
1 3 0 POKE 56 3 3 4 , PEEK (5 6 3 3 4) AND

2 5 4
1 4 0 POKE 1 , PEEK (l) AND 2 5 1
1 5 0 FOR X = 0 TO 2 0 4 7
1 6 0 POKE 1 4 3 3 6 +X , PEEK (5 3 2 4 8+X)

132 The Commodore 64 Omnibus - Part 1

START OF CHARACTER M EMORY

C BAN K O BAN K 1 BAN K 2

0 0 1 6384 32768

2 2048 1 8432 348 1 6

4 4096 20480 36864

6 6 1 44 22528 389 1 2

8 81 92 24576 40960

1 0 1 0240 26624 43008

1 2 1 2288 28672 45056

1 4 1 4336 30720 47 1 04

Character Memory Positions

170 NEXT X
180 POKE 1 , PEEK (l) OR 4

BAN K 3

49 1 52

5 1 200

53248

55296

57344

59392

61 440

63488

190 POKE 5 6 3 3 4 , PEEK (56 3 3 4) OR 1

There is an extra pair of POKE commands in line
110 of the program which we have not dealt with
before. These reduce the amount of the memory
used by the BASIC program so that it does not store
data over the new character set.

If you run this program, you should see any
characters on the screen turn to garbage when the
memory pointers are switched and then return to
normal as the character data is copied into the new
area. You will now be able to modify the characters
by POKEing new values into the memory. With
the character set in the new position, the formula
for finding a character will be:

Character Location = 14336 + (8*Character Code)

Character Graphics 133

If you add these lines to the program and then
RUN 1000, all the characters will be turned upside
down - you have redefined them!

2 0 0 END
1 0 0 0 REM INVERT CHARACTERS
1 0 1 0 FOR X = 1 4 3 36 TO 1 6 3 7 6 STEP 8
1 0 2 0 FOR Y = 0 TO 7
1 0 3 0 C (Y) =PEEK (X+ Y)
1 0 4 0 NEXT Y
1 0 5 0 FOR Z=O TO 7
1 0 6 0 POKE X+7-Z , C (Z)
1 0 7 0 NEXT Z
1 0 8 0 NEXT X

RUNning the first program again will restore the
original characters at the new location.

MOVIN G TH E SCR E E N

Moving the character memory to the first 16K
bank has the advantage that you don't have to
move the screen memory, but it means that you can
not use more than 12K of the memory for BASIC
programs, while 24K lies unused. To make better
use of the memory you must move both the
character memory and the screen to a higher bank.
(Refer to the memory map in Appendix 17.)

The screen position within a bank is controlled by
the four most significant bytes of the VIC control
register at location 53272. To move the screen to
another location, use the command:

POKE 5 3 27 2 , (PEEK (5 3 27 2) AND 1 5) OR S

S indicates the location within the bank of the
beginning of screen memory and has the meaning
given in the table overleaf.

134 The Commodore 64 Omnibus - Part 1

START OF SCRE E N M E MORY

S BAN K O BAN K 1 BAN K 2

0 0 1 6384 32768

1 6 1 024 1 7408 33792

32 2048 1 8432 348 1 6

48 3072 1 9456 35840

64 4096 20480 36864

80 5 1 20 2 1 504 37888

96 6 1 44 22528 389 1 2

1 1 2 7 1 68 23552 39936

1 28 8 1 92 24576 40960

1 44 92 1 6 25600 4 1 984

1 60 1 0240 26624 43008

1 76 1 1 264 27648 44032

1 92 1 2288 28672 45056

208 1 33 1 2 29696 46080

224 1 4336 30720 47 1 04

240 1 5360 3 1 744 48 1 28

Screen Memory Positions

BAN K 3

49 1 52

50 1 76

5 1 200

52224

53248

54272

55296

56320

57344

58368

59392

604 1 6

6 1 440

62464

63488

645 1 2

When you move the screen, as well as telling the
VIC chip where it is, you must tell the 64's
operating system where it has gone, so that the
PRINT command will write to the correct area.
Location 648 records the address of the beginning
of the screen, and must be POKEd with the
address of the screen divided by 256, thus:

POKE 6 4 8 , (Screen Star t) /2 5 6

Character Graphics 135

CHARACTER G E N E RATOR PROGRAM

This program allows you to design new characters
on the screen and add them to the character set.
The characters are created by filling in a large grid
on the screen, which is then used to program the
character.

10 REM ***********************
1 1 REM * *
1 2 REM * CHARACTER GENERATOR *
1 3 REM * *
1 4 REM ***********************

1 0 0 POKE 5 2 , 1 0 8 : POKE 56 , 1 0 8 : CLR
110 GOSUB 2 0 0 0 0 : REM SETTING UP

ROUTINES
1 2 0 GOTO 1 0 0 0 0 : REM MAIN MENU

190 REM ***********************
1 9 2 REM * REDEFINE CHARACTERS *
19 4 REM ***********************

2 0 0 EX=O : PRINT " { CLS } "
210 INPUT " CHARACTER CODE " ; C
2 2 0 IF C < 0 OR C > 2 5 5 THEN 2 1 0
230 SX = 2 86 7 2 +C* 8
2 4 0 S C = 2 7 6 4 8 : CC= SC+ 3 3 1
2 9 5 REM STORE CHARACTER DATA IN

ARRAY
3 0 0 PRINT " { CLS } "
3 1 0 FOR R=l TO 8 : GOSUB 1 0 0 0 : NEXT R
395 REM DI SPLAY CHARACTER
4 0 0 GOSUB 2 0 0 0
4 1 0 IF F=l THEN END
4 2 0 X=l : R=l
5 0 0 B = PEEK (CC)
510 REM MODIFY CHARACTER
5 2 0 GOSUB 3 0 0 0 : IF EX = 1 THEN

RETURN
5 3 0 IF CL=l THEN CL= O : GOTO 4 0 0

136

5 4 0
5 5 0

9 9 0
9 9 2
9 9 4
9 9 6

1 0 0 0
1 0 1 0
1 0 2 0
1 0 3 0
1 0 4 0

1 0 4 5
1 0 5 0
1 0 6 0
1 0 7 0
1 0 8 0
1 0 9 0
1 1 0 0

1 9 9 0
1 9 9 2
1 9 9 4

2 0 0 0
2 0 0 3
2 0 0 5

2 0 1 0
2 0 2 0
2 0 3 0

2 0 3 5
2 0 4 0
2 0 5 0
2 0 6 0

2 0 7 0

The Commodore 64 Omnibus - Part 1

CC = SC+X+4 0 * (R+7) +1 0
GOTO 5 0 0

REM *
REM * STORE CHARACTER DATA *
REM * IN ARRAY *
REM *

N = PEEK (SX+R-l)
X=8
A% (R , 9) = N : REM VALUE OF ROW
REM STORE BIT PATTERN
IF N/2 = INT (N/ 2) THEN
A% (R , X) =O : GOTO 1 0 5 0
A% (R , X) = 1
N = INT (N/ 2) : X=X-l
IF N >=1 THEN 1 0 4 0
FOR I =X TO 1 STEP -1
A% (R , I) = 0
NEXT I
RETURN

REM *
REM * DI SPLAY CHARACTER *
REM *

PRINT " { CLS } " ;
FOR 1 = 5 5 6 2 7 TO 5 59 0 7 STEP 4 0
FOR 1 1 =0 TO 7 : POKE 1 +1 1 , 1 :
NEXT : NEXT
FOR R=l TO 8
FOR X=l TO 8
I F A% (R , X) =l THEN CS = 1 6 0 :
GOTO 2 0 4 0
CS= 4 6
POKE SC+ (X+ I 0 + (R+7) * 4 0) , CS
NEXT X
POKE 2 1 4 , R+6 : PRINT : PRINT
TAB (2 4) STR$ (A% (R , 9 »
NEXT R

2080

2990
299 2
2 9 9 4
2 9 9 6

3 0 0 0
3 0 1 0
3 0 2 0
3 0 3 0

3 0 4 0

3 0 5 0
3 0 6 0
3 0 8 0

3 0 9 0

3 1 0 0

3 1 1 0

3 1 2 0

3 1 3 0

3 1 4 0

3 1 5 0

3 1 6 0

3 1 9 0
319 2
319 4

Character Graphics

RETURN

REM *******************
REM * MOVE CURSOR AND *
REM * CHANGE PIXELS *
REM *******************

REM CHECK KEYBOARD
GET K$
REM FLASH CURSOR

137

CH = PEEK { CC) : C%= { CH OR 1 28)
(CH AND 1 28)
POKE CC , C% : FOR 1 1= 1 TO
1 0 0 : NEXT

REM CHECK KEY INPUT
IF K$= " " THEN 3 0 1 0
IF K$ = " { CL } " AND X>l THEN POKE
CC , B : X=X-1 : RETURN : REM LEFT
I F K$= " { CR } " AND X<8 THEN POKE
CC , B : X=X+1 : RETURN : REM RIGHT
I F K$= " { CD } " AND R<8 THEN POKE
CC , B : R=R+1 : RETURN : REM DOWN
IF K$= " { CU} " AND R>l THEN POKE
CC , B : R=R-1 : RETURN : REM UP
I F K$= " II THEN A% { R , X) = 1-
A% { R , X) : GOTO 3 2 0 0 : REM CHANGE
P IXEL
IF K$= " P " THEN 4 0 0 0 : REM
REPROGRAM CHARACTER
IF K$= " { CLS } " THEN 3 3 0 0 : REM
CLEAR CHARACTER
IF K$= " { HOM} " THEN X= l : R=l :
POKECC , B : RETURN
RETURN

REM ****************
REM * CHANGE PIXEL *
REM ****************

138

3 2 0 0

3 2 1 0

3 2 9 0
3 2 9 2
3 2 9 4

The Commodore 64 Omnibus - Part 1

I F B=1 6 0 THEN POKE CC , 4 6 :
RETURN
POKE CC , 1 6 0 : RETURN

REM ********************
REM * CLEAR CHARACTER *
REM ********************

3 3 0 0 FOR R=l TO 8 : FOR X=l TO 9
3 3 1 0 A% (R , X) = O
3 3 2 0 NEXT : NEXT
3 3 3 0 CL=l : RETURN

399 0
3 9 9 2
3 9 9 4

4 0 0 0

4 0 1 0

4 0 2 0
4 0 3 0
4 0 4 0
4 0 5 0
4 0 6 0
4 0 7 0
4 0 8 0
4 1 0 0

9 9 9 0
9 9 9 2
9 9 9 4

1 0 0 0 0

1 0 0 1 0

1 0 0 2 0

REM ***********************
REM * REPROGRAM CHARACTER *
REM ***********************

M$ = " REPROGRAMMING CHARACTER"
+ STR$ (C)
POKE 2 1 4 , 2 1 : PRINT : PRINT
TAB (S) M$
FOR R=l TO 8
FOR X=l TO 8
o = 0+ (2 t (8-X » * A% (R , X)
NEXT X
POKE SX+R-l , 0
0=0 : NEXT R
EX=l
RETURN

REM *************
REM * MAIN MENU *
REM *************

PRINT " { CLS } { CO} {CO} " TAB (1 2)
" CHARACTER GENERATOR"
PRINT : PRINT : PRINT
" {RVS } C { ROF}HANGE CHARACTERS "
PRINT : PRINT : PRINT
" {RVS } L { ROF} OAO CHARACTER SET
FROM TAPE"

Character Graphics 139

1 0 0 3 0 PRINT : PRINT : PRINT
" {RVS } S { ROF} AVE CHARACTER SET
TO TAPE"

1 0 0 4 0 PRINT : PRINT : PRINT
" {RVS } F l { ROF} END PROGRAM"

1 0 0 9 0 REM READ KEYBOARD
1 0 1 0 0 GET K$: IF K$= " " THEN 1 0 1 1 0
1 0 1 1 0 IF K$= "C " THEN GOSUB 2 0 0 : GOTO

1 0 0 0 0 : REM CHANGE CHARACTERS
1 0 1 2 0 IF K$= " L " THEN GOSUB 1 1 0 0 0 :

GOTO 1 0 0 0 0 : REM LOAD
CHARACTER SET

1 0 1 3 0 IF K$= " S " THEN GOSUB 1 2 0 0 0 :
GOTO 1 0 0 0 0 : REM SAVE
CHARACTER SET

1 0 1 4 0 IF K$= " { Fl } " THEN END
1 0 1 5 0 GOTO 1 0 1 0 0

1 0 9 9 0 REM *
1 0 9 9 2 REM * LOAD CHARACTER SET *
1 0 9 9 4 REM * FROM TAPE *
10996 REM *

1 1 0 0 0 PRINT " {CLS } { CD } { CD} " : OPEN
1 , 1 , 0 , " CHARACTERS "

1 1 0 1 0 FOR C=O TO 2 0 4 7
1 1 0 2 0 GET# l , C$: IF C$= " " THEN

C$=CHR$ (O)
1 1 0 3 0 POKE 2 8 6 7 2 +C , ASC (C$)
1 1 0 4 0 NEXT C
1 1 1 0 0 CLOSE 1
1 1 5 0 0 RETURN

11990 REM *
1 1 9 9 2 REM * SAVE CHARACTER SET *
119 9 4 REM *

1 2 0 0 0 PRINT " { CLS } { CD} { CD} " : OPEN
1 , 1 , 1 , " CHARACTERS "

1 2 0 1 0 FOR C=O TO 2 0 4 7

140 The Commodore 64 Omnibus - Part 1

1 2 0 2 0 C$ = CHR$ (PEEK (2867 2+C » :
1 2 0 3 0 PRINT# l , C$
1 2 0 4 0 NEXT C
1 2 1 0 0 CLOSE 1
1 2 5 0 0 RETURN

1 9 9 9 0 REM *
199 9 5 REM * SETTING UP ROUTINES *
2 0 0 0 0 REM *

2 0 0 0 5 DIM A% (8 , 9)
2 0 0 1 0 POKE 5 6 57 8 , (PEEK (5 6 5 7 8) AND

2 5 2) OR 3
2 0 0 2 0 POKE 5 6 57 6 , (PEEK (5 6 5 7 6) AND

2 5 2) OR 2
2 0 0 3 0 POKE 5 3 2 7 2 , (PEEK (5 3 27 2) AND

2 4 0) OR 1 2
2 0 0 4 0 POKE 5 3 2 7 2 , (PEEK (5 3 27 2) AND

1 5) OR 176
2 0 0 5 0 POKE 6 4 8 , 108
20060 PRINT

" { CLS } { CD} { CD } { CR } { CR } COPY1NG
CHARACTER SET "

2 0 0 7 0 FOR 1 =0 TO 2 5 5 : POKE 2 8 0 4 8+ 1 ,
I : POKE 55696+ 1 , 3 : NEXT

2 0 0 8 0 POKE 5 6 3 3 4 , PEEK (5 6 3 3 4) AND 2 5 4
2 0 0 9 0 POKE 1 , PEEK (l) AND 2 5 1
2 0 1 0 0 FOR 1 = 0 TO 2 0 4 7
2 0 1 1 0 POKE 28672+1 , PEEK (5 3 2 48+1)
2 0 1 2 0 NEXT I
2 0 1 5 0 POKE 1 , PEEK (l) OR 4
2 0 1 6 0 POKE 5 6 3 3 4 , PEEK (56 3 3 4) OR 1
2 0 5 0 0 RETURN

The program allows you to redefine any character,
and to save character sets on tape and reLOAD
them. You can use the new character sets with

. other programs.

The first thing the pro gam does i s copy the
character set in to RAM, and move the screen

Character Graphics 14 1

memory to give a large amount of memory still free
for use by BASIC. Lines 20005 to 20500 do this,
displaying the character set as it is copied. Lines
10000 to 10150 then display the menu, giving you
the option to change a character or to LOAD or
SA VE a character set. Pressing the function key
F1 stops the program.

The redefining of characters is controlled by the
routine from 200 to 550. When you input the code
of the character you wish to alter, the line 310 calls
the routine at lines 1000 to 1 100 to store the data of
the character in an array. The character is then
displayed on the screen by the routine at 2000.

The modification of the character is performed by
the section of program at 3000. You may move the
cursor around the character grid with the cursor
keys. The HOME key returns the cursor to the top
left corner of the grid. To erase all the data for a
character, use the CLR key.

When you have finished designing the new
character, pressing P will store the new definition
in character memory. Lines 4000 to 4100 perform
this function.

SA VEing a character set onto tape is performed by
the subroutine at 12000. The character sets are
reloaded into the machine by the routine at 1 1000.
The bytes of data are stored on the tape as single
character string variables, as these take less tape
than integer or real variables. When loading from
tape, the 64 reads a CHR$(O) as a null character, so
the test in line 1 1020 is included to correct this.

To use the new characters you create with other
programs , use thi s program to create the
characters, or to LOAD them from tape, then stop
the program and type NEW. The new character set

142 The Commodore 64 Omnibus - Part 1

will remain, and you can LOAD and RUN other
programs.

WARNING

Do not reset the 64 by using RUN/STOP and
RESTORE. The new characters will be lost, but
the screen will not be properly reset, and you will
not be able to see what you are typing.

MULTI COLOUR CHARACTERS

In multi colour character mode, four colours may be
used for each character, instead of the two allowed
in normal character mode . The horizontal
resolution (but not the width) of the characters is
reduced to half that of a normal character - a multi
colour character has four columns of definable
pixels which are twice as wide as normal. Multi
colour character mode is enabled by setting bit 4 of
the VIC control register at location 53270, as
follows:

POKE 5 3 2 7 0 , PEEK (5 3 2 7 0) OR 1 6

and disabled by:

POKE 5 3 2 7 0 , PEEK (5 3 2 7 0) AND 2 3 9

Once multi colour character mode is enabled for the
whole display, each character may be set to multi
colour character mode or to standard mode. If the
foreground colour of the character is between 0 and
7 , the character appears as normal . If the
foreground colour is 8 - 15 , the character is
displayed in multi colour mode.

A multi colour character is defined in a similar way
to a normal character by e ight bytes of the
character memory, which represent a grid of eight
rows. In multi colour character mode, however,

Character Graphics

o

1

2

Memory 3
Location :

Bit:

4

5

6

7

7 6 5 4 3 2

The Multi Colour Character Grid

143

o

each pixel in the character corresponds to two bits
of the memory location defining the row. There are
four possible combinations of two bits - 00, 01 , 10,
and 11 - and each combination specifies a different
colour. If the bit pair of a pixel is set to 00, the
colour used is the screen background colour,
referred to as Background 0, which is defined by
location 53281 . The combination 01 specifies the
colour stored in the Background 1 register at
53282, and 10 gives the colour in Background 2 at
53283. If the bit pair is set to 11 , the pixel is set to
the colour specified by the lower three bits of the
colour memory for the character (the fourth bit sets
multi colour character mode on or off for the
character). The colour memory extends from 55296
to 56295.

A final variant of character graphics, less complex
than multi colour character mode and very much
easier to use, is Extended Background Colour
Mode.

144 The Commodore 64 Omnibus - Part 1

EXTEN D E D BACKGROU N D COLOU R MODE

Extended background colour mode allows you to
use four different background colours for the
characters, instead of j ust one . E xtended
background colour mode is enabled by setting bit 6
of the VIC control register at 53265 , by the
command:

POKE 5 3 26 5 , PEEK (5 3 26 5) OR 6 4

and is disabled by:

POKE 5 3 2 6 5 , PEEK (5 3 26 5) AND 1 9 1

When extended background colour mode is set, you
are restricted to using the first 64 characters of the
character set, as the two highest bits of the
character code in screen memory are used to
control the background colour of the character.
The colours are stored in locations 53281 to 53284.

CHARACTER COLOUR CO LOUR REGISTER CODE

0 - 63 00 53281

64 - 1 27 0 1 53282

1 28 - 1 9 1 1 0 53283

1 92 - 255 1 1 53284

. Try this short routine to see the effect of extended
background colour mode:

5 POKE 5 3 2 6 5 , PEEK (5 3 26 5) OR 6 4

Character Graphics

1 0 FOR C=5 4 2 9 6 TO 5 4 2 9 9
2 0 POKE C , 1 4
30 NEXT C
5 0 POKE 1 0 2 4 , 1
6 0 POKE 1 0 2 5 , 6 5
7 0 POKE 1 0 2 6 , 1 2 9
8 0 POKE 1 0 27 , 1 9 3

145

Lines 10 to 30 of the routine set the foreground
colour of the first four characters of the display.
The first four screen locations are then set to the
character code for A with each of the four
background colours. When you RUN the program
you should see four letter As, each with a different
background colour.

One advantage of extended background colour
mode, which makes it very easy to use, is that you
can produce all four background colours wi thou t
having to POKE numbers onto the screen. Normal
typing will give you the first background colour,
and typing with the SHIFT key engaged gives the
second colour. If you hold down the CTRL key and
press RVS ON, you will find that the third and
fourth background colours become available when
typing wi thou t or wi th the SHIFT key. This makes
extended background colour mode a useful feature
for producing colourful displays with very little
effort.

CHAPTE R 1 3

H I G H RESOLUTI O N G RAPH ICS

This chapter deals with the creation of high
resolution displays using Bit Mapped mode - a
feature not documented in the Users Guide, but
which is one of the most powerful features of the
machine.

As described in Chapter 1 2 , the standard
Commodore 64 screen display, with 25 rows of 40
characters, occupies one thousand bytes of memory.
The data describing the characters which can be
displayed is held in an area of memory known as
character memory , where each ch aracter
description takes up a block of eight bytes. Each
pixel comprising that character is defined by a
single bit in one of these eight bytes.

In Bit Mapped mode, each of these pixels is
individually addressable, allowing you to create
high resolution pictures. The use of bit mapped
mode is very similar to User Defined character
mode in that you can consider the screen to
comprise 1000 tb lank' characters a wai ting
definition.

There are two types of Bit Mapped mode :

STANDARD - giving a resolution of 320 * 200
pixels in two colours

MULTI COLOUR - giving a resolution of 160
* 200 pixels in four colours.

High Resolution Graphics 147

STANDARD BIT MAPPE D MODE

The display mode is governed by the VIC control
register at location 53265. To select Standard bit
mapped mode, we must set bit 5 in this location,
using a statement like this:

POKE 5 3 26 5 , PEEK (5 3 26 5) OR 3 2

Since there are 1000 possible character locations
with 8 bytes needed to define the data for each, we
will need a memory area of 8000 bytes for our bit
mapped mode display. We can allocate this by
changing the VIC IT memory pointer register at
location 53272. A convenient place to start the bit
mapped display is location 8192, (see Appendix 17)
and to do this we can use an instruction like this:

POKE 5 3 2 7 2 , PEEK (5 3 27 2) OR 8

This leaves about 8k free for programs.

CLEARING THE DISPLAY

Before we can create a bit mapped mode display, we
must first clear the memory area set aside for the
display, with a statement like:

FOR Z = 8 1 9 2 TO 1 6 1 9 1 : POKE z , O : NEXT

Let's convert these statements into a program:

10 POKE 5 3 2 7 2 , PEEK (5 3 27 2) OR 8
20 POKE 5 3 2 6 5 , PEEK (5 3 26 5) OR 32
30 FOR Z = 8 1 9 2 TO 1 6 19 2 : POKE Z , O :

NEXT

Notice how the screen fills with random patterns
and colours, before the memory is cleared by line

148 The Commodore 64 Omnibus - Part 1

30. As the memory is cleared, you may see blocks
of colour remaining - these correspond to any data
left on the standard display when you typed RUN
(the program listing for example). This is because
characters in the standard screen memory (from
1024 to 2048) are now being interpreted as colour
data for the bit mapped mode screen. To remove
these the program must clear this area of memory
to a single colour.

COLOUR IN BIT MAPPED MODE

The colour of bit mapped mode displays i s
controlled by data in the 1000 standard screen
memory locations in the following way:

7 I 6 I 5 I 4 3 1 2 1 1 I 0
FOREGRO U N D COLO U R BACKG ROU N D COLO U R

For every byte in standard screen memory, bits 0 to
3 determine the background colour and bits 4 to 7
determine the foreground colour in that 8 by 8 pixel
area of the display. Since four bits can describe
sixteen possibilities, bit mapped mode displays can
be in any of the CBM -64's sixteen possible colours,
with the restriction that only one combination of
colours is possible in each 8 by 8 section of the
screen. As an example, we will calculate the
appropriate code for colour memory to set the
display to a blue background with white pixels.
From the table in Appendix 5, we see that the code
for white is 1, and the code for blue is 6, which . means that since we want a blue background bits 1
and 2 must be set. For a white foreground, bit 4
must be set. The number describing this colour
combination is calculated like this :

High Resolution Graphics

2 f 1 + 2 f 2 + 2 f 4 = 22

To select this colour combination, add the line:

4 0 FOR Z=1 0 2 4 TO 2 0 2 3 : POKE
Z , 2 2 : NEXT

H I G H RESOLUTION DISPLAYS

149

Now that we have selected bit mapped mode, to
create a high resolution display we need to know
how to select individual bits from the 8000 bytes of
display memory, and set those bits corresponding
to the pixels we want to display. To do this we will
first examine how the 8000 byte display memory is
arranged.

BIT MAPPED MODE DISPLAY MEMORY

The Bit Mapped mode display is set out like this:

320 PIXELS HORIZONTALLY

H-t-+-+-+-+++-+-+-i,..--_ 2 H-t-+-+-+-+++-+-+-i--_ . .
H-t-+-+-+-+++-+-+-ir-- " . .
H-t-+-+-+-+++-+-+-ir-- ' . .

o
o

.
P H-t-+-+-+-+++-+-+-if- ' " . ,
I H-t-+-+++++-+-+-if- . .

1-+-+-+-+-+++-+-+-+-11-. .
H-t-+-+++++-+-+-if- . . .
1-+-+-+-+-+++-+-+-+-11- . . .
H-t-+-+++++-+-+-if- . . .
H-+-+++-I-++4-+-1f- . . .

X
E
L
S

V
E
R
T
I
C
A
L
L

����--�------------------� Y

1 50 The Commodore 64 Omnibus - Part 1

The arrangement of the first 16 rows of display
memory for the Bit Mapped mode display looks like
this:

0 8 16 24 312
1 9 17 25 313
2 10 18 26 314
3 3 15
4 316
5 317
6 3 18
7 3 19

320 328 336 344 632
321 329 633
322 634
323 635
324 636
325 637
326 638
327 335 343 351 359 367 375 639

where the numbers represent bytes of memory, and
a vertical group of eight such bytes represents one
character position of the standard 25 line character
mode display. Notice that the memory isn't set out
in an immediately obvious way, so that to be able to
address any bit in this memory requires some
calculation - fortunately something your CBM -64
can do for you!

If we describe the position of a pixel in terms of its
X and Y coordinates, we can calculate for the
appropriate byte:

a) Its row in the display memory:

ROW = INT (Y/8)

High Resolution Graphics 151

b) Its column position within that row:

COL = INT (XIS)
c) Its line position within that row:

LINE = Y AND 7

We can also define the appropriate bit within that
byte:

BIT = 7 -(X AND 7)

We can combine all these calculations in a short
subroutine which will calculate the position of, and
display, any pixel given its X and Y coordinates.

9 9 9 REM DISPLAY PIXEL
1 0 0 0 ROW = INT (Y/8)
1 0 1 0 COL = INT (X/8)
1 0 2 0 LINE = Y AND 7
1 0 3 0 BIT = 7 - (X AND 7)
1 0 4 0 BYTE = 8 1 9 2 + ROW* 3 2 0 + COL* 8

+ LINE
1 0 5 0 POKE BYTE , PEEK (BYTE) OR 2 i BIT

To see this subroutine in action, here is a short
program using what we have learned so far to
simulate a cloudless summer's night!

The Sky at Night

1 0 POKE 5 3 27 2 , PEEK (5 3 27 2) OR 8
2 0 POKE 5 3 26 5 , PEEK (5 3 26 5) OR 3 2
3 0 FOR I = 8 1 9 2 TO 1 6 1 9 2 : POKE

I , O : NEXT
4 0 FOR I = 1 0 2 4 TO 2 0 2 3 : POKE

I , 2 2 : NEXT
5 0 FOR J = 0 TO 2 0 0
6 0 X = INT (RND (1) * 3 2 0)
7 0 Y = INT (RND (1) * 2 0 0)

152 The Commodore 64 Omnibus - Part 1

8 0 GOSUB 1 0 0 0
9 0 NEXT J
1 0 0 GOTO 1 0 0
9 9 9 REM DISPLAY PIXEL

1 0 0 0 ROW = INT (Y/8)
1 0 1 0 COL = INT (X/8)
1 0 2 0 L INE = Y AND 7
1 0 3 0 BIT = 7 - (X AND 7)
1 0 4 0 BYTE = 8 1 9 2 + ROW* 3 2 0 + COL* 8

+ LINE
1 0 5 0 POKE BYTE , PEEK (BYTE) OR 2 t BIT
1060 RETURN

In a more practical vein, we can use the pixel
plotting subroutine to draw lines in bit mapped
mode. For example, by changing lines 50 to 80 and
deleting line 90 in the last program we can draw a
horizontal line across the middle of the screen:

50 Y = 1 0 0
6 0 FOR X = 0 TO 3 1 9
7 0 GOSUB 1 0 0 0
80 NEXT X

Similarly, we can draw a vertical line:

5 0 X = 1 0 0
6 0 FOR Y = 0 TO 1 9 9
7 0 GOSUB 1 0 0 0
8 0 NEXT Y

By adding a STEP to line 60, we can draw dotted
lines - try changing line 60 in the last program to:

6 0 FOR Y = 0 TO 2 1 9 STEP 3

A further modification will allow you to draw
circles and ellipses:

5 0 R = 5 0

High Resolution Graphics 153

6 0 FOR I = 0 TO 2 * n STEP . 0 1
7 0 X=R * S IN (I) +1 6 0
8 0 Y=R * COS (I) +1 0 0
9 0 GOSUB 1 0 0 0
1 0 0 NEXT
1 1 0 GOTO 1 1 0

This program will draw a circle o f radius R (set in
line 50) with its centre at the middle of the screen.

To convert the program to draw an ellipse simply
add a reducing factor to either line 70 or line 80:

7 0 X = 0 . 7 5 * R * S IN (I) +1 6 0

The following modifications wi l l cause the
computer to draw a spiral in the centre of the
screen:

5 0 R = 5 0
6 0 FOR J = 0 TO 5 0 0
7 0 R = R - 0 . 1
80 X = 160 + R* S IN (J/ 3 2 * n)
9 0 Y = 1 0 0 + R *COS (J/ 3 2 * n)
1 0 0 GOSUB 1 0 0 0
1 1 0 NEXT J
1 2 0 GOTO 1 2 0

You will notice that these programs do not run very
quickly, because the CBM-64 is not equipped with
BASIC commands to control its high resolution
displays. To speed up the process would require the
use of machine code.

As mentioned above, we are not restricted to one
foreground and one background colour over the
entire screen, only in each 8 by 8 pixel block. To
demonstrate this, here is a program which will
draw different coloured lines across the screen:

1 0 POKE 5 3 27 2 , PEEK (5 3 27 2) OR 8

154 The Commodore 64 Omnibus - Part 1

2 0 POKE 5 3 26 5 , PEEK (5 3 26 5) OR 3 2
3 0 FOR I = 8 1 9 2 TO 1 6 1 9 1
3 5 POKE I , O : NEXT I
4 0 FOR I = 1 0 2 4 TO 2 0 2 3
5 0 POKE I , 1 3+X
6 0 IF I / 4 0=INT (I /4 0) THEN X = X+16
70 IF X=2 5 6 THEN X=O
80 NEXT I
1 0 0 FOR Y=4 TO 1 2 4 STEP 8
1 1 0 FOR X=O TO 3 9
1 2 0 BYTE = 8 1 9 2+INT (Y/8) * 3 20 +X* 8
1 3 0 POKE BYTE , 2 5 5
1 4 0 NEXT X , Y
1 5 0 GOTO 1 5 0

Lines 40 to 80 set the foreground colour to light
green in the normal way but the background colour
is changed every 40 bytes (Le. every screen line) by
adding 16 to the variable X. Adding 16 has the
effect of incrementing the most significant 4 bits of
that byte, thereby increasing the value of the
foreground colour code by one. Consequently, each
line is drawn in a different colour.

Another point to notice about this program is that
the lines are drawn much more quickly than in
previous examples. This is because instead of
calculating the position of every bit and setting it
to 1 , each byte is set to 255 (thus setting each bit to
1) since we are only drawing straight lines. This
trick makes the drawing of horizontal lines in high
resolution mode tolerably fast, but of course is no
use in drawing any other type ofline.

Here is a short program which allows you to draw
on the standard bit mapped mode screen.

The Fl function key toggles between draw and
erase modes (indicated by the border colour
changing from green to red); the cursor keys move

High Resolution Graphics 155

the cursor around the screen. Because of the speed
limitations mentioned above, the program is slow
to use and further reinforces the point that without
machine code, high resolution graphics aren't very
fast on the 64!

1 0 0 POKE 5 3 27 2 , PEEK (5 3 27 2) OR 8
110 POKE 5 3 26 5 , PEEK (5 3 26 5) OR 3 2
1 2 0 FOR I = 8 1 9 2 TO 1 6 1 9 1
1 3 0 POKE I , O : NEXT I
1 4 0 FOR I = 1 0 2 4 TO 2 0 2 3
1 5 0 POKE I , 2 2 : NEXT
4 9 3 REM
4 9 4 REM * * * * * * * * * * * * * * * * *
4 9 5 REM * *
4 9 6 REM * GET KEY PRESS *
497 REM * *
498 REM * * * * * * * * * * * * * * * * *
499 REM
5 0 0 CC = PEEK (BY)
50 5 GET K$: IF K$= " " THEN POKE BY ,

PEEK (BY) OR 2 t BI : POKE BY , PEEK
(BY) AND 2 5 5-2 t BI : GOTO 5 0 5

5 1 0 I F K$= " { CU} " AND Y>O THEN Y=Y
l : GOSUB 1 0 0 0

5 2 0 I F K$= " { CD} " AND Y<199 THEN
Y=Y�l : GOSUB 1 0 0 0

5 3 0 I F K$= " { CR} " AND X<319 THEN
X=X+1 : GOSUB 1 0 0 0

5 4 0 IF K$= " { CL } " AND X>O THEN X=X-
1 : GOSUB 1 0 0 0

5 5 0 I F K$= " { F1 } " THEN MO= l-MO : POKE
53280 , 2- (MO=1) * 3) : GOTO 5 0 5

5 6 0 GOTO 5 0 0
9 9 3 REM
9 9 4 REM * * * * * * * * * * * * * *
9 9 5 REM * *
996 REM * PLOT PIXEL *
997 REM * *
9 9 8 REM * * * * * * * * * * * * * *
999 REM

156 The Commodore 64 Omnibus - Part 1

1 0 0 0 POKE BY , CC : CH = INT (X/8)
1 0 1 0 RO = INT (Y/8)
1 0 2 0 LN = Y AND 7
1 0 3 0 BY = 8 1 9 2 + RO* 3 2 0 + 8 *CH + LN
1 0 4 0 BI = 7 - (X AND 7)
1 0 5 0 I F MO=O THEN POKE BY , PEEK (BY)

OR 2 t BI
1 0 6 0 IF MO=1 THEN POKE BY , PEEK (BY)

AND 2 5 5- 2 t BI
1 0 7 0 RETURN

Whilst standard bit mapped mode allows very high
resolution graphics , i t doesn't a l low much
flexibility in terms of colour - each pixel in every 8
by 8 block must be in the same colour. The 64
offers a way round this with multi colour bit
mapped mode.

Here again there is a parallel with multi colour
characters in that up to four colours are allowed in
each 8 by 8 block, and adjacent pixels may be
different colours. The drawback is that horizontal
resolution is halved, with the display width being
reduced to 160 pixels - each pixel occupies twice
the normal width, however, so the width of the
whole display does not change.

M U LTI COLOUR BIT MAPPED GRAPH ICS

To allow the display of up to four foreground
colours the VIC II chip treats the data in the 8000
byte display memory in a slightly different way.

Colours in multi colour bit mapped mode are
selected from either:

a) Background register 0 (53281) .

High Resolution Graphics 157

b) The most significant nybble of sc�een
memory (a nybble is four bits - half a
byte).

c) The least significant nybble of screen
memory.

d) The least significant nybble of colour
memory.

Creating a display in multi colour bit mapped mode
requires a lot of planning, since each of the 1000
screen character locations can contain up to 4
independent colours. It is best to draw your design
on graph paper first, decide on which areas will be
the same colour, and calculate the bit patterns for
the appropriate pixels according to this table. The
final step would be to calculate data from the
groups of 4 bit pairs, and use a program to POKE
this data into the appropriate byte of bit mapped
mode screen memory to recreate your picture.

BIT PATTE RN SOU RCE OF COLO U R DATA

00 BACKROU N D REG ISTER 0

0 1 HIGH NYBBLE O F SCREE N
MEMORY

1 0 LOW NYBBLE OF SCRE EN M E MORY

1 1 LOW NYBBLE OF COLO U R
MEMORY

The technique is much the same as for multi colour
characters, and for multi colour sprites, as we shall
see in the next chapter.

CHAPTER 1 4

SPRITES

Sprites, or Moveable Object Blocks as they are
sometimes known, are a special breed of user
defined characters - that is they operate on similar
principles, but are endowed with a few extra
facilities which make them a flexible and simple
way of creating moving high resolution displays.
The CBM-64 allows you to use up to 8 sprites at a
time, each of which can be in any one of l6 colours.

One of the reasons sprites are so useful is that you
can move them around the screen very easily,
simply by giving them an X and Y coordinate based
on the 320 by 200 pixel bit mapped display and the
VIC IT chip does all the rest. This makes moving
graphics in BASIC very easy to create.

The Sprite Grid

Sprites 159

Like a user defined character, the shape of a sprite
is defined by a block of memory locations, each bit
of which determines the state (on or om of a pixel.
However, sprites are rather larger than user
defined characters comprising 24 horizontal pixels
by 21 vertical, like the one shown on the previous
page.

Let's start by creating a sprite and see what we can
do with it. The sprite is designed by filling in the
squares on the grid which correspond to the pixels
of the sprite we want to be illuminated.

To convert the familiar character above into data
describing the sprite we use exactly the same
technique as for user defined characters.

160 The Commodore 64 Omnibus - Part 1

The difference is that instead of having 64 pixels
described in eight bytes, we have 24 * 21 = 504
pixels. This means we will need 63 bytes to store
the data describing our sprite. The bytes are
arranged to read from left to right, so byte 0
contains the data for the top left hand 8 pixels, byte
1 the next 8 on that row, and so on:

BYTE 0 BYTE 1 BYTE 2

BYTE 3 BYTE 4 BYTE 5

BYTE 60 BYTE 61 BYTE 62

Rather than go through the process of converting
the picture into DATA statements, which is exactly
the same as that given for user-defined characters,
here is the data for our sprite:

o
o
1
3
7
15
3 1
3 1
63
63
63
63
63
254
255
255
255
255

o
126
255
247
227
247
255
255
254
252
248
248
252
o
o
128
192
224

o
o
128
192
224
192
128
o
o
o
o
o
o
31
31
15
7
3

255
255
126

192
128
o

Sprites

1
o
o

161

Having defined the sprite in terms of 63 bytes of
data, we need to store the data somewhere and tell
the VIC II chip where to find it.

STORING SPRITE DATA

When allocating space for sprite data, we must
bear in mind that the VIC II chip can only access
one bank of 16k bytes at a time, and that the data
must be kept in an area which is protected from
BASIC.

One convenient place is the cassette input buffer,
which is an area of memory set aside for temporary
storage of data on its way to and from the cassette
unit. The cassette buffer is located between address
828 and 1019 giving us 191 bytes of <safe' memory.
In fact there is a little more since the eight bytes
before the tape buffer and the four after it are
unused - 203 bytes in all.

To indicate to the VIC II chip the whereabouts of
the sprite data, 8 bytes of memory have been set
aside to serve as pointers to the beginning of the
data. This area of memory is the eight bytes
immediately after the screen memory; in normal
circumstances this means locations 2040 to 2047.
Each of these locations contains a <pointer' to the
start of a 64 byte block of memory containing sprite
data. The pointer for Sprite 0 is at 2040, for Sprite
1 at 2041 and so on.

To indicate a block of memory in the cassette
buffer, starting at location 832 the pointer would
contain the value 832 (13*64) . All that now
remains is for us to POKE the data into the
appropriate locations, set the pointer for Sprite 0 to

1 62 The Commodore 64 Omnibus - Part 1

point to it, and tell the VIC n chip to display the
sprite.

The VIC n chip provides control over which sprites
are visible by means of the SPRITE EN ABLE
REGISTER at location 53269. Each bit in this
register controls one sprite - if it is set to 1 , the
sprite is visible; a 0 means it is invisible. So, a
given sprite may be made visible with a BASIC
statement :

POKE 5 3 26 9 , PEEK (5 3 2 6 9) OR 2 t N

where N is the sprite number (0 to 7).

Turn ing a sprite off i nvolves se tting the
appropriate bit to 0, like this:

POKE 5 3 26 9 , PEEK (5 3 26 9) AND 2 5 5 - 2 tN

Before we discuss sprites in greater detail, let's put
what we have learned so far into program form:

1 0 REM CREATE SPRITE
2 0 FOR Z=OT06 3 : REM READ SPRITE

DATA
3 0 READ D
4 0 POKE 8 3 2+Z , D : REM CASS o BUFFER
5 0 NEXT Z
6 0 POKE 2 0 4 0 , 1 3 : REM POINT TO DATA
7 0 POKE 5 3 2 69 , 1 : REM SPRITE 0 ON
80 END
9 9 9 REM DATA FOR SPRITE 0
1 0 0 0 DATA 0 , 0 , 0 , 0 , 1 2 6 , 0 , 1 , 2 5 5
1 0 1 0 DATA 1 28 , 3 , 2 4 7 , 19 2 , 7 , 2 2 7
1 0 2 0 DATA 2 2 4 , 1 5 , 2 4 7 , 19 2 , 3 1
1 0 3 0 DATA 2 5 5 , 1 2 8 , 3 1 , 2 55 , 0 , 6 3
1 0 4 0 DATA 2 54 , 0 , 6 3 , 2 5 2 , 0 , 6 3
1050 DATA 2 48 , 0 , 6 3 , 2 4 8 , 0 , 6 3 , 2 5 2
1 0 6 0 DATA 0 , 6 3 , 2 5 4 , 0 , 31 , 2 5 5 , 0
1 0 7 0 DATA 3 1 , 2 5 5 , 1 2 8 , 1 5 , 2 5 5 , 19 2

Sprites

1 0 8 0 DATA 7 , 2 5 5 , 2 2 4 , 3 , 2 5 5 , 19 2
1 0 9 0 DATA 1 , 2 5 5 , 1 28 , 0 , 1 2 6 , 0 , 0

163

If you RUN the program., you will not be able to see
the sprite. This is because we have not indicated to
the VIC II chip where we want the sprite to be
displayed. To do this, type in the following
commands in immediate mode:

POKE 5 3 2 48 , 1 6 0 : POKE 5 3 2 4 9 , 11 0

- the sprite becomes visible! The two locations we
POKEd were the SPRITE POSITION REGISTERS
for Sprite O. The numbers we used told the VIC II
chip to display the sprite at a position 160 pixels
from the left of the display, and 1 10 pixels from the
top. Try PO KEing the position registers with
other numbers and notice how the sprite moves
almost instantaneously.

If you use very small or very large numbers for the
Y position register (53249), you will notice that not
all of the sprite is visible. This is because there are
only 220 possil?le locations in the vertical direction
on the screen, and the Y position register can
contain numbers between 0 and 255. This means
that a value of less than 30 in the Y position
register will display the sprite above the top of the
screen, and a value greater than 249 will put it out
of sight beyond the bottom.

You may also come across another problem - how
to get the sprite over to the extreme right hand
edge of the screen. The position registers can only
hold numbers up to 255, and the screen is 320
pixels wide. This problem is solved by the use of a
further register at location 53264, known as the X
MSB REGISTER. Each bit in this register
corresponds to one sprite - if it is set, that sprites X
Position Register value is added to 255 to calculate

164 The Commodore 64 Omnibus - Part 1

its position on the screen. Try this in immediate
mode by setting the X position register to 30 :

POKE 5 3 2 48 , 3 0

and setting the X msb register for Sprite 0:

POKE 5 3 2 6 4 , 1

-the sprite jumps from one side of the screen to the
other.

SPRITE COLOU RS.

Each sprite can be displayed in any of 16 possible
colours and the colour is controlled by yet another
register. For Sprite 0, the SPRITE COLOUR
REGISTER is at location 53287. Try POKEing
this location with a few values (0-15) and watch
the colours change. Notice that the screen
background shows through those parts of the sprite
where no pixels are defined.

The following program will display all 8 sprites in
different colours and move them around the screen.
Notice that all sprites are the same design because
every sprite data pointer is set to point at the same
data by lines 70 and 80.

A FLOCK OF SPRITES

10 PRINT /I { CLS } /I
2 0 R = 5 3 2 4 8 : X = 1 0 0 : Y = 1 0 0
3 0 FOR I = O TO 6 3
4 0 READ D
50 POKE 8 3 2 + I , D
60 NEXT I
7 0 FOR I = 2 0 4 0 TO 2 0 4 7
8 0 POKE I , 1 3 : NEXT I
90 POKE 5 3 26 9 , 2 5 5
1 0 0 FOR N=O TO 1 5 STEP 2

Sprites

1 1 0 X=X+ (RND (1) * 2 0) - (RND (1) * 2 0)
1 2 0 Y=Y+ (RND (1) * 2 0) - (RND (1) * 2 0)
1 3 0 I F X> 2 5 5 OR X<O THEN X=1 0 0
1 4 0 IF Y>2 4 9 OR Y<3 0 THEN Y=10 0
1 5 0 POKE 5 3 2 48+N , X
160 POKE 5 3 2 49 +N , Y
17 0 NEXT N
180 GOTO 1 0 0

165

1 0 0 0 DATA 0 , 0 , 0 , 0 , 1 26 , 0 , 1 , 2 5 5 , 1 2 8
1 0 1 0 DATA 3 , 2 47 , 19 2 , 7 , 2 27 , 2 2 4 , 1 5
1 0 2 0 DATA 2 47 , 19 2 , 3 1 , 2 5 5 , 1 28 , 3 1
1 0 3 0 DATA 2 5 5 , 0 , 6 3 , 2 5 4 , 0 , 6 3 , 2 5 2 , 0
1 0 4 0 DATA 6 3 , 2 4 8 , 0 , 6 3 , 2 4 8 , 0 , 6 3 , 2 5 2
1 0 5 0 DATA 0 , 6 3 , 2 5 4 , 0 , 3 1 , 2 5 5 , 0 , 3 1
1 0 6 0 DATA 2 5 5 , 1 28 , 15 , 2 55 , 19 2 , 7 , 2 5 5
1 0 7 0 DATA 2 2 4 , 3 , 2 5 5 , 19 2 , 1 , 2 5 5
1 0 8 0 DATA 1 2 8 , 0 , 1 26 , 0 , 0

SPRITE PRIORITI E S

You will notice that when two sprites collide they
cross over each other, the lowest numbered sprite
appearing to cross IN FRONT of the other. This
sprite to sprite display priority is pre-determined,
the lowest numbered sprite will always cross on top
of the other.

It is possible to control the sprite to background
priority, so that sprites can be made to appear to
cross in front of or behind other screen data, by
using the SPRITE TO BACKGROUND REGISTER
at 53275. If the bit associated with a sprite in this
register is a 1 , then it will cross 'behind' any
background data; if it is 0 then the sprite has a
higher priority than the background data and will
pass in front of it . The following program
demonstrates this:

5 PRINT " { CLS } "
10 FOR I=O TO 6 3
2 0 READ D

1 66 The Commodore 64 Omnibus - Part 1

3 0 POKE 8 3 2+ I , D : NEXTI
40 POKE 2 0 4 0 , 1 3 : POKE 2 0 4 1 , 1 4
5 0 POKE 5 3 287 , 0 : POKE 5 3 288 , 1
60 POKE 5 3 2 48 , 0 : POKE 5 3 2 4 9 , 1 4 0
7 0 POKE 5 3 2 5 0 , 9 0 : POKE 5 3 2 5 1 , 1 4 0
7 5 POKE 5 3 2 6 4 , 2
80 POKE 5 3 2 6 9 , 3

1 0 0 W$= " { RED} { RVS } { ROF}
{ PUR } { RVS } { ROF}
{GRN } { ROF} { RVS }
{ YEL } { ROF} { RVS } "

1 1 0 PRINT " { HOM} { CD } { CD } { CD } { CD } "
1 2 0 FOR I = O TO 1 1 : PRINT W$: NEXT
2 0 0 FOR C=l TO 3 4 5
2 1 0 XO=PEEK (5 3 2 4 8)
2 2 0 X1=PEEK (5 3 2 5 0)
2 3 0 IF XO= 2 5 5 THEN XO=O : POKE

5 3 26 4 , 1
240 IF X1=0 THEN X1= 2 5 5 : POKE

5 3 2 6 4 , 0
2 5 0 XO=XO +1
260 X1=X1-1
270 POKE 5 3 2 4 8 , XO
280 POKE 5 3 2 5 0 , X1
290 IF XO/8 0=INT (XO/80) THEN POKE

5 3 2 7 5 , 1 -PEEK (5 3 2 7 5)
3 0 0 NEXT C

1 0 0 0 DATA 2 4 , 2 4 , 2 4 , 2 4 , 6 0 , 2 4 , 2 4 , 1 2 6
1 0 1 0 DATA 2 4 , 1 2 , 2 5 5 , 48 , 1 5 , 2 5 5 , 2 4 0 , 3
1 0 2 0 DATA 2 5 5 , 1 9 2 , 7 , 2 5 5 , 2 2 4 , 1 5 , 2 5 5
1 0 3 0 DATA 2 4 0 , 2 4 , 1 2 6 , 2 4 , 48 , 1 2 6 , 1 2 , 9 6
1 0 4 0 DATA 1 2 6 , 6 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5
1 0 5 0 DATA 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,

2 5 5
1 0 6 0 ' DATA 1 27 , 2 5 5 , 2 5 4 , 56 , 6 0 , 28 , 28 ,

2 4
1 0 7 0 DATA 56 , 1 4 , 0 , 1 1 2 , 28 , 0 , 56 , 56 , 0 ,

2 8 , 0

Sprites 167

Notice how the black sprite is made to move (in and
out' of the coloured bars, whilst the white one
always has higher priority than the data and
therefore passes in front of all the coloured bars.

EXPANDING SPRITES

There are two further registers associated with
sprites which allow you to expand them in the X
and Y directions. Each bit in these two registers
controls the size of one sprite in each direction - a 0
means the sprite is normal size in that direction; a
1 means it is twice the size. To expand a sprite, use
the following statement:

X direction: POKE 5 3 2 7 7 , PEEK (5 3 2 7 7) OR 2 tN
Y direction: POKE 5 3 27 1 , PEEK (5 3 27 1 } OR 2 tN

where N is the number of the sprite.

To revert to normal size :

X direction: POKE 5 3 2 7 7 , PEEK (5 3 277 } AND
2 5 5 - 2 t N

Y direction: POKE 5 3 2 7 1 , PEEK (5 3 2 7 1 } AND
2 5 5- 2 t N

Try these commands i n immediate mode to see
their effect.

COLLISION D ETECTION

Another useful feature of sprites is that you can
determine when one sprite comes into contact with
another sprite or with other data on the screen.

When a collision between sprites is detected, the
bits appropriate to those sprites in the SPRITE TO
SPRITE COLLISION REGISTER at location 53278

168 The Commodore 64 Omnibus - Part 1

are set to 1 , and will remain so until that register is
examined with a PEEK command.

Collisions between sprites and screen data are
indicated in the SPRITE TO DATA COLLISION
REGISTER at location 53279 . A collision is
deemed to have occured when any non-zerofart of
a sprite overlaps another non zero-part 0 data.
The following short game shows this happen.

You are in control of a toboggan hurtling down the
Cresta Run. You move left and right using the two
cursor keys, trying to avoid the obstacles strewn
along the course whilst keeping on the track:

CRESTA RUN

2 0 GOSUB 5 0 0
1 0 0 GET K$: IF K$ = " " THEN 1 6 0
1 1 0 I F K$ = " { CD} " THEN X=X-5
1 2 0 I F K$ = " { CR } " THEN X=X+5
1 3 0 I F X>2 5 0 THEN X=O : POKE 5 3 2 6 4 , 1

: GOTO 1 50
1 4 0 I F X=O THEN X=2 5 5 : POKE 5 3 2 6 4 , 0
1 5 0 POKE 5 3 2 48 , X
1 6 0 OB= INT (RND (0) * 4 * DF)
1 7 0 OP= INT (RND (O) *WD)
180 I F OB=l THEN O$= " { BLK } t {WHT } "

: GOTO 1 9 0
1 8 5 0$= " "
1 9 0 PRINT TAB (1 0 + I) " e " SPC (OP) 0$

SPC (WD-OP) " e"
2 0 0 S=S+l : T=T+l
2 1 0 I F PEEK (5 3 2 7 9) =1 THEN POKE

5 3 287 , 1 1 : H=H+ l : GOT0230
220 POKE 5 3 287 , 7
2 3 0 I F S<SS THEN 2 8 0
2 4 0 I F DI=O THEN 2 7 0
2 5 0 I = I - l : IF I = O THEN DI=l-DI
2 6 0 GOTO 2 8 0
2 7 0 I = I + l : IF I =BB THEN S=O : DI=l-DI

Sprites 169

280 I F S=O THEN SS=INT (RND (O) *DF*
1 5)

2 9 0 IF T=3 0 0 THEN 3 1 0
3 0 0 GOTO 1 0 0
3 1 0 PRINT " { CL S } GAME OVER"
3 2 0 PRINT : PRINT" YOUR SCORE WAS

" INT « T-H) /T* 1 0 0) " % "
3 3 0 PRINT : PR INT "ANOTHER GO (YIN) ? "
3 4 0 GET A$: IF A$= " " THEN 3 4 0
3 5 0 I F A$= " Y " THEN RUN
3 6 0 END
5 0 0 PRINT " { CLS) { WHT } "
5 1 0 INPUT " DIFFICULTY (l=EASY TO

5=HARD) " i DF
5 2 0 IF DF<l OR DF>5 THEN 5 0 0
5 3 0 DF=6-DF
5 4 0 WD=1 0 : SS=50 : BB=1 0
5 5 0 FOR J=O TO 6 3 : READ D
560 POKE 8 3 2 +J , D : NEXT J
57 0 POKE 2 0 4 0 , 1 3
580 X=1 4 0 : POKE 5 3 2 4 8 , X
59 0 POKE 5 3 2 4 9 , 1 0 0
6 0 0 POKE 5 3 287 , 7
6 1 0 POKE 5 3 2 6 9 , 1
6 2 0 RETURN
1 0 0 0 DATA 0 , 19 3 , 1 28 , 0 , 19 3 , 1 2 8
1 0 1 0 DATA 0 , 1 9 3 , 1 2 8 , 0 , 2 5 5 , 1 2 8
1 0 2 0 DATA 0 , 2 5 5 , 1 2 8 , 0 , 2 5 5 , 128
1 0 3 0 DATA 0 , 1 3 6 , 1 2 8 , 0 , 1 56 , 128
1040 DATA 0 , 1 5 6 , 1 28 , 0 , 1 3 6 , 1 28
1 0 5 0 DATA 0 , 2 5 5 , 1 28 , 0 , 2 5 5 , 1 2 8
1 0 6 0 DATA 0 , 1 56 , 1 2 8 , 0 , 1 56 , 1 2 8
1 0 7 0 DATA 0 , 1 5 6 , 1 2 8 , 0 , 1 56 , 1 2 8
1 0 8 0 DATA 0 , 1 5 6 , 1 28 , 0 , 2 2 1 , 1 28
1 0 9 0 DATA 0 , 1 2 7 , 0 , 0 , 6 2 , 0
1 1 0 0 DATA 0 , 2 8 , 0 , 0

Notice how the colour of the toboggan changes
whenever it 'hits' the walls of the track or an
obstacle . The collision is detected in line 210 which

1 70 The Commodore 64 Omnibus - Part 1

increments the counter H (the number of collisions)
and changes the colour of Spri te 0 (the toboggan) to
grey. The Sprite to Data collision register is
checked each time the track is moved, and the
toboggan remains grey for as long as it is in contact
with the obstacle. The other thing to notice about
the program is that the toboggan can only move
horizontally - it is the track which moves. The
program relies on the screen scrolling to give the
illusion of movement, since this is performed by the
operating system much more quickly then we could
with a BASIC program.

M U LTI COLOUR SPRITES

In the same way that we can have multi colour
characters, we can choose any sprite to be in multi
colour mode, with the same trade off of resolution
for colour as with multi colour characters. That is
Multi Colour Sprites can be in up to four different
colours, but horizontal resolution is halved, so
multi colour sprites are 12 * 21 pixels in size.

In multi colour mode, sprite data is interpreted
differently in that a pair of bits is required to
specify a pixel - each coloured tpixel' in fact
consists of two pixels side by side, each pair being
called a Bit Pair. The Bit Pair can be selectively
coloured using one of the four combinations of 0
and 1 , as shown in the table on the next page.

To select multi colour mode for a sprite , the
appropriate bit in the SPRITE MULTI COLOUR
REGISTER must be set to 1 , using a command such
as:

POKE 5 3 2 7 6 , PEEK (5 3 2 7 6) OR 2 tN

Sprites 1 71

BIT PAI R COLO U R

00 Screen Col our

0 1 Mu lti Colour Regi ster 0

1 0 Sprite Colour Register

1 1 Mu lti Colour Register 1

N is the number of the sprite to be changed to multi
colour mode. To return the sprite to standard mode
this bit must be set to 0:

POKE 5 3 2 7 6 , PEEK (5 3 2 7 6) AND 2 5 5-2 tN

Multi colour sprites behave in exactly the same
way as standard sprites - the only difference is in
the way they are defined. Let's take an example to
make this clear.

Multicolour Sprite Grid

1 72 The Commodore 64 Omnibus - Part 1

CREATING A MULTI COLOUR SPRITE

We can use the same 24 by 21 grid we used earlier
to plan the design, but remember that each pixel is
now defined by two squares of the grid. Opposite is
a design for a face which we will turn into a multi
colour sprite. Notice that the pixels are twice the
size of those in our earlier designs and that there
are four different types of shading corresponding to
the four different colours available for multi colour
sprites. We can allocate each of these colours to a
particular register:

BACKGROUND SCREEN COLOUR 00

FACE SPRITE COLOUR 10

EYES REGISTER 0 01

LIPS REGISTER 1 1 1

The numbers in the right hand column are the bit
pairs which specify the register from which the
colour of a given pixel is drawn. This means that
all pixels containing the bit pair 1 1 will be
displayed in the colour currently held in Multi
Colour register 1, whilst all those set to 00 will be
in the current screen colour.

We can now fill each area of the design with the bit
pairs appropriate to their colour.

This information is converted into 63 bytes of data
in the usual way. In order to see the difference
between multi colour mode sprites and the
standard variety here is a short program which
displays the multicoloured face:

5 PRINT " { CLS } " : POKE 5 3 2 8 1 , 0
1 0 FOR 1 = 0 TO 6 3 : READ D
20 POKE 8 3 2 + I , D : NEXT

Sprites 1 73

EJ Screen Col o u r : B l ue

EJ M u lt ico lour Sprite Colo u r 0 : Wh ite

� Normal Spr ite Co lour : Green

[22J M u lt ico lo u r Sprite Co lour 1 : Red

M u lt ico lour Sprite

30 FOR I = 2 0 4 0 TO 2 0 47
40 POKE I , 1 3 : NEXT
50 POKE 5 3 2 7 6 , 2 5 5
6 0 FOR I=O TO 1 5

1 74

70
80
9 0
1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 0 0 0
1 0 1 0
1 0 2 0
1 0 3 0
1 0 4 0
1 0 5 0
1 0 6 0
1 0 7 0
1 0 8 0
1 0 9 0
1 1 0 0
1 1 1 0

The Commodore 64 Omnibus - Part 1

POKE 5 3 2 48+I , 5 0+ (1 0 * I)
NEXT I
FOR I = O TO 7
POKE 5 3 2 8 7 + I , 5+I
NEXT I
POKE 5 3 2 8 5 , 1
POKE 5 3 286 , 2
POKE 5 3 2 6 9 , 2 5 5
DATA 8 , 1 3 6 , 13 6 , 4 2 , 17 0
DATA 1 68 , 4 2 , 17 0 , 16 8 , 37
DATA 1 7 0 , 88 , 1 48 , 1 0 5 , 2 2
DATA 1 6 5 , 17 0 , 9 0 , 17 0 , 17 0
DATA 17 0 , 1 7 0 , 17 0 , 17 0 , 4 2
DATA 4 0 , 168 , 4 2 , 4 0 , 16 8
DATA 1 7 0 , 17 0 , 17 0 , 17 5 , 2 5 5
DATA 2 5 0 , 18 1 , 8 5 , 9 4 , 181
DATA 8 5 , 9 4 , 17 3 , 8 5 , 1 2 2 , 4 3
DATA 8 5 , 2 3 2 , 4 2 , 2 5 5 , 16 8
DATA 1 0 , 17 0 , 16 0 , 2 , 17 0
DATA 1 28 , 0 , 17 0 , 0 , 0 , 4 0 , 0 , 0

Finally, a word about animation.

A N I MATION

Because of the way in which the VIC II chip is
directed to the start of a block of sprite data, simple
animation is just a matter of setting up several
blocks of data corresponding to the various stages
of movement, then changing the value of the sprite
pointer to point to each block in turn. The change
in the appearance is instantaneous, and so the
il lusion of movement is easily created . For
instance, our first character would look much more
convincing if 4is mouth opened and closed as he
moved, and his mouth always faced his direction of
motion. Here is a program which does just that and
moves the sprite around the screen:

10 PRINT " { CL S } "
20 POKE 5 3 2 8 1 , 1 5

Sprites

3 0 FORI=OT019 1 : READ D : POKE 8 3 2 + I
, D : NEXT

4 0 POKE 2 0 4 0 , 1 3 : POKE 5 3 269 , 1
5 0 C=0 : POKE5 3 2 8 7 , C
1 0 0 FOR Y= 5 0 TO 2 0 0 STEP 5 0
1 1 0 POKE 5 3 2 4 9 , Y
1 3 0 GOSUB 5 0 0
1 3 5 IF Y = 5 0 THEN POKE 5 3 2 7 7 , 1

1 75

1 4 0 IF Y=1 0 0 THENPOKE 5 3 2 7 7 , 0 : POKE
5 3 2 7 1 , 1

1 4 5 IF Y=1 5 0 THEN POKE 5 3 2 7 7 , 1
1 5 0 D=l-D
155 C=C+ 2
1 6 0 POKE 5 3 287 , C
1 6 5 NEXT Y
1 7 0 POKE 5 3 26 9 , 0
180 POKE 5 3 2 7 1 , 0 : POKE 5 3 27 7 , 0 : END
5 0 0 IF D=l THEN 6 0 0
5 1 0 POKE 2 0 4 0 , 1 3- « MODE=1) * 2)
5 2 0 POKE 5 3 2 48 , X
5 3 0 IF X=9 0 AND PEEK (5 3 2 6 4) =1 THEN

7 0 0
5 4 0 X = X+5
5 5 0 IF X= 2 5 5 THEN X=O : POKE

5 3 2 6 4 , 1 : POKE 3 2 48 , X
560 IF X/1 5 = INT (X/1 5) THEN MODE =

I-MODE
5 7 0 GO TO 510
6 0 0 POKE 2 0 4 0 , 1 4- « MODE=1) * 1)
6 1 0 X = X- 5
6 2 0 POKE 5 3 2 4 8 , X
6 3 0 IF X=O AND PEEK (5 3 2 6 4) =0 THEN

7 0 0
6 4 0 I F X=O THEN X=2 5 5 : POKE 5 3 2 6 4 , 0

: POKE 5 3 2 4 8 , X
6 5 0 IF X/15=INT (X/1 5) THEN MODE = 1-

MODE
660 GOTO 600
7 0 0 RETURN
997 REM
9 9 8 REM RIGHT FACING SPRITE

1 76 The Commodore 64 Omnibus - Part 1

999 REM
1 0 0 0 DATA 0 , 0 , 0 , 0 , 1 2 6 , 0 , 1 , 2 5 5
1 0 1 0 DATA 1 28 , 3 , 2 47 , 19 2 , 7 , 2 2 7
1 0 2 0 DATA 2 2 4 , 1 5 , 2 47 , 19 2 , 31
1 0 3 0 DATA 2 5 5 , 1 28 , 3 1 , 2 55 , 0 , 6 3
1 0 4 0 DATA 2 5 4 , 0 , 6 3 , 2 5 2 , 0 , 6 3
1 0 5 0 DATA 2 48 , 0 , 6 3 , 2 48 , 0 , 6 3
1 0 6 0 DATA 2 5 2 , 0 , 6 3 , 2 5 4 , 0 , 3 1
1 0 7 0 DATA 2 5 5 , 0 , 3 1 , 2 5 5 , 1 28 , 1 5
1 0 8 0 DATA 2 5 5 , 19 2 , 7 , 2 5 5 , 2 2 4 , 3
1 0 9 0 DATA 2 5 5 , 19 2 , 1 , 2 5 5 , 1 28
1 0 9 5 DATA 0 , 1 26 , 0 , 0
1 0 9 7 REM
1 0 9 8 REM LEFT FAC ING SPRITE
1 0 9 9 REM
2 0 0 0 DATA 0 , 0 , 0 , 0 , 1 2 6 , 0 , 1 , 2 5 5
2 0 1 0 DATA 1 28 , 3 , 2 4 7 , 1 9 2 , 7 , 2 2 7
2 0 2 0 DATA 2 2 4 , 3 , 2 4 7 , 2 4 0 , 1 , 2 5 5
2 0 3 0 DATA 2 4 8 , 0 , 2 5 5 , 2 4 8 , 0 , 1 27
2 0 4 0 DATA 2 5 2 , 0 , 6 3 , 2 5 2 , 0 , 3 1
2 0 5 0 DATA 2 5 2 , 0 , 3 1 , 2 5 2 , 0 , 6 3 , 2 5 2
2 0 6 0 DATA 0 , 1 27 , 2 5 2 , 0 , 2 5 5 , 2 4 8
2 0 7 0 DATA 1 , 2 5 5 , 2 48 , 3 , 2 5 5 , 2 4 0
2080 DATA 7 , 2 55 , 2 2 4 , 3 , 2 5 5 , 1 9 2
2 0 9 0 DATA 1 , 2 55 , 1 2 8 , 0 , 1 26 , 0 , 0
2 0 9 7 REM
2 0 9 8 REM CLOSED MOUTH
2099 REM
3 0 0 0 DATA 0 , 0 , 0 , 0 , 1 2 6 , 0 , 1 , 2 5 5
3 0 1 0 DATA 1 28 , 3 , 2 4 7 , 1 9 2 , 7 , 2 2 7
3 0 2 0 DATA 2 2 4 , 1 5 , 2 47 , 2 4 0 , 3 1 , 2 5 5
3 0 3 0 DATA 2 48 , 31 , 2 5 5 , 2 48 , 6 3 , 2 5 5
3 0 4 0 DATA 2 5 2 , 6 3 , 2 5 5 , 2 5 2 , 6 3
3 0 5 0 DATA 2 5 5 , 2 5 2 , 6 3 , 2 5 5 , 2 5 2
3 0 6 0 DATA 6 3 , 2 55 , 2 5 2 , 6 3 , 2 5 5
3 0 7 0 DATA 2 5 2 , 31 , 2 5 5 , 2 4 8 , 3 1
3 0 8 0 DATA 2 5 5 , 2 4 8 , 1 5 , 2 5 5 , 2 4
3 0 9 0 DATA 7 , 2 55 , 2 2 4 , 3 , 2 5 5 , 1 9 2
3 0 9 5 DATA 1 , 2 5 5 , 1 28 , 0 , 1 2 6 , 0 , 0

Sprites 1 77

Lines 10 to 50 set up the various sprite registers,
and POKE the data into the cassette buffer.

Lines 100 to 200 move the sprite down the screen
by incrementing the Y position register in
multiples of 50, and expand the sprite and change
its colour, depending upon its position down the
screen.

Lines 500 to 700 move the sprite across the screen
and close and open the mouth.

SPRITE CR EATION

The process of defining sprites is very laborious,
and, like user defined characters, is one with which
your computer can assist. The following program
will allow you to create and modify your sprites,
save the data on tape and many other useful
things, so it's well worth persevering in typing it
all in!

1
2
3
4
5
6
7
10
2 0

3 0

4 0
5 0

6 0
9 3
9 4

REM *****************
REM * *
REM * SPRITE EDITOR *
REM * *
REM *****************
REM
REM
DIM D% (2 3 , 2 0) , DA% (6 4)
CS= 1 0 6 5 : CX=0 : CY=0 : CC=CS : CD% (0) =
4 3 : CD% (1) =8 1
POKE5 3 2 8 0 , 1 3 : POKE5 3 2 81 , 1 2 : PRINT
I {GR3 } "
RS= 5 3 2 48 : DS = 1 2 288 : SN= 0
B$ = "

MO=l
REM

{ CU } II : REM 37 SPACES

REM **************

1 78 The Commodore 64 Omnibus - Part 1

9 5 REM * *
96 REM * PRINT GRID *
97 REM * *
98 REM * * * * * * * * * * * * * *
99 REM
1 0 0 PRINT" { CLS } "
1 1 0 G$ = " ++++++++++++++++++++++++"
120 FOR I=O TO 20
130 PRINT G$: NEXT I
1 4 0 CD = PEEK (CS)
1 5 0 PRINT " {HOM} "
1 6 0 FOR I=l TO 8 : PRINT TAB (3 2) I
1 7 0 IF I<8 THEN PRINT : PRINT
180 NEXT I
4 9 3 REM
4 9 4 REM *
4 9 5 REM * *
496 REM * SET UP SPRITE REGI STERS *
497 REM * *
498 REM *
499 REM
5 0 0 FOR I=O TO 7 : REM DO EACH SPRITE
510 POKE 5 3 2 48+2 * I , 5 0 : REM X POS
5 2 0 POKE 5 3 2 4 9 + 2 * I , 5 2+ (2 5 * I) : REM Y

POS
5 3 0 POKE 5 3 287+I , 1 : REM COLOUR
5 4 0 POKE 2 0 4 0 + I , 1 9 2 + I : REM POINTERS
550 NEXT I
560 POKE 5 3 2 6 4 , 2 5 5 : REM X MSB
5 7 0 POKE 5 3 269 , 2 5 5 : REM ENABLE
580 POKE 5 3 2 7 7 , 0 : REM NO X EXPANSION
5 9 0 POKE 5 3 2 7 1 , 0 : REM NO Y EXPANS ION
6 0 0 POKE 5 3 2 7 6 , 0 : REM MULTI COL . OFF
6 5 0 PRINT SPC (6) " {RVS } P { ROF }ROGRAM

{RVS } L { ROF}OAD { RVS } S { ROF }AVE "
9 9 3 REM
9 9 4 REM * * * * * * * * * * * * * * * * * *
9 9 5 REM * *
996 REM * KEYBOARD INPUT *
9 9 7 REM * *
998 REM * * * * * * * * * * * * * * * * * *

9 9 9
1 0 0 0
1 0 0 5
1 0 1 0

1 0 2 0

1 0 3 0

1 0 4 0

1 0 6 0

1 0 7 0

1 0 9 0
1 0 9 5
1 1 0 0

1 1 1 0

1 1 2 0
1 1 3 0
1 2 0 0
1 2 1 0
1 4 9 3
1 4 9 4
1 4 9 5
1 4 9 6
1 4 9 7
1 4 9 8
1 4 9 9
1 5 0 0
1 5 1 0
1 5 2 0
1 5 3 0
1 5 4 0
1 6 0 0

Sprites

REM
GET K$: IF K$ = " " THEN 1 5 0 0
K = ASC { K$)
IF K$= " { CR } " AND CX< 2 3 THEN
CX=CX+l : POKE CC , CD
IF K$= " { CL } " AND CX>O THEN
CX=CX-l : POKE CC , CD
IF K$= " { CD} " AND CY< 2 0 THEN
CY=CY+l : POKE CC , CD
IF K$= " { CU} " AND CY>O THEN
CY=CY-l : POKE CC , CD
IF K$=" " THEN SD=l-SD : CD=
CD% (SD)
IF K$ = " P " THEN SA= 5 6 2 2 2 : L=6 :
CO= 2 : GOSUB 1 2 0 0 : GOSUB 3 0 0 0 :
CO= l l : GOSUB 1 2 0 0
I F K$ = " L " THEN 4 1 0 0
I F K$= " S " THEN 4 0 0 0
I F K> 4 8 AND K< 57 THEN GOSUB
2 0 0 0
I F K> 3 2 AND K< 4 1 THEN GOSUB
2 5 0 0
CC=CS+CX+ (4 0 *CY) : D% (CX , CY) =SD
POKE CC , CD : GOTO 1 0 0 0
FOR I = O TO L
POKE SA+ I , CO : NEXT : RETURN
REM
REM * * * * * * * * * * * * * * * *
REM * *
REM * FLASH CURSOR *
REM * *
REM * * * * * * * * * * * * * * * *
REM
CT = PEEK (CC)
C%= (CT OR 1 2 8) - (CT AND 1 2 8)
POKE CC , C%
FOR I=O TO 1 0 0 : NEXT
GOTO 1 0 0 0

179

PRINT SPC (6) " {RVS } P { ROF }ROGRAM
{RVS } L { ROF }OAD {RVS } S { ROF }AVE "
: RETURN

180 The Commodore 64 Omnibus - Part 1

1 9 9 3 REM
199 4 REM *
199 5 REM * *
1 9 9 6 REM * SPRITE SELECTION *
1997 REM * *
1998 REM *
1999 REM
2 0 0 0 IF SN=O THEN 2 0 2 0
2 0 1 0 POKE SS+ 5 4 2 7 2 , 1 1
2 0 2 0 SN = K- 4 8 : SS=CS-88+ (SN* 1 2 0) :

POKE SS+ 5 4 2 7 2 , 3
2 0 3 0 GOSUB 3 5 0 0 : RETURN
2 4 9 3 REM
2 4 9 4 REM *
2 4 9 5 REM * *
2 4 9 6 REM * CLEAR SPRITE DATA *
2 4 9 7 REM * *
2 4 9 8 REM *
2 4 9 9 REM
2 5 0 0 PRINT " { HOM} { 2 2 * CD} "
2 5 1 0 PRINT B$: PRINT " ARE YOU SURE ? "
2 5 2 0 GETA$: IF A$ = " " THEN 2 5 2 0
2 5 3 0 I F A$<> " Y " THEN PRINT " { CU} " B$:

GOSUB 1 6 0 0 : RETURN
2 5 4 0 PRINT " { CU} " B$: PRINT " CLEARING

DATA"
2 5 5 0 FOR 1 = 0 TO 6 3 : POKE DS+ ((K-

3 3) * 6 4) + I , 0 : NEXT I
2 5 6 0 PRINT " { CU } " B$: GOSUB 1 6 0 0 :

RETURN
29 9 3 REM
29 9 4 REM *
29 9 5 REM * *
2996 REM * CONVERT GRI D TO DATA *
2997 REM * *
2998 REM *
2999 REM
3 0 0 0 I = O : FOR Y=O TO 2 0
3 0 1 0 FOR BYTE=O TO 2 : DA% (I) = 0
3 0 2 0 FOR BIT=O TO 7

Sprites 181

3 0 3 0 DA% (I) =DA% (I) + (2 t (7-BIT » *
(PEEK (CS+ (BIT) + (8 *BYTE) + (4 0 * Y »
=8 1)

3 0 4 0 NEXT BIT
3 0 4 1 POKE DS+ ((SN-l) * 6 4) + I , DA% (I) :

I = I + l
3 0 5 0 NEXT BYTE
3 0 6 0 NEXT Y
3 1 2 0 RETURN
3 4 9 3 REM
3 4 9 4 REM *
3 4 9 5 REM * *
3 4 9 6 REM * CONVERT DATA TO GRID *
3 497 REM * *
3 4 9 8 REM *
3 4 9 9 REM
3 5 0 0 FOR I=O TO 6 3 : DA% (I) =PEEK

(DS+ ((SN-l) * 6 4) + I) : NEXT : I = 0
3 5 1 0 FOR Y=O TO 2 0
3 5 2 0 FOR BYTE=O TO 2
3 5 2 5 N = DA% (I)
3 5 3 0 FOR BIT=7 TO 0 STEP-l
3540 B2 = 2 tBIT
3 5 5 0 IF N - B2 >=0 THEN CH=8 1 : N=N

B2 : GOTO 3 5 7 0
3 5 6 0 CH = 4 3
3 5 7 0 POKE CS+ (7 -BIT) + (8 *BYTE)

+ (4 0 *Y) , CH
3 5 9 0 NEXT BIT : I = I + l : NEXT BYTE
3 6 0 0 NEXT Y : RETURN
3 9 9 3 REM
3 9 9 4 REM *
3 9 9 5 REM * *
3996 REM * SAVE SPRITE DATA *
3997 REM * *
3998 REM *
3999 REM
4 0 0 0 PRINT " { HOM} { 2 3 * CD} "
4 0 1 0 PRINT B$
4 0 2 0 INPUT " FILE NAME " ; N$
4 0 2 5 PRINT " { CU} " B$ " { CU} "

182 The Commodore 64 Omnibus - Part 1

4 0 3 0 OPEN 1 , 1 , 1 , N$
40 3 5 PRINT " { CU} "B$
4 0 4 0 FOR I=O TO 6 3 : PRINT# 1 , CHR$

(DA% (I » i : NEXT
4 0 5 0 PRINT" { CU} " B$ " { CD } "
4 0 6 0 CLOSE 1
4 0 7 0 GOTO 6 5 0
4 0 9 3 REM
4 0 9 4 REM *
4 0 9 5 REM * *
4 0 9 6 REM * LOAD SPRITE DATA *
4 0 9 7 REM * *
4 0 9 8 REM *
4 0 9 9 REM
4 1 0 0 PRINT " { HOM} { 2 3 * CD} "
4 1 1 0 PRINT B$
4 1 2 0 INPUT " WHICH SPRITE (1-8) " i SN
4 1 2 2 PRINT " { CU} "B$
4 1 2 5 INPUT " FILE NAME " i N$
4 1 3 0 PRINT " { CU} " B$ " { CU } { CU } "
4 1 4 0 OPEN 1 , 1 , 0 , N$
4 1 4 5 PRINT " { CU} "B$
4 1 5 0 FOR I = O TO 63
4151 GET# l , D$
4 1 5 2 IF 0$ = '' '' THEN 0$ = CHR$ (0)
4 1 5 3 DA% (I) = ASC (D$)
4 1 5 5 POKE DS+ (SN-1) * 6 4 + I , DA% (I) : NEXT
4 1 5 7 PRINT " { CU} " B$ " { CD } "
4 1 6 0 CLOSE 1
417 0 GOTO 6 5 0

How to use the program

The program draws a large 24 by 21 grid on the left
hand side of the screen upon which sprites are

. created. The eight sprites, numbered 1 to 8, are
displayed down the right hand edge of the display,
and will contain random data when the program is
first RUN. To clear any sprite data area, hold

Sprites 183

down the SHIFT key and press the sprite number
key.

To create a sprite, the current sprite data must be
loaded into the grid by pressing the appropriate
number key. When loaded, the sprite will be
displayed on the grid ready for editing.

The flashing cursor is moved around the grid with
the cursor keys and can be set to erase or plot
'pixels' by using the space bar which toggles
between the two options.

When a sprite has been created, the appropriate
data is placed in the sprite data area by pressing
'P'.

Sprites can be SAVEd on tape and LOADed by
pressing 'S' or 'L' respectively, and following the
prompts displayed on the screen.

C H APTER 1 5

P E R MAN E NT STORAG E

The 64 is able to store programs onto cassette tapes
or floppy disks, and to LOAD and RUN programs
from tape, disk or plug-in cartridge. Tapes and
disks may also be used to store data for future use.

PROG RAMS ON TAPE

To load a program from tape, put the cassette in the
tape unit and rewind it to the beginning. Type the
command:

LOAD "NAME "

and press RETURN. 'N AME' should be the name
of the program you wish to load. If you want the
first program on the tape just type:

LOAD 11 11

The 64 will respond to these commands by
displaying the message:

PRESS PLAY O N TAPE.

Start the tape by pressing the PLAY key. The
screen will go blank and the tape will start to move.
When the program is reached, the tape will stop
moving and the message:

FO U N D NAM E

will be displayed on the screen. After a few seconds

Permanent Storage 185

the screen will go blank again and the program will
be loaded. You can cut short the pause by pressing
the Commodore key (C=) when the program name
is displayed. If you do not wish to load the
program, press RUN/STOP.

To LOAD and RUN the first program on a
cassette , hold down a SHIFT key and press
RUN/STOP. The 64 will again ask you to start the
tape, and will then display the name of the first
program found. When the program has been
LOADed it will start running automatically.

Saving Programs

To save the program in the computer onto tape, put
a blank cassette into the tape unit and wind it
forwards past the transparent leader. Type the
command:

SAVE "NAME "

The computer will respond with:

PRESS PLAY AND RECORD ON TAPE

Start the tape by pressing the RECORD and PLAY
keys together. The screen will go blank, and the
program will be SAVEd. The name you use for the
SA VEd program can be any combination of
characters up to a maximum length of 16.

Checking Programs

To check that a program has been saved accurately,
use the VERIFY command. Rewind the tape to
the beginning of the program, and type :

VERIFY "NAME"

The message:

186 The Commodore 64 Omnibus - Part 1

PRESS PLAY ON TAPE

will be displayed on the screen. Start the tape, and
the screen will go blank while the 64 searches for
the program. When the program is found, the
message:

FO U N D NAM E

is displayed. After a few seconds the screen will
blank again, and the program on tape will be
compared with the program in the computer.
When the program has been checked, the message
'OK' will be displayed if the two programs were
identical, or '?VERIFY ERROR' if the two did not
match.

PROG RAMS ON DISK

Loading and saving programs from disk is very
similar to using the tape. The same commands are
used, with the suffix ',8' added which instructs the
64 to use the disk drive instead of the cassette uni t.
To load a program from disk, put the disk into the
drive and close the door. Type the command:

LOAD " NAME " , 8

and press RETURN. The computer will respond
wi th the messages:

SEARC H I N G FOR NAM E
LOADI NG NAM E

and then READY when the process is complete .

To save a program onto the disk, type :

SAVE "NAME " , 8

Permanent Storage 187

The 64 will display:

SAVING NAM E

and READY when it has finished.

The VE RIFY command can also be used with
disks. To verify a program, type:

VERIFY I
I NAME II , 8

The 64 will display:

SEARC H I N G FOR NAM E
VE R IFY ING

and either OK if the program on disk matched the
one in the 64, or ?VERIFY ERROR if the two were
different.

Full details of all aspects of disk use are given in
Part 2, Chapter 24.

PROGRAMS ON CARTRIDGES

Programs on cartridges are the easiest of all to use.
First, you must switch off the 64, or it may be
damaged. Then plug the cartridge into the socket
on the right at the rear of the machine, and switch
on again. Follow the instructions enclosed with the
cartridge to start the program.

F ILE HANDLING

As well as loading and saving programs, the
Commodore 64 can use the cassette unit to store
and reload data generated by programs. The data
is stored in files, and can be in numerical or string
form. To create a file, the command OPEN is used:

188 The Commodore 64 Omnibus - Part 1

OPEN F , D , S , "NAME "

The parameter F is the file number, a reference
number used to identify which file is being used by
each file command (there may be a number of files
in use at the same time). D is the device number,
which is always 1 for the tape unit - other
peripherals have different numbers. S is called a
secondary address, and can have three meanings
when using tape files. If S is zero, the file data is to
be read from the tape; if S is one, data is to be
written to the tape, and if S is two, data is written
to the tape and a special ((end of tape" marker is
wri tten at the end of the file.

To write data to the tape the command PRINT# is
used. This is very similar to the PRINT command,
except that data is written to the tape instead of to
the screen. The command must be followed by the
file number of the file to which the data is to be
written:

PRINT#l , X

would write the value of the variable X to file
number 1 .

There are two commands which read data from
files: INPUT# and GET#. Again, the commands
are similar to their keyboard reading counterparts.
INPUT# reads a number of byte s of data
terminating in a carriage return, whereas GET#
reads single bytes from the tape. The file number
must be specified when using these commands also.

CLOSE is used to terminate the use of a file.
When reading a file, CLOSE simply closes the
input channel, whereas when writing to a tape file,
the CLOSE command writes an ((End of File" or
(tEnd of Tape" marker onto the tape.

Permanent Storage 189

The following short program shows the use of
OPEN, PRINT#, INPUT# and CLOSE.

1 0 OPEN 1 , 1 , 1 , " TEST "
2 0 PRINT#l , " THIS I S A TEST FILE "
30 CLOSE 1
4 0 STOP
1 0 0 OPEN 3 , 1 , 0 , " TEST"
1 1 0 INPUT#l , A$
1 2 0 CLOSE 1
1 3 0 PRINT A$

Put a blank tape into the tape unit and wind it
forwards past the transparent leader tape. RUN
the program, and the 64 will display the message:

PR ESS PLAY AND R ECORD ON TAPE

as happens when SA VEing programs. Start the
tape, and the file will be created and the data
stored. The program will stop with the message
(tBREAK IN 40".

Rewind the tape and type RUN 100. The message

PR ESS PLAY ON TAPE

is displayed. When you set the tape going the data
file will be O PENed and read, and the data printed
on the screen.

This technique may be used to store any amount of
data onto tape. You can save numerical data as
well as strings in the same way.

Punctuation marks - commas and semi-colons -
may be used with P RINT# as with PRINT.
Without punctuation, PRINT# puts a carriage
return character after each item of data written to
the tape, and it these carriage returns are used by
the INPUT# statement to distinguish between

190 The Commodore 64 Omnibus - Part 1

adjacent items of data. Using commas or semi
colons suppresses the carriage returns with the
result that the INPUT# statement will not read
the data properly. This is where GET# is useful,
reading single bytes from the file without regard
for carriage returns or any other markers. If you
need to store single byte numbers, then writing
them to the tape with PRINT#; and reading them
with GET# makes very efficient use of the tape, as
all the space is taken up by data with no separating
characters. This method is used in the Character
Generator program in Chapter 12 to save character
sets onto tape.

OTHER PERIPHERAL COMMANDS

STATUS, or ST, is a system variable which
provides information about tape files. The variable
has eight possible meanings, which are shown in
the table:

STATUS M EANING

1 , 2 OK

4 SHORT B LOCK

8 LONG BLOCK

1 6 U N RECOVERAB LE READ E RROR

32 CH ECKSU M ERROR

64 END OF F ILE

- 1 28 E N D OF TAPE

One last peripheral handling instruction is CMD.
This diverts the normal screen output to a specified
output channel or data file. The command is most
often used to list data to a printer, but can also be
used to record programs listings on tape, perhaps

Permanent Storage 191

for incorporation in a word processor document.
(All the programs in this book were transferred to a
word processor in this way).

To list a program to a printer use the command
sequence:

OPEN 1 , 4
CMD 1
LIST
CLOSE 1

The listing will be diverted from the screen to the
printer. Similarly, a program can be listed to a tape
file by the sequence:

OPEN 3 , 1 , 1 , " L I STING "
CMD 3
LIST
CLOSE 3

Program listings saved in this way can not be
reloaded and RUN, so always make sure you have
a copy of the program SAVEd in the normal way.

DATAFILE

This program uses the file handling commands to
maintain a simple database on tape. The program
is written as an address book, but there are many
other applications. As well as loading and saving
the data, the program allows you to insert and
remove entries, and to search through the index for
specific items.

1 REM * * * * * * * * * * * * * * * * *
2 REM * *
3 REM * 6 4 DATAFILE *
4 REM * *
5 REM * * * * * * * * * * * * * * * * *

192 The Commodore 64 Omnibus - Part 1

1 0 GOSUB 5 0 0 0 0 : REM SET UP

9 0
9 2
9 4
9 6
9 8

1 0 0

110

1 2 0

1 3 0

2 0 0
2 1 0

2 2 0

2 3 0
2 4 0
9 0 0

990
992
9 9 4
9 9 6
9 9 8

1 0 0 0

1 0 1 0

1 0 2 0

1 0 3 0

REM ****************
REM * *
REM * FIRST MENU *
REM * *
REM ****************

PRINT " { CLS } { CD} { RVS} 6 4
DATAFI LE { ROF } "
PRINT TAB (10)
" {CD} { CD } { RVS} L { ROF}OAD FILE
PRINT TAB (10)
" {CD} { CD } { RVS } N { ROF} EW FILE
PRINT
TAB (10) " { CD} { CD } { RVS } F1 { ROF } :

END"
GET K$: IF K$= " " THEN 2 0 0
I F K$= " L " THEN GOSUB 1 0 0 0 0 :
GOSUB 1 0 0 0 : GOTO 1 0 0
IF K$="N" THEN GOSUB 1 1 0 0 0 :
GOSUB 1 0 0 0 : GOTO 1 0 0
IF K$ <> " { FI } " THEN 2 0 0
PRINT " { CLS } " : END
IF EX=l THEN RETURN

REM ******************
REM * *
REM * INSPECT FILE *
REM * *
REM ******************

GOSUB 2 2 0 0 0 : REM PRINT SCREEN
HEADER
PRINT : PRINT : PRINT TAB (1 0)
" {RVS } E { ROF }NTER NEW DATA"
PRINT : PRINT TAB (1 0)
" {RVS } F { ROF } IND ITEM"
PRINT : PRINT TAB (1 0)
" {RVS } L { ROF } I ST ALL ITEMS "

Permanent Storage 193

1 0 4 0 PRINT : PRINT TAB (1 0)
" {RVS } S {ROF}AVE FILE TO TAPE "

1 0 5 0 PRINT : PRINT TAB (10)
" { RVS } Fl { ROF } : RETURN TO FIRST
MENU"

1100 GET K$: IFK$ = " " THEN 1 1 0 0
1110 IF K$= " E" THEN GOSUB 2 0 0 0 :

GOTO 1 0 0 0
1 1 2 0 I F K$= " F " THEN GOSUB 3 0 0 0 :

GOTO 1 0 0 0
1 1 3 0 IF K$= " L " THEN GOSUB 4 0 0 0 :

GOTO 1 0 0 0
1 1 4 0 IF K$= " S " THEN EX= O : GOSUB

5 0 0 0 : GOTO 9 0 0
1 1 5 0 IF K $ < > " { Fl } " THEN 1 1 0 0

1190 REM
1192 REM *** SAFETY CHECK ***
1194 REM

1 2 0 0

1 2 1 0

1 2 2 0

1 2 2 5

1 2 3 0
1 2 4 0

1 2 5 0
1 2 6 0

1990
1 9 9 2
1 9 9 4
1996
1998

GOSUB 2 2 0 0 0 : REM PRINT SCREEN
HEADER
PRINT " { CD} { CD } { RVS } DO YOU
WANT TO SAVE THE FILE ? { ROF } "
PRINT TAB (1 0)
" { CD} { CD } { RVS } Y { ROF } ES "
PRINT TAB (1 0)
" { CD} { RVS } N { ROF}O"
GET K$: IF K$= " " THEN 1 2 3 0
IF K$= " Y " THEN GOSUB 5 0 0 0 :
GOTO 1 0 0 0
I F K$= " N" THEN RETURN
GOTO 1 2 3 0

REM ******************
REM * *
REM * ENTER NEW DATA *
REM * *
REM ******************

194 The Commodore 64 Omnibus - Part 1

2 0 0 0 IF P < EL THEN 2 1 0 0 : REM CHECK
SPACE

2 0 1 0 PRINT " { CLS } " TAB (1 0)
" { CD} { CD } { CD} { RVS } INDEX FULL
{ ROF } "

2 0 2 0 W=3 : GOSUB 3 0 0 0 0 : REM 3 SECOND
PAUSE

2 0 3 0 RETURN

2 0 9 0 REM
2 0 9 2 REM * * * ADD NEW ITEM * * *
2 0 9 4 REM

2 1 0 0 GOSUB 2 2 0 0 0 : REM SCREEN HEADER
2 1 1 0 PRINT : PRINT : PRINT " ENTER

DATA{CD} "
2 1 2 0 FOR I = O TO FLDS
2 1 3 0 PRINT F$ (I) � : INPUT A$ (P , I)
2 1 4 0 NEXT I
2 1 5 0 P = P+1

2190 REM
219 2 REM * * * DI SPLAY NEW ITEM * * *
2 1 9 4 REM

2 2 0 0 GOSUB 2 2 0 0 0 : REM SCREEN HEADER
2 2 1 0 I D = P-1
2 2 2 0 GOSUB 2 0 0 0 0 : REM DI SPLAY ITEM
2 2 3 0 PRINT " { CD} { CD} PRESS

{ RVS }RETURN{ROF} TO ACCEPT
THI S ITEM"

2 2 4 0 PRINT " OR {RVS } DEL { ROF } TO
DELETE IT"

2250 GET K$: IF K$= " " THEN2 2 5 0
2 2 6 0 IF K$ =RET$ THEN RETURN
2 2 7 0 I F K$ <> DEL$ THEN 2 2 5 0
2 2 8 0 GOSUB 2 1 0 0 0 : REM DELETE ITEM
2 3 0 0 RETURN

2 9 9 0 REM * * * * * * * * * * * * *
299 2 REM * *

Permanent Storage

2994 REM * FIND ITEM *
2996 REM * *
2998 REM * * * * * * * * * * * * *

195

3 0 0 0 GOSUB 2 2 0 0 0 : REM SCREEN HEADER
3 0 1 0 I F P=O THEN 3 7 0 0 : REM CHECK

FOR ENTRIES
3 0 2 0 PRINT : INPUT " FIND " ; FI$
3030 PRINT " {CD } IN : " ;
3 0 4 0 FOR 1=0 TO FLDS
3 0 5 0 PRINT TAB (1 0) 1 + 1 , F$ (I)
3 0 6 0 NEXT I
3 1 0 0 GET K$: IF K$= " " THEN 3 1 0 0
3 1 1 0 I F ASC (K$) < 4 9 OR ASC (K$) >

4 9+FLDS THEN 3 1 0 0
3 1 2 0 F = ASC (K$) - 49
3 1 3 0 PRINT " {CLS } { CD } { CD }

SEARCHING . . . "
3 190 REM CLEAR FOUND ITEM POINTER
3 2 0 0 FOR 1 = 0 TO P
3 2 1 0 FP (I) = -1
3 2 2 0 NEXT
3 2 3 0 FF=O

3290 REM
3 2 9 2 REM * * * DO THE SEARCH * * *
3 2 9 4 REM

3 3 0 0 FOR 1 = 0 TO P
3 3 1 0 I F A$ (I , F) =FI$ THEN FP (FF) = I :

FF=FF+1
3 3 2 0 NEXT I
3 4 0 0 PRINT " { CLS } { CD } { CD } { CD} " FF

" ITEMS FOUND"
3 4 1 0 I F FF=O THEN W= 3 : GOSUB 3 0 0 0 0 :

RETURN : REM WAIT 3 SECONDS

3 4 9 0 REM
3 4 9 2 REM * * DI SPLAY FOUND ITEMS * *
3 4 9 4 REM

196

3 5 0 0
3 5 1 0
3 5 2 0
3 5 3 0

3 5 3 5

3 5 4 0
3 5 5 0
3560
3 5 7 0
3 5 8 0
3 5 9 0

3 6 0 0
3610
3 6 2 0

The Commodore 64 Omnibus - Part 1

FOR I = O TO FF-1
ID = FP (I)
GOSUB 2 0 0 0 0 : REM DI SPLAY ITEM
PRINT " {CD} PRESS {RVS }N{ROF}
FOR NEXT ITEM"
PRINT " { CD} OR { RVS } DEL {ROF}
TO DELETE THI S ONE "
GET K$: I F K$= " " THEN 3 5 4 0
I F K$= " N" THEN 3 6 1 0
I F K$ < > DEL$ THEN 3 5 4 0
GOSUB 2 10 0 0 : REM DELETE ITEM
FOR I I =O TO FF-1
FP (I I) = FP (I I) -l : REM RESET
FOUND POINTERS
NEXT I I
NEXT I
RETURN

3690 REM
3692 REM I F NO ITEMS PRINT MESSAGE
3694 REM

370 0 PRINT TAB (5) " { CD} { RVS } THERE
ARE NO ITEMS TO FIND ! {ROF } "

3 7 1 0 W= 3 : GOSUB 3 0 0 0 0 : REM WAIT 3
SECONDS

37 2 0 RETURN

3990 REM *
399 2 REM * *
3994 REM * L I ST ALL ENTRIES *
3996 REM * *
3998 REM *

4 0 0 0 GOSUB 2 20 0 0 : REM SCREEN HEADER
4 0 1 0 PRINT " { CD} { CD} LIST"
4 0 2 0 IF P=O THEN 4 3 0 0 : REM CHECK IF

ANY ENTRIES
4090 REM DI SPLAY ENTRIES
4 1 0 0 ID=O
4110 GOSUB 2 0 0 0 0 : REM DI SPLAY ITEM

Permanent Storage

4 1 2 0 PRINT : PRINT " { CD} PRESS
{ RVS } N { ROF} FOR NEXT ITEM , "

4 1 3 0 PRINT : PRINT " { RVS}DEL { ROF}
TO DELETE THI S ONE "

197

4 1 4 0 PRINT : PRINT " OR { RVS } F l { ROF}
TO END

4 1 5 0 GET K$: IF K$= '"' THEN 4 1 5 0
4 1 6 0 IF K$ =DEL$ THEN GOSUB 2 1 0 0 0 :

GOTO 4 18 0 : REM DELETE ITEM
4 1 7 0 ID = ID+ l
4180 IF K $ <> " { Fl } " AND ID<P THEN

4 1 1 0
4 2 0 0 RETURN

4 2 9 0 REM
4 2 9 2 REM *** IF NO ENTRIES ***
4 2 9 3 REM *** PRINT MESSAGE ***
4 2 9 4 REM

4 3 0 0

4 3 1 0

4 3 2 0

4 9 9 0
4 9 9 2
4 9 9 4
4996
4998

50 0 0
5 0 1 0
5 0 2 0

50 3 0

5 0 3 5

5 0 4 0

PRINT TAB (5) " { CD} { CD} { RVS }
THERE I S NOTHING TO LIST
{ ROF} "
W=3 : GOSUB 3 0 0 0 0 : REM WAIT 3
SECS
RETURN

REM *********************
REM * *
REM * SAVE FILE TO TAPE *
REM * *
REM *********************

GOSUB 2 2 0 0 0 : REM SCREEN HEADER
PRINT " { CD} { CD} SAVE FILE "
PRINT : PRINT : INPUT " FILE
NAME " ; FL�
PRINT" { CD } { CD } PREPARE CASSETTE
THEN PRESS { RVS }RETURN{ ROF }
GET K$: IF K$ <> RET$ THEN
5 0 3 5
OPEN 1 , 1 , 1 , FL$

198

5 0 5 0
5 0 6 0
5 0 7 0
5080
5 0 9 0
5 1 0 0

5 1 1 0

5 1 2 0
5 1 3 0
5 1 4 0
5 1 5 0

9 9 9 0
9 9 9 2
9 9 9 4
9 9 9 6
9 9 9 8

The Commodore 64 Omnibus - Part 1

FOR I I= O TO P-l
FOR JJ=O TO FLDS
PRINT#l , A$ (I I , JJ)
NEXT JJ , I I
CLOSE 1
PRINT " { CD} PRESS { RVS } C { ROF }
TO CONTINUE "
PRINT " { CD} OR { RVS } Fl { ROF} TO
END"
GET K$: I F K$ = " " THEN 5 1 2 0
I F K$= " C " THEN RETURN
I F K$ = " { Fl } " THEN EX= l : RETURN
GOTO 5 1 2 0

REM *
REM * *
REM * LOAD FILE FROM TAPE *
REM * *
REM *

1 0 0 0 0 PRINT " { CLS } { CD } {RVS } 6 4
DATAFILE {ROF } "

1 0 0 1 0 PRINT " { CD} { CD} LOAD FILE"
1 0 0 2 0 FL$ = " "
1 0 0 3 0 PRINT : PRINT : INPUT " FILE

NAME " i FL $
1 0 0 4 0 PRINT " { CD } { CD } SET UP CASSETTE

THEN PRESS {RVS }RETURN{ ROF} "
1 0 0 5 0 GET K$: I F K$ <> RET$ THEN

1 0 0 5 0
1 0 0 6 0 OPEN 1 , 1 , 0 , FL$
1 0 0 7 0 P=O
1 0 0 8 0 FOR JJ=O TO FLDS
1 0 0 9 0 INPUT#l , A$ (P , JJ)
1 0 1 1 0 NEXT JJ
1 0 1 2 0 P=P+ l
1 0 1 3 0 I F P<EL AND ST<>6 4 THEN 1 0 0 8 0
1 0 1 4 0 CLOSE 1
1 0 2 0 0 RETURN

1 0 9 9 0 REM * * * * * * * * * * * *

Permanent Storage 199

1 0 9 9 2 REM * *
1 0 9 9 4 REM * NEW FILE *
1 0 9 9 6 REM * *
1 0 9 9 8 REM * * * * * * * * * * * *

1 1 0 0 0 PRINT " { CLS } { CD } { RVS } 6 4
DATAFILE { ROF } "

1 1 0 1 0 PRINT " { CD} { CD } NEW FILE
1 1 0 2 0 FOR I I=O TO EL
1 1 0 3 0 FOR JJ=O TO FLDS
1 1 0 4 0 A$ (I I , J J) = " "
1 1 0 5 0 NEXT JJ , I I
1 1 0 6 0 P=O
1 1 1 0 0 RETURN

1 9 9 9 0 REM * * * * * * * * * * * * * * * * * * *
1 9 9 9 2 REM * *
1 9 9 9 4 REM * DISPLAY AN ITEM *
1 9 9 9 6 REM * *
1 9 9 9 8 REM * * * * * * * * * * * * * * * * * * *

2 0 0 0 0 GOSUB 2 2 0 0 0 : REM SCREEN HEADER
2 0 0 1 0 PRINT : PRINT " " A$ (ID , 0)
2 0 0 2 0 FOR I I =l TO FLDS
2 0 0 3 0 PRINT : PRINT TAB (5) A$ (ID , I I)
2 0 0 4 0 NEXT I I
2 0 0 5 0 RETURN

2 0 9 9 0 REM * * * * * * * * * * * * * * * * * *
2 0 9 9 2 REM * *
2 0 99 4 REM * DELETE AN ITEM *
2 0 9 9 6 REM * *
2 0 9 9 8 REM * * * * * * * * * * * * * * * * * *

2 1 0 0 0 PRINT " { CD } { RVS } DELETING THI S
ITEM{ROF } "

2 1 0 1 0 FOR I I= I D TO P-l
2 1 0 2 0 FOR JJ=O TO FLDS
2 1 0 3 0 A$ (I I , JJ) = A$ (I I + l , JJ)
2 1 0 4 0 NEXT JJ , I I
2 1 0 5 0 P = P-l

200 The Commodore 64 Omnibus - Part 1

2 1 0 6 0 PRINT " { CD } ITEM DELETED"
2 1 0 7 0 RETURN

2 1 9 9 0 REM * * * * * * * * * * * * * * * * *
2199 2 REM * *
2 1 9 9 4 REM * SCREEN HEADER *
21996 REM * *
21998 REM * * * * * * * * * * * * * * * * *

2 2 0 0 0 PRINT " { CLS } { CD } { RVS} 6 4
DATAFILE { ROF } " TAB (26) P "
ENTRIES "

2 2 0 1 0 RETURN

2 9 9 9 0 REM * * * * * * * * * * * * * * * * *
2 9 9 9 2 REM * *
2 9 9 9 4 REM * WAIT ROUTINE *
29996 REM * *
29998 REM * * * * * * * * * * * * * * * * *

3 0 0 0 0 TI$= " O O O O O O "
3 0 0 1 0 I F T I < W* 6 0 THEN 3 0 0 1 0
3 0 0 2 0 RETURN

49990 REM * * * * * * * * * * * * * * * * * *
4 9 9 9 2 REM * *
4 9 9 9 4 REM * INITIAL SET-UP *
49996 REM * *
49998 REM * * * * * * * * * * * * * * * * * *

5 0 0 0 0 EL = 1 0 0
5 0 0 1 0 FLDS = 6
50 0 2 0 F$ (O) = " SURNAME"
5 0 0 3 0 F$ (l) = " FIRST NAME "
50 0 4 0 F$ (2) = " HOUSE AND STREET "
5 0 0 5 0 F$ (3) = " TOWN"
5 0 0 6 0 F$ (4) = " COUNTY "
5 0 0 7 0 F$ (5) = " POST CODE "
5 0 0 8 0 F$ (6) = " PHONE NUMBER"
5 0 1 0 0 DIM A$ (EL , FLDS)
5 0 1 1 0 DIM FP (EL)

Permanent Storage

5 0 2 0 0 RET$ = CHR$ (1 3)
5 0 2 1 0 DEL$ = CHR$ (2 0)
5 0 3 0 0 RETURN

Program Description

20 1

The program is controlled using menus. A list of
options is displayed, and you select the one you
want by pressing the appropriate key - usually the
first letter of the option title.

The program is written in modules. A main menu
routine calls a number of subroutines which are
independent of each other and perform different
data-management tasks: entering new data, listing
the data and so on.

The first instruction of the program calls the
subroutine at 50000 which sets up the array in
which the data is stored and the other main
variables of the program.

Lines 100 - 240 display an initial menu offering
the options:

Load a file from tape
Create a new file
Stop the program

Pressing N for New or L for Load carries out the
selected task and then subroutine 1000 (INSPECT
FILE) is called. This subroutine is the heart of the
program. A second menu is displayed, offering the
options:

Enter new data
Find an item of data
List all the items
Save the file on tape
Return to the first menu

202 The Commodore 64 Omnibus - Part 1

and the appropriate subroutine is called when an
item is selected. If F1 is pressed the user is asked
whether the file should be saved on the tape before
the program returns to the first menu.

The subsidiary routines of the program are:

ENTER NEW DATA (2000) adds new data to the
file.

FIND ITEM (3000) searches for specified items.

LIST ALL ITEMS (4000) lists all the entries in the
file.

SAVE FILE (5000) saves the file on tape.

LOAD FILE (10000) loads a file from the tape.

NEW FILE (11000) blanks out the file and sets the
entry counter (P) to zero.

DISPLAY ITEM (20000) displays one entry of the
file.

DELETE ITEM (21000) deletes an entry.

SCREEN HEADER (22000) prints a message at
the top of the screen.

The file is stored in the array A$, which is
dimensioned in 50100. The other main variables
used are:

P Pointer to the first free entry (and
therefore also a count of the number of
entries in the file).

EL The maximum number of entries.

FLDS

F$()

FL$

ID

FF

FP()

Permanent Storage 203

The number of 'fields' in each entry -
the second dimension of A$.

The names of the fields.

The filename when loading or saving
the data.

The item to be displayed by DISPLAY
ITEM.

The number of entries found in FIND
ITEM.

Pointers to the found items.

I, II, J and JJ are used as counters in loops.

To alter the program to store different information,
change the names of the fields in lines 50020
onwards. If you alter the number of fields, change
FLDS in line 50010 to the number of the last field.

If you want to add more features they may easily be
'plugged in'. For example, a routine to sort the
entries into alphabetical order (perhaps based on
the string sorting program in Chapter 7 - page 66)
could be added as subroutine 6000 by adding two
lines to INSPECT FILE to display an extra menu
item and call the subroutine.

C HAPTE R 1 6

ADVANC E D TECH N I Q U E S

The previous chapters cover all you need to write
many programs for your 64. This chapter decribes
some final BASIC commands which you will find
useful as you write more ambitious programs, and
rounds off with some general advice on how to
wri te good programs.

MAC H I N E CODE SUBROUTI N E S

The 64's microprocessor does not understand
BASIC programs without some assistance ; i t
understands a much cruder set of instructions
called machine code or mac hine language.
BASIC programs can be run only because the 64
has some machine code programs permanently
stored in read-only memory (ROM) which interpret
the BASIC. Writing programs in machine code is ..
more difficult than using BASIC, but can be very
worthwhile as machine code programs run very
much faster.

This chapter introduces the BASIC commands used
to call machine code programs. In Part 2, Chapter
18 describes the use of machine code with the 64,
and Chapters 19 to 21 give some powerful routines
to extend the 64's facilities.

You can enter machine code routines from BASIC
using the command SYS, giving the start address
in memory of the machine code routine . For
example:

Advanced Techniques 205

SYS 2 0 4 8

will perform the same function as holding down the
RUN/STOP key and pressing RESTORE, and:

SYS 6 4 7 3 8

will call the power-on setting up routines which
clear the memory and print the start-up message.
BE CAREFUL using this - it will destroy any
program you have in the 64 at the time you use it.

Machine code routines may also be called by the
instruction USR() . The instruction is used like a
BASIC function. For example:

1 0 0 0 A = USR (X)

The number in brackets is stored in the 64's
floating point accumulator, and then a previously
defined machine code routine is called. At the end
of the routine, the number now in the floating point
accumulator is returned to be stored in the
variable.

The address of the machine code to be run is
defined by POKEing the low and high bytes of the
start address into locations 785 and 786. For
example,

POKE 785 , 6 0 : POKE 786 , 3

would cause subsequent USR() instructions to run
the code starting at address 828 (the beginning of
the cassette buffer).

206 The Commodore 64 Omnibus - Part 1

THE WAIT COMMAND

The WAIT command is not a pause command, as it
is on many machines. The command has the
format:

WAIT MEM , X , Y

(the Y is optional) and works as follows:

The contents of memory location MEM are
exclusively ORed with the variable Y, and the
result is ANDed with the variable X. If the result
is zero, the 64 checks the memory location again,
until a non-zero result is obtained, when the
program continues. In other words, the program is
halted until the contents of a memory location
become equal to a specfied number.

WAIT is almost never used. The command does
nothing that can not be acheived using PEEK and
IF, and it has the disadvantage that the STOP key
can not be used to end the program while the
WAIT command is in operation. This means that if
the right answer is not found, the 64 can lock up,
and only RUN/STOP and RESTORE will let you
escape. WAIT is only useful when a very fast
response is required , as for example when the
computer is being used to control other equipment.

D ESIGNING GOOD PROGRAMS

It i s easy to write simple BASIC programs, and
after some practice you will find it fairly easy to
write quite complicated routines. However, unless
you plan your programs carefully, a long program
can get very messy and it can be very difficult to
find all the mistakes you are bound to make.

To write complex programs successfully you must
design them carefully, following a few simple rules.

Advanced Techniques 207

The phrase Structured Programming is often
used to describe these rules ; all this means is that
programs designed in accordance with these rules
have a clear and logical structure, and the flow
through the program is easy to follow. You may be
put off by hearing people say that BASIC is not a
suitable language for structured programming.
Don't let this discourage you. While BASIC may
lack the elegance of some other languages, it is still
possible to use it to write good programs by
following the simple guidelines set out here:

1 Always plan out the program on paper. Decide
what you want the program to do, identifying
the various tasks it will have to perform, and
divide the program into sections which
correspond to the tasks. For example, you
might have one section of program to get data
from the keyboard, another to sort the data, a
third to display results, and so on.

CH ECK KEY
IN PUT

Key not
val i d

Sketch programs before writing the
BASIC

208 The Commodore 64 Omnibus - Part 1

2 It is often useful to draw sketches of the way the
tasks fi t together.

3 When you have got the overall structure of the
program sorted out, work out in more detail
what each section should be doing, and how it
should be done.

4 Write the BASIC routines for each section of the
program - writing them on paper and not
typing straight into the 64. Try to write each
section of the program so that i t is as
independent as possible of the other sections,
and arrange the routines wi th a c l ear
sequential flow from beginning to end: avoid
jumping around with GOTO. Use a different
set of line numbers for each section, beginning
each at a round number of so many thousands or
tens of thousands.

5 Now type the program into the 64.

6 The program will not work! At this stage you
can sort out all the SYNTAX ERRORs easily. If
you have designed the program well , with
different sections doing different tasks, it will
be much easier to find the more subtle errors, �s
you will be able to isolate the faulty bit of the
program wi thou t difficul ty.

If you follow these guidelines, you will save a lot of
time in getting your programs to work, and you
will have more time for actually using them.

TH E COM M ODORE 64 O M N I B U S

PART 2

ADVANCED COM M O DO R E 64

PROG RAM M I NG

CH APTER 1 7

BASIC AN D H OW IT WOR KS

You are probably aware that the microprocessor in
your 64 doesn't understand BASIC and needs to be
programmed in its own language - machine code.
To enable the 64 to run your BASIC programs it
comes equipped with a large machine code program
called the BASIC i nterp reter. As the name
suggests this program interprets a BASIC program
- converting it into a series of machine actions, the
instructions for which are subroutines of the
in terpreter program.

Machine code is covered in more detail later in the
next chapter; this chapter deals with how the 64
stores and runs BASIC programs and shows how
you can get more out of your 64 by understanding
the techniques involved.

Interpreter and Kernal ROMs

The ROM memory in the 64 contains two machine
code programs - the basic interpreter mentioned
above and the kernal. The kernal is responsible for
all the functions needed to operate the 64 - reading
the keyboard, arranging the memory, operating
the screen editor and so forth. Both the interpreter
and the kernal reserve some of the RAM for their
own use, generally speaking in the first 2k of
memory.

2 12 The Commodore 64 Omnibus - Part 2

H OW BASIC IS STORED

When you type in a line of a BASIC program,
routines in the kernal take the character for each
key press and store it in screen memory. When you
press RETURN the entire line is copied from the
screen into memory. The BASIC interpreter reads
the first few characters of the line to see if they
form a line number and, if so, the line is inserted
into the stored program. This system allows you to
edit a line using the cursor keys without retyping
the entire line.

BASIC programs are normally stored starting from
location 2048. To see this type in the following one
line program and then enter the immediate mode
commands following it.

10 PRINT "TEST " : GOTO 1 0

FOR Z = 2 0 48 TO 2068 : PRINT Z , PEEK (Z) :
NEXT Z

The display will look like the two left hand columns
in the list below if you have typed the program in
exactly as it appears:

ADDRESS CONTENTS COMMENT

2048 0 The first byte of a program is
always zero

2049 19 Low byte of link pointer

2050 8 High byte oflink pointer

2051 10 Low byte ofline number

2052 0 High byte ofline number

BASIC and How it Works 213

2053 153 PRINT

2054 32 (space)

2055 34 "

2056 84 T

2057 69 E

2058 83 S

2059 84 T

2060 34 "

2061 58

2062 137 GOTO

2063 32 (space)

2064 49 1

2065 48 0

2066 0 Null

2067 0 Null

2068 0 Null

The comment to the right of each item in the list
show what each location contributes to the
program line.

The contents of location 2048 are always zero if a
BASIC program is stored in the 64.

2 14 The Commodore 64 Omnibus - Part 2

Locations 2049 to 2065 hold the BASIC line and
have the following functions:

The first two bytes, 2049 and 2050, indicate the
position of the next line of BASIC - more about this
later.

Bytes 3 and 4 of the line (2051 and 2052) are the
line number in the order low byte, high byte. In
this case the number is 10 - that is 10 + 256*0.

The next byte contains the value 153 which is a
shorthand for PRINT. This is because the 64
stores BASIC programs in a compressed form using
a system of tokens whereby single byte codes are
used to represent BASIC reserved words. This
method offers significant memory savings over
storing commands as a series of ASCII characters
and also increases the speed at which programs
run. When you pressed RETURN and entered the
program line the kernal program recognised the
PRINT as BASIC reserved word by comparing it
with a list kept in ROM starting at location 41118.
The token 153 , used to replace the P RINT
command, represents the position of that command
in the list with 128 added to it, so PRINT is the
25th item in the list. The following program \

displays a section of the BASIC reserved word table
from the ROM.

10 REM DISPLAY RESERVED WORDS
1 5 PRINT n { CLs } n CHR$ (1 4)
20 FOR Z = 4 1 1 18 TO 4 1 2 5 0
30 A$ = CHR$ (PEEK (Z »
40 PRINT A$ i
50 IF ASC (A$) <9 1 THEN 70
60 N=N+l : PRINT CHR$ (1 3) ; N ,
70 NEXT Z

BASIC and How it Works 215

You will see that PRINT is the 25th item in the
list as mentioned above.

When a program is listed the tokens are converted
back into the BASIC words they represent, making
the system transparent to the user.

Another advantage of the token system is that it
allows you to type BASIC commands in an
abbreviated form, since only the first two or three
characters are checked by the interpreter. A full
list of BASIC reserved words, abbreviations and
tokens is given in Appendix 3.

The next eight bytes in the list are simply the
ASCn representation of the characters you typed
as part of the program line.

Location 2062 is another token, this time 137
representing the GOTO command, and is followed
by a space. The next two bytes are the line number
following the GOTO command, 10, but stored in
their ASCn form, not as a binary number. The end
of a BASIC program is indicated by three
consecutive zeros.

Let's return to the two bytes labelled �link pointer'
at the start of the list. These two bytes form the low
and high bytes respectively of the address where
the next line of the program is stored. In this case
they point to address 2067 (19 + 8*256 = 2067),
which is the end of the program.

To see how the link pointer works, try adding the
following line to the program and examining
memory locations 2066 to 2074.

2 1 6 The Commodore 64 Omnibus - Part 2

20 REM

FOR Z = 2 0 6 6 TO 2 07 4 : PRINT Z , PEEK (Z) :
NEXT Z

You will get a list like this:

2066 0 A null for the end of line 10

2067 25 Low byte of link pointer

2068 8 High byte oflink pointer

2069 20 Low byte ofline number

2070 0 High byte ofline number

2071 143 REM token

2072 0 Null

2073 0 Null

2074 0 Null

You should be able to see that there is now only one
zero after line 10, and that location 2067 contains
the low byte of the link pointer to the new end of
the program. Remember that the link pointer for
line 10 pointed to location 2067 ?

As before the third and fourth bytes contain the low
byte and the high byte of the line number, and 143
is the token for REM. The program again
terminates in three consecutive zeros.

The diagram opposite summarises how BASIC
programs are stored.

BASIC and How it Works

Line No.

Pointer to

Line No.

BASIC LI N E

Line No.

BASIC L I N E

Pointer to

E N D OF PROGRAM

The linked nature of a BASIC program

Renumbering Programs

2 1 7

1 0 I

o

o

We can make use of this knowledge to renumber
BASIC programs. When a program is being
developed it is often useful to be able to (open up'
gaps between lines to fit in new lines, and the next
program allows you to do just that.

6 0 0 0 0 REM RENUMBER
6 0 0 1 0 INPUTI START " i S
6 0 0 2 0 INPUTI END " i E
6 0 0 3 0 INPUT" NEW START " i NS
6 0 0 4 0 INPUT I INCREMENT" i I
6 0 0 5 0 A=2 0 4 9
6 0 0 6 0 Q=PEEK (A+ 2) +2 5 6 *PEEK (A+ 3)
6 0 0 7 0 IF Q<S THEN 6 1 0 0 0

2 18 The Commodore 64 Omnibus - Part 2

6 0 0 8 0 IF Q>E THEN PRINT " FINISHED " :
END

6 0 0 9 0 POKE A+2 , NS-INT (NS/2 5 6) * 2 5 6
6 0 0 9 5 POKE A+3 , INT (NS/2 5 6) : NS=NS+I
6 1 0 0 0 A=PEEK (A) + 2 5 6 *PEEK (A+ 1)
6 1 0 1 0 IF A=O THEN END
6 1 0 2 0 GOTO 6 0 0 6 0

The program is numbered so it can form the last
part of any program you are developing. Whenever
you need to renumber simply type:

RUN 6 0 0 0 0

and enter the line numbers of the beginning and
end of the program to be renumbered and the new
start number and increment.

This is a very crude and simple renumbering
program and doesn't take account of the line
numbers following GOTO, GOSUB and THEN
commands. To write a program to alter these is
more difficult because these line numbers are
stored in their ASCII form and so occupy a varying
number of bytes. This means that if a line number
specified by a GOTO command is three figures
long and is required to become a four figure
number when the program is renumbered , the
entire BASIC program would need to be moved up
in memory by one byte to create space. Such a
program would not be impossible to write in BASIC
but it would be quite slow!

A possible way around this would be always to
start your program numbering at line 10000 -

thereby ensuring that every GOSUB, GOTO or
THEN reference was a five figure number. If you
want to try this, refer to the table of BASIC
commands and their tokens in Appendix 3 .

;

BASIC and How it Works 219

EXECUTING A BASIC PROGRAM

A BASIC program stored in memory is of little use
until it can be executed. This is achieved by typing
RUN and pressing RETURN. The RUN is
interpreted as an immediate command and the
appropriate part of the BASIC interpreter program
is called. This subroutine initialises all pointers in
zero page and closes all open channels. The first
line of the program is then interpreted by loading it
a character at a time into the accumulator and
passing control to the appropriate subroutines as a
command is found. This process is carried out by a
small machine code subroutine called CHRGET
which is copied from ROM into zero page RAM
(locations 1 15 to 138) when the 64 is switched on.

Below is a disassembly listing ofCHRGET:

START 1 1 5 E6 7A INC $7A
117 DO 0 2 BNE $ 0 2
119 E6 7B INC $7B

FETCH 1 2 1 AD B7 1 2 LDA $ 1 2B7
1 2 4 C9 3A CMP # $ 3A
1 26 BO OA BCS RETURN
1 2 8 C9 2 0 CMP # $ 2 0
1 3 0 FO EF BEQ START
1 3 2 38 SEC
1 3 3 E9 3 0 SBC # $ 3 0
1 3 5 3 8 SEC
1 3 6 E9 DO SBC #$DO

RETURN 1 3 8 6 0 RTS

The first operation of CHRGET is to increment the
low byte of the character pointer - two locations
pointing to the next character of the BASIC text to
be accessed. If incrementing the low byte of the
character pointer causes an overflow, then the high
byte is incremented. The character pointer is at
locations $7 A and $7B (122 and 123) which form
part of the CHRGET program, so the program is

220 The Commodore 64 Omnibus - Part 2

self modifying! The section of the program labelled
FETCH reads the character pointed to by the
character pointer into the accumulator. This
location is variable and the value in the listing
above is what happened to be present in our 64
when the listing was created.

If the character is a colon (:) , signifying another
statement on this line, then control jumps back to
other routines in the interpreter which execute the
command just fetched before returning for the next
one.

If a space is encountered then the next character is
read in.

This routine is very important since it gives you a
chance to intercept the processing of BASIC
programs and implement additional features, by
replacing the code at the beginning of the routine
by two JSR commands calling two of your own
routines. The second routine simply copies that
part of CHRGET overwritten by the JSR
instructions while the first is the new user defined
code.

This technique can be used to add new commands
to the BASIC language as the following simple
example shows:

ADDING NEW COMMANDS TO BASIC

To add a new command to BASIC there are two
steps to follow:

a) Modify the first three bytes of CHRGET to
perform a JSR to the routine which interprets
and carries out the new command.

b) Modify the next three bytes of CHRGET to
perform a JSR to a subroutine which is a copy of

BASIC and How it Works 22 1

the first six bytes of the original CHRGET
routine.

For example , suppose you wanted to add a
command which caused a short tone to be emitted
by the TV speaker, as a warning in case of errors.

Here is a short machine code routine which
performs the function which could be called BEEP.

START

OELAY

QUIET

LOA # 37
STA 5 4 2 7 1
LOA # 1 0 0
STA 5 4 2 7 3
LOA # 1 5
STA 5 4 2 9 6
LOA # 5 4
STA 5 4 2 7 7
LOA # 1 6 8
STA 5 4 2 7 8
LOA # 3 3
STA 5 4 2 7 6
LOA # 1 2 2
STA 1 6 2
LOA 1 6 2
BPL OELAY
LOA # 3 2

, STA 5 4 2 7 6
LOA # 0
STA 5 4 2 9 6
RTS

; se t up SIO
; registers

; store into
; Ji f fy clock
; loop unt i l
; zero
; turn off the
; noise

Even if you are not familiar wi th machine code you
might recognise that the program simply sets up
the necessary SID registers on channel one to make
a tone, uses the jiffy clock to create a short pause
and then turns the sound off.

To incorporate the new command into BASIC, this
machine code must be preceded by some code to
recognise the new command. In this example we

222 The Commodore 64 Omnibus - Part 2

will use the # symbol as the new command, to
avoid confusing the issue with subroutines to
decode the characters in a command.

Here is the program which modifies the CHRGET
routine and incorporates a CBEEP' command into
BASIC:

1 * =$CO O O
1 0 CHRGET=1 1 5
9 0 !
9 5 !
1 0 0
1 1 0 INIT
1 2 0
1 3 0
1 4 0
1 5 0
160
190
191
2 0 0 PROG
2 0 5
2 1 0
2 2 0
2 2 5
2 3 0 RETURN
2 9 0
291
300 REAO
3 0 1
3 0 2
3 0 3
3 0 9
3 1 0
3 2 0
3 3 0 R2
3 4 0
3 9 0
3 9 1

LOY
LOA
STA
INY
CPY
BNE
RTS

JSR
CMP
BNE
JSR
JSR
RTS

LOA
STA
LOA
STA
INC
BNE
INC
LOA
RTS

0
TABLE , Y
CHRGET , Y

#6
INIT

REAO
3 5
RETURN
BEEP
COPY

$ 7A
R2+1
$7B
R2+2
R2+1
R2
R2+2
$ 0 8 0 0

5 0 0 COpy INC $ 7A

i Modify the
i f i rs t s ix
i bytes of
i CHRGET
i rout i ne

i get cha r
i i s i t a # ?
i no
i yes ! BEEP
i updat e $ 7A
i and $7B

i COPY $ 7A
i and $7B
i into new
i read
i rout i ne &
i ge t next
i character

i COPY of

5 1 0
5 2 0
5 3 0 EXIT
590
591
800 BEEP
8 0 5
810
815
820
825
830
8 3 5
8 4 0
8 4 5
8 5 0
8 5 5
860
8 6 5
870 DELAY
87 5
880 QUIET
885
890
895
9 0 0
9 9 0
9 9 1

BASIC and How it Works

BNE EXIT
INC $ 7 B
RTS

LDA # 3 7
STA 5 4 2 7 1
LDA # 1 0 0
STA 5 4 2 7 3
LDA # 1 5
STA 5 4 2 9 6
LDA # 5 4
STA 5 4 2 7 7
LDA # 1 6 8
STA 5 4 2 7 8
LDA # 3 3
STA 5 4 2 7 6
LDA # 1 2 2
STA 1 6 2
LDA 1 6 2
BPL DELAY
LDA # 3 2
STA 5 4 2 7 6
LDA # 0
STA 5 4 2 9 6
RTS

: s tar t of
: CHRGET
: rout ine

223

1 0 0 0 TABLE
1 0 1 0

JSR PROG
JSR COpy

: new s t a r t
i of CHRGET

Below is a BASIC loader for the machine code:

5 REM BASIC LOADER FOR BEEP
COMMAND

10 FOR Z=49 1 5 2 TO 4 9 2 6 4
2 0 READ X : POKE Z , X : NEXT Z
2 0 0 0 0 DATA 160 , 0 , 18 5 , 1 0 6 , 19 2 , 1 5 3 ,

1 1 5 , 0 , 2 0 0 , 19 2 , 6 , 2 08 , 2 4 5 , 96 , 3 2 ,
2 8 , 19 2

224 The Commodore 64 Omnibus - Part 2

2 0 0 1 0 DATA 2 01 , 3 5 , 2 0 8 , 6 , 3 2 , 57 , 19 2 ,
3 2 , 5 0 , 19 2 , 96 , 16 5 , 1 2 2 , 1 4 1 , 47 , 1 9
2 , 16 5

2 0 0 2 0 DATA 1 2 3 , 1 4 1 , 48 , 19 2 , 2 38 , 47 ,
1 9 2 , 20 8 , 3 , 23 8 , 48 , 19 2 , 17 3 , 9 7 , 8 ,
9 6 , 2 3 0

2 0 0 3 0 DATA 1 2 2 , 20 8 , 2 , 2 3 0 , 1 2 3 , 96 , 16 9 ,
3 7 , 1 4 1 , 2 5 5 , 21 1 , 1 6 9 , 1 0 0 , 1 4 1 , 1 , 2
1 2 , 16 9

2 0 0 4 0 DATA 1 5 , 1 4 1 , 2 4 , 2 1 2 , 169 , 5 4 , 1 4 1 ,
5 , 21 2 , 16 9 , 16 8 , 1 4 1 , 6 , 2 1 2 , 1 6 9 , 3 3
, 1 4 1

2 0 0 5 0 DATA 4 , 2 1 2 , 1 6 9 , 1 2 2 , 1 3 3 , 16 2 ,
1 6 5 , 16 2 , 16 , 2 5 2 , 1 6 9 , 3 2 , 14 1 , 4 , 2 1
2 , 169 , 0

2 0 0 6 0 DATA 1 41 , 2 4 , 2 1 2 , 9 6 , 3 2 , 1 4 , 1 9 2 ,
3 2 , 5 0 , 19 2 , 6 4

NOTE The code occupies some of the memory
used by the graphics routines, which
will be overwritten by this program. To
start the program type:

SYS 4 9 1 5 2

From now on every time a # i s detected i n the
program, the BEEP routine will be called. The #
can be treated like any other BASIC command with
one exception - it must not be the first command on
a line.

How the Program Works

Upon initialisation the program modifies the first
six bytes of the CHRGET routine to read:

JSR $COOE

JSR $C032

BASIC and How it Works 225

The routine keeps its own pointer to the current
byte of the BASIC program in the READ
subroutine, and this is updated to keep up with
that used by CHRGET. If a # symbol is detected,
the BEEP subroutine is called, the CHRGET
pointers are incremented to avoid reading the #
twice and control is returned to the CHRGET
routine. If the character isn't a # then control is
passed back to CHRGET.

To add a number of commands to BASIC would
involve storing them in a table, and preceding each
with a #, then adding code between lines 210 and
220 to compare the characters after the # with the
commands in the table. If a match was found then
the appropriate subroutine would be called.

VARIABLE STORAG E I N BASIC

One of the things the BASIC interpreter must take
care of is the handling of variables. It must decide
where to store them and have an indication as to
what type of variable they are . This section
illustrates the various types of variable, the form in
which they are stored in the 64 and their location
in RAM. The diagram overleaf illustrates the
arrangement of memory when a BASIC program is
stored and the zero page locations which contain
the start address of the various areas of memory.

SIMPLE VARIABLES

Simple variables are stored in memory starting
immediately after the BASIC program, at the
location pointed to by locations 45 and 46. Each
variable occupies seven bytes of memory but these
bytes are used differently by the different types of
variable.

226 The Commodore 64 Omnibus - Part 2

STRINGS

ARRAYS

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1
VARIAB LES 1

- - - - - - - - - - - - - - -

BASIC
PROGRAM
STORAG E

TO P O F BASIC RAM 55, 56

BOTTOM O F STRINGS 5 1 , 5 2

E N D O F ARRAYS 49, 50

START O F ARRAYS 47, 48

START OF VARIABLES 45, 46

START O F BASIC 43, 44

Memory Allocation for a BASIC program

Integer Variables

The diagram shows how the seven bytes are used
by an integer variable.

VARIABLE NAME VARIABLE VALUE N U LL NULL NULL

I 1 st 2 nd I High

I Low I 0 0 0
+ 1 28 + 1 28 Byte Byte

Format of an integer variable

BASIC and How it Works 227

Note that three bytes are unused, and so the use of
integer variables doesn't result in a memory saving
over floating point variables.

Floating Point Variables

These are stored as an exponent and a mantissa, so
the number is stored in the form mantissa * 2+
exponent.

The mantissa of a floating point variable is stored
in packed Binary Coded Decimal form which gives
8 bit precision with the four bytes allocated. The
first bit of the first byte of the mantissa is a sign
bit.

VARIABLE NAME VARIABLE VAL U E

1 st 2 nd Expone- M antiss- Mantiss- Mantiss- Mantiss-

-nt -a -a -a -a

Format of a floating point variable

String Variables

A string variable is stored in two parts: as an entry
in the variable table as illustrated in the diagram
below, and as the characters comprising the string,
which are stored in a separate area of memory,
pointed to by the entry in the variable table.

VARIABLE NAME POINTER TO CHARACTERS NULL N U LL

1 st 2 nd No of Low H i g h
0 0

+ 1 28 Chars Byte Byte

Format of a string variable

Because the number of characters in the string is
contained in one byte in the variable table entry

228 The Commodore 64 Omnibus - Part 2

the maximum number of characters in a string is
255.

String variables may also be defined in a program
by such statements as:

A$= " HOW LONG I S A PIECE OF STRING "

In this case the entry for A$ in the variable table
would point to a location within the BASIC
program text.

Type in the following program exactly as it appears
to see the various variable types and their storage
mechanisms.

10 PRINT " START OF VARIABLES
BEFORE=" i : PRINT PEEK (4 5) + 2 56*
PEEK (46)

20 PRINT " START OF ARRAYS
BEFORE= " i : PRINT PEEK (47) +2 56 *
PEEK (4 8)

30 A% = 1 0 0
4 0 B = 1 0 0 0
50 C$ = " CBM-6 4 "
60 0$ = C$+C$
70 PiUNT" START OF ARRAYS

AFTER= " i : PRINT PEEK (47) + 2 5 6 *
PEEK (4 8)

If you run the program you will see that before the
variables are created, the start of variables and the
start of arrays are at the same location. However
when the variables have been created by the
program there is a difference of 28 bytes between
the two - since each variable occupies 7 bytes and
the program created 4 variables.

Type in the following command to examine the
variable area:

BASIC and How it Works 229

FOR Z = 2 2 6 5 TO 2 2 9 2 : PRINTZ , PEEK (Z) :
NEXT Z

You should get a display like this:

2265 193 A (65 + 128) 1st char of name
2266 128 Blank 2nd character of name
2267 0 High byte of integer variable
2268 100 Low byte of in teger variable
2269 0 Null
2270 0 Null
2271 0 Null

2272 66 B (66) 1st char of name
2273 0 Blank 2nd char of name
2274 138 128 + exponent
2275 122 1st byte of mantissa
2276 0 2nd byte of mantissa
2277 0 3rd byte of man tissa
2278 0 4th byte of mantissa

2279 67 C (67) first character of name
2280 128 Blank 2nd character of name
2281 6 Number of characters
2282 142 Low & high bytes of pointer
2283 8 to program area
2284 0 Null
2285 0 Null

2286 68 D(68) first character of name
2287 128 Blank 2nd character of name
2288 12 Number of characters
2289 244 Low & high bytes of pointer
2290 159 to string variable area
2291 0 Null
2292 0 Null

From the comments added to the list you should be
able to see that the arrangement of data in the
variable area corresponds to that decribed above.

230 The Commodore 64 Omnibus - Part 2

One of the uses to which we can put this knowledge .
is in a short routine to dump the names of all the
variables used in a program. Such a routine can be
a valuable aid when developing programs, and
could be made more useful by getting it to give the
values assigned to each variable at the time of the
dump. The following program will print a list of all
variables used in a program.

1 REM VARIABLE DUMP
1 0 0 0 0 Z l=PEEK (4 5) +2 5 6 *PEEK (4 6)
1 0 0 1 0 Z 2=PEEK (47) +2 5 6 *PEEK (48) -2 1
1 0 0 2 0 FOR Z 3= Z l TO Z 2 STEP 7
1 0 0 3 0 Z 4=PEEK (Z 3) : Z 5=PEEK (Z 3 + 1)
1 0 0 4 0 I F Z 4> 1 2 7 AND Z 5> 1 2 7 THEN

PRINT CHR$ (Z 4 - 1 2 8) CHR$ (Z 5-
1 28) ; " % " : GOTO 1 0 0 7 0

1 0 0 5 0 I F Z 4< 1 2 7 AND Z 5< 1 2 7 THEN
PRINT CHR$ (Z 4) CHR$ (Z 5) : GOTO
1 0 0 7 0

1 0 0 6 0 PRINT CHR$ (Z 4) CHR$ (Z 5-1 2 8) i " $ "
1 0 0 7 0 NEXT

To use the program simply append it to your own
program and type in direct mode GOTO 1 0 0 0 0
when you need a variable dump.

For optimum efficiency it should be written in
machine code, and could then be called with a SYS
whenever required during the debugging stage of
your BASIC program.

Array Variables

All three types of variable may be stored in array
form, in which case different methods are used for
allocating memory. Arrays are stored immediately
above simple variables, starting from the address
pointed to by locations 47 and 48. The array type
(floating point, integer or string) is indicated by the
way in which the array name is stored - in exactly

BASIC and How it Works 23 1

the same way as with simple variables. The
arrangement of an array in memory is illustrated
below.

ARRAY Element Element Element Element Element

HEADE R 0 1 2 3 4

Format of an array

NOTE: Elements are stored in reverse order in
string arrays.

The Array Header

The header format is the same regardless of the
array type, and occupies seven bytes plus an extra
two bytes for each dimension beyond 1 .

ARRAY NAM E TOTAL
CHARACTERS BYTES

1 st 2nd LO"w High

Byte Byte

No. of Size of Nth

DIMensions DI Mension

Format of an array header

Size of N-1 th

DI Mension

Bytes one and two contain the array name and
bytes three and four store the amount of memory
occupied by the array in low byte, high byte order.
The fifth byte contains the number of dimensions
in the array.

In a one dimensional array bytes six and seven
contain the size of the array as specified in the DIM
statement that created it. If no DIM statement
exists then the default number is 10. For arrays
with more than one dimension, the header is larger
by two bytes per additional dimension and these
two bytes contain the size of the extra dimension.
The dimension bytes are stored in reverse order in

232 The Commodore 64 Omnibus - Part 2

the header to that in which they appear in the DIM
statement that created them.

Array Elements

The way in which array elements are arranged in
memory is illustrated in the following diagram:

FLOATI N G
POI NT

I NTEG E R

STRI NG

Expone- Mantiss- Mantiss- Mantiss- Mantiss-

-nt -a 1 -a 2 -a 3 -a 4

H i g h Low

Byte Byte

No. of High Low

Chars. Byte Byte

Pointer

Format of array elements

Floating point array elements occupy 5 bytes,
string elements occupy 3 bytes and integer array
elements need only two bytes

The next program creates an array and the
immediate mode commands following it display the
area of memory in which it is stored.

10 DIM AB (1 0 , 2 0)

FOR Z = 2 0 6 7 TO 2 0 8 5 : PRINT Z , PEEK (Z) :
NEXT Z

You should get a list like this:

2067
2068
2069
2070
2071
2072

90
o
140
1
1 12
o

These seven bytes
are the loop counter, Z,
used to display
the list.

BASIC and How it Works 233

2073 0

2074 65 A The array name
2075 66 B

2076 140 The number of bytes used, low
2077 4 and high. 4*256 + 140 = 1 164

2078 2 The number of dimensions

2079 0 Size of second dimension, high
2080 21 and low bytes. 0*256 + 21 = 21

2081 0 Size of the first dimension, high
2082 1 1 and low bytes. 0*256 + 1 1 = 1 1

2083 0 This is the start of the area of
2084 0 memory in which the array
2085 0 elements are stored

CHAPTER 1 8

MACH I N E CODe O N TH E 64

Although the 64 runs programs in BASIC, this is
not the (natural' language of the microprocessor (a
6510) at the heart of the computer. When you
switch on the 64 it automatically begins running a
very sophisticated set of programs which are
wri tten in the machine language of the 6510. It is
these programs which interpret the BASIC
commands, provide the screen editing facility and
handle the cassette, disk drive and printer.

The machine language of a microprocessor is a set
of instructions which can be interpreted directly by
the electronics within the microchip. Each type of
processor has its own instruction set - the 6510 is a
variant of the well known 6502 processor and
shares the same instructions.

If the processor can interpret machine language
programs directly , why go to the trouble of
providing a second language, BASIC, for the 64?
The reason is that machine language instructions
are less powerful than BASIC instructions, and
programs are therefore less easy to write, as it may
take several machine code instructions to perform
the equivalent of one BASIC command.

When computers were first developed all programs
for them were written in machine code, but it was
soon realised that this made programming very
tedious. "High-level" languages such as BASIC
were developed to make programming easier by
allowing the programmer to concentrate on the

Machine Code on the 64 235

problem to be solved without getting bogged down
in the details of writing the code.

TH E 651 0 M ICROPROCESSOR

The electronics of a microprocessor are extremely
compl i cated , but from the machine code
programmer's point of view the 6510 i s a fairly
simple device. The 6510 has three 8-bit data
registers, the accumulator, and the X and Y index
registers; and three control registers, the processor
status register, the stack pointer and the program
counter (which unlike the others i s a 1 6-bit
register). These registers are similar to storage
locations in memory but are built into the
microprocessor chip, and are used to hold the data
being processed by the 6510.

Accumulator

This is the most used of all the registers. Almost
all the data processed by the computer passes
through this register. The accumulator is used in
all calculations - addition, subtraction and logical
operations.

X and Y Index Registers

The index registers are so called because they may
be used in a variety of ways to index tables of data
in the memory. They also play a useful role as loop
counters and temporary storage registers.

Processor Status Register P

This is not so much a register as a collection of
single bits which act as <flags' to indicate various
conditions of the processor. These flags are:

236 The Commodore 64 Omnibus - Part 2

C The Carry flag. Used in addition and
subtraction operations.

Z The Zero flag. Indicates that the result
of the last operation was zero.

N Indicates a negative result.

V Indicates an overflow or underflow in
signed ari thmetic.

D Sets Decimal mode.

I Interrupt disable.

B Break instruction just performed.

These seven flags form the processor status
register, which is an 8-bit register thus:

BIT 7

Bi t 5 is not used.

B 0

BIT O

z c

The 6510 has a number of instructions which test
the states of these flags and cause the program to
branch if a flag is in a certain state . These
instructions correspond loosely to the IF ... THEN
... GOTO of BASIC, and play an important part in
all machine code programs.

Program Counter PC

This 16-bit register stores the address in memory of
the next instruction to be executed.

Machine Code on the 64 237

Stack Pointer S

This is an eight bit register used to index the
memory area in which subroutine return addresses
are stored.

TH E 651 0 I N STRUCTION SET

The instructions in the machine code instruction
set include commands for moving data between the
64's memory and the three data registers, for
performing arithmetic and logical operations on
the contents of the accumulator, and for testing the
results of these operations.

All 6510 instructions take the form of single byte
numbers, but may be followed by one or two further
bytes as an operand. For example,

169 1

means 'load the accumulator register with the
number 1'. Instructions are usually expressed in
hexadecimal as this is more convenient. The
instruction given above would look like this in
hexadecimal:

$A9 $ 0 1

The $ prefix indicates that the numbers are in hex.

Instructions may be entered in a number of ways.
The simplest method is to POKE the numbers into
store using a BASIC program. This method is
unbelievably tedious and error-prone for all but the
shortest of programs. For more complex programs
an assembler should be used. This is a special
program which allows you to enter and amend a
sequence of machine code instructions using
mnemonics to represent the instructions, and then
translates these into the numbers which the

238 The Commodore 64 Omnibus - Part 2

microprocessor can read. For example , the
instruction above could be entered in the form:

LDA # $ 0 1

where LDA means LoaD the Accumulator, and
#$01 is the number to be loaded. The # is used to
distinguish a number from an address in assembly
language, while the $ symbol again indicates a
hexadecimal number.

The instructions of the 6510 are described below.

Transferring Data

The first group of instructions move data between
the 6510 registers and the memory.

LDA This instruction copies a byte of data
from memory into the accumulator.

STA Copies the accumulator to memory.

For example:

LDA $ 0 4 0 1

STA $ 0 4 0 2

copies data from location $0401 (which in decimal
is 1025) into the accumulator and then stores it in
location $0402 (1026).

There are a number of different forms of the LDA
and ST A instructions, which differ in the way the
memory is used. These different forms are called
addressing modes.

Machine Code on the 64 239

Absolute Addressing Mode

Instructions using this addressing mode give the
address of the memory location as a two byte
number following the instruction code . For
example:

LOA $ 0 4 0 1

The code for the LDA instruction is $AD (or 173),
so the instruction is coded as:

AD 0 1 0 4

(The low byte of the address is always given first.)

Similarly:

STA $ 0 40 2

STA has the code $8D, so the instruction is:

80 0 2 0 4

Immediate Addressing Mode

In this mode the data is read not from a specified
memory location, but from the location after the
program instruction. This is used to load the
accumulator with known values. The # symbol is
used to signify that the number following the
instruction, called the operand, is to be interpreted
as a number:

LOA # 1

means load the accumulator with the number l .
The code for the instruction in $A9 , so the full
instruction would be:

240 The Commodore 64 Omnibus - Part 2

A9 0 1

There is no corresponding STA instruction - it
would be meaningless!

Zero Page Addressing Mode

Here the memory location indicated is in page zero
of the memory (the first 256 bytes, $0000 to $OOFF,
for which the high byte of the address is $00).

LOA $70

loads data from $007D. The code is $A5, so the full
instruction is:

AS 70

This is equivalent to the absolute addressed:

LOA $ 0 070 AO 70 00

but i s faster in operation, and takes less storage
space. Because zero-page addressing is faster it is
useful to store frequently used data in page zero.

Other data transfer instructions, LDX, LDY, STX
and STY transfer data to and from the X and Y
index registers. These instructions have the
following codes:

MODE LOX LOY STX STY

ABSOL UTE AE AC 8E 8C

I M M EDIATE A2 AO - -

Z E RO PAG E A6 A4 86 84

Machine Code on the 64 24 1

Further instructions move data between the
accumulator and the X and Y registers. These are
single byte instructions with no operands:

CODe FU NCTIO N

TAX AA Copies Accum u lator to X register

TAY A8 Copi es A to Y

TXA 8A Copi es X to A

TVA 9A Copies Y to A

Arithmetic

The 6510 can perform addition and subtraction
operations. Multiply and divide must be calculated
by program, as instructions are not provided.

Addi tion is performed by the command ADC. This
adds a number in memory to the number in the
accumulator, storing the result in the accumulator.
If the carry flag in the processor status register was
set before the operation, 1 is added to the result. If
the result is greater then 255, the least significant
eight bits remain in the accumulator and the carry
flag is set; otherwise it is cleared.

The use of the carry flag allows numbers of two
bytes or more to be added together, with the carry
operating in the same way as when you add two
numbers with pencil and paper.

To add two single byte numbers stored in, say,
$1000 and $1001:

CLC

LDA $ 1 0 0 0

Clear the carry flag.

Load first number.

242 The Commodore 64 Omnibus - Part 2

ADC $ 1 0 0 1

STA $ 1 0 0 2

Add second number.

Store result.

The result is stored in $1002. The two original
numbers are unaffected by the operation.

Notice that the carry flag was cleared before the
addition. This should always be done before an
addition, as the flag may have been set by a
previous operation, and this would give the wrong
result for the addition. The code for CLC is $18.

Like LDA and ST A, ADC can be used in several
addressing modes:

Absolute Mode ADC < address> 6D

69 Immediate ADC# <number>

Zero Page ADC < zero page address> 65

Larger numbers can be added in a similar way to
that shown in the example above. Suppose there
are two 3 byte numbers stored in locations $A1 ,
$A2, $A3 and $A4, $A5, $A6, and the sum of these
is to be stored in $B1, $B2, $B3 . The method is as
follows:

CLC
LOA $Al
AOC $A4
STA $Bl
LOA $A2
AOC $A5
STA $B2
LOA $A3
AOC $A6
STA $B3

Clear carry flag
Load lowest byte of first number
Add lowest byte of second number
Store lowest byte of sum
Load second byte of first number
Add second byte of second number
Store second byte of sum
Load highest byte of first number
Add highest byte of second number
Store highest byte of sum

Machine Code on the 64 243

Just as in normal arithmetic, the lowest parts of
the numbers (the least significant bytes) are added
first.

Subtraction

ADC is complemented by a subtraction command
SBC, which subtracts a number from that in the
accumulator. This is used in a similar fashion to
the ADC command, and again the carry flag is
used when handling large numbers. There is an
important difference - the carry flag must be set
before the subtraction, and will be cleared to
indicate a (borrow' when the result of the
subtraction is less than zero. If the flag is clear
before subtraction, 1 is subtracted from the result.
The different addressing modes are again
available:

Absolute

Immediate

Zero Page

SBC < address>

SBC# <number>

ED

E9

SBC < zero page address> E5

This example subtracts 1 from a two byte number
stored in $0401 , $0402:

SEC
LDA $ 0 4 0 1
SBC # 1
STA $ 0 4 0 1
LDA $ 0 4 0 2
SBC # 0
STA $ 0 4 0 2

Set carry = clear borrow
Load low byte
Subtract 1
Store new low byte
Load high byte
Subtract 0
Store result

The last 3 instructions are not as pointless as they
may seem. If the low byte was zero to start with,
subtracting 1 gives 255 ($FF) and clears the carry
flag (sets (borrow'). The last three instructions load
the high byte of the original number and subtract

244 The Commodore 64 Omnibus - Part 2

0, but if the carry flag has been cleared, 1 will be
subtracted from the result. So, if locations $0401
and$0402 had originally contained the number
$2900, the result would be $28FF.

Addition and subtraction can be performed only on
numbers in the accumulator. There are no
corresponding commands for numbers held in the X
and Y registers.

Incrementing and Decrementing

You can add or subtract 1 to a number in memory
or in the X or Y register using Increment and
Decrement instructions:

CODE FUNCTION

INX E8 Adds 1 to X reg ister

DEX CA Su btracts 1 from X reg ister

I NY C8 Adds 1 to Y

DEY 88 Su btracts 1 from Y

These are single byte instructions with no operand.
The two instr.uctions INC and DEC perform
similar operations on numbers in the memory.

INC <address> Adds 1 to the contents of
that address

DEC <address> Subtra cts 1 from the
con ten ts of the address

INC and DEC do not alter the accumulator or the
. X and Y registers.

None of these i ncrement and decreme n t
instructions has any effect on the carry flag. The Z
flag will be set if the result of any of these

Machine Code on the 64 245

operations is zero, and the N flag will be set if B it 7
of the result is set. (Z and N are similarly affected
by ADC and SBC.)

Branches

The 6510 has a number of conditional branch
instructions which test a flag in the P register and
cause the program to branch if the tested flag is set
or clear. For example, the instruction BEQ causes
a branch if the Z flag is set, that is if the result of
the last operation performed was zero. BNE does
the opposite: the program branches if Z is clear,
after a non-zero result.

The instructions have single byte operands which
give the branch destination relative to the current
program position. If the operand is between 0 and
127 the jump is forwards; if the operand is between
128 and 255 the jump is backwards. An operand of
128 causes a jump to the instruction whose address
is 1 28 less than the current position in the
program, and the size of the jump gets less as the
number increases to 255. So,

BNE 2 0

causes a jump forward of 20 bytes if the zero flag is
set and:

BNE 2 3 0

causes a jump back of26 bytes.

A vital point to remember is that the jump is not
measured from the address of the branch
instruction but from that of the next instruction.
This is because the program counter is increased to
point to the next instruction before the branch
instruction is processed.

246 The Commodore 64 Omnibus - Part 2

Branch instructions are indispensable in programs
of any length, as they are the machine code
equivalents of BASIC commands like IF ... THEN
... GOTO, allowing programs to make decisions
and act accordingly. The instructions also provide
a convenient way of creating loops. Consider the
following:

· · ·

· · ·

LOX , 1 0 A2 OA � OEX CA
BNE 2 5 3 00 FO
LOA $ABCO AD CO AB

· · ·

· etc.

This loop is repeated 10 times, until the Z flag is set
as the value in the X register becomes zero, at
which point the program continues. The loop in the
example is literally a waste of time, doing nothing
more than delay the program slightly. There could
however be a number of instructions between the
beginning of the loop and the DEX instruction.

An important point to remember is that the branch
instruction must follow immediately after the
instruction which creates the condition under test.
Any instruction which modifies any of the 6510
data registers (and quite a few which don't) will
modify the flags in the processor status register, so
the flags are constantly changing. If there are any
instructions between the one whose effect you wish
to test and the test itself, the flags may change
again before the test is performed. For example, in

. a loop ending:

OEX

LOA $ 1 2 3 4
BNE • • •

Machine Code on the 64 247

the flags will be set by the DEX instruction, but
immediately changed by the LDA instruction to
indicate the nature of the number loaded into the
accumulator.

The full list of branch instructions is:

CODE OPERATI O N

BEQ FO Branch on resu lt = 0 (Z set)

B N E DO B ranch on resu lt < > 0

BeS 90 B ranch if carry set

Bee BO B ranch if carry clea r

B M I 30 Branch if negative (N set)

BPL 1 0 B ranch i f positive (N clear)

BVS 70 B ranch if V set (overflow)

BVe 50 B ranch if V clear

These instructions test the four flags Z, C, N and V.

The Z or zero flag indicates a result of zero, either
in the accumulator, or the X or Y register, or if the
INC or DEC instruction was used, in the memory
location concerned.

The carry flag may be set or cleared by program. It
is also altered by addition and subtraction
instructions, and by the register shift instructions
which are described later.

The N flag is a copy of Bit 7 of the register last
altered. In signed arithmetic this bit indicates the

248 The Commodore 64 Omnibus - Part 2

sign of the number - set for negative, clear for
positive.

The V flag indicates an overflow in twos
complement arithmetic. The flag may be cleared
by the CL V instruction.

Comparisons

The three instructions CMP, CPX and CPY are
used to compare registers with numbers in
memory. These instructions do not alter either
memory or the register, but the Z, C and N flags are
altered to indicate the result of the comparison.

CMP compares the accumulator with another
number. For example:

eMP # 1

compares the contents of the accumulator with the
number 1 . The comparison leaves the flags in the
state they would be in after setting the C flag and
subtracting the number from the accumulator.
That is:

C is set if A > = Number, otherwise C is clear.

Z is set if A = Number, otherwise Z is clear.

N is set if the operation (A-Number) would
leave a 1 in Bit 7.

The instructions CPX and CPY are similar, except
that the X or Y register is tested instead of the
accumulator. All these instructions may test
memory or numbers using the addressing modes
described for LDA.

Machine Code on the 64 249

MODE CMP CPX Cpy

ABSOLUTE CD EC CC

I M M E DIATE C9 EO CO

ZERO PAG E C5 E4 C4

ADDRESSING MODES

Many of the 6510 instructions can take several
forms, providing different ways for specifying the
memory location to be used by the instruction.
These different forms of the instructions are said to
use different addressing modes, because they
address the memory in different ways. We have
already introduced three addressing modes:
absolute addressing, zero page addressing and
immediate addressing. These and the other modes
are explained below.

Absolute Addressing

This mode uses a two byte operand after the
instruction code. The two bytes are the low and
high bytes of the address of the data in memory.
Absolute addressing is indicated by the full address
after the instruction:

LDA $ABCD

Zero Page Addressing

This mode uses a one-byte operand following the
instruction code. This byte is the low part of an
address in page zero ($0000 to $OOFF). Instructions
in this mode are written thus:

LDA $C7

250 The Commodore 64 Omnibus - Part 2

Indexed Addressing

Indexed addressing uses the X or Y index register
to modify the address given after the instructon, so
that the address of the data is Operand + X or
Operand + Y. For example:

Absolute:

LOA $ABCO

Absolute Indexed:

LOA $ABCO , X

loads the contents of$ABCD

loads the c on t en ts o f
$ABCD + X.

The Y index register can also be used in a similar
manner.

As well as absolute addressing there are also zero
page indexed addressing modes. For example:

LOA $AB , X

loads the accumulator with the contents of
$OOAB + X.

Indirect Addressing

In the indirect addressing modes the indicated
memory location is not used to store the data, but
holds the low byte of the address of another location
where the data is to be placed. The high byte of the
address is held in the next location. Only one 6510
instruction, the jump instruction JMP, can use
simple indirect addressing, but many instructions
use indexed forms of indirect addressing.

Machine Code on the 64

Indirect Indexed & Indexed Indirect
Addressing

25 1

In indirect indexed addressing the single operand
byte following the instruction indicates the first of
a pair of zero page locations whose contents form a
pointer to the target location. The contents of the Y
index register are added to the pointer to find the
final address.

Indexed indirect addressing uses the X register to
index the zero page address in which the pointer is
to be found. So:

Indirect Indexed:

LDA (TABLE) , Y Reads the ze ro - page
locat i ons TAB LE and
TABLE + 1 and adds Y to
the contents to produce the
address of the data.

Indexed Indirect:

LDA (TABLE , X) Adds X to the address
TABLE to find the zero page
location where the data
pointer is held.

OTH E R ADDRESSING MODES

Implied addressing

No address at all is specified, as in CLC, RTS etc.

Relative Addressing

The address is given as an offset from the current
program address. This is the addressing mode used
by the relative branch instructions. For example:

252 The Commodore 64 Omnibus - Part 2

BCS 3 5

means branch to the program instruction at the
address 35 bytes above the current address in the
program counter.

Accumulator Addressing

The instruction acts only on the accumulator.
Again no operand is used. This addressing mode is
used only by the register shift instructions.

J UMPS AND SU BROUTI N ES

In addition to the relative branch instructions
described above, there is an absolute jump
instruction, JMP. This causes the program to
jump to another location. There are two addressing
modes:

Absolute:

JMP $ABCD

Indirect:

The program continues at the
location specified in the next
two bytes, in this case $ABCD.

JMP ($ABCD) The program jumps to the
address whose low byte i s
contained in location $ABCD,
and whose h i gh byte i s
contained in location $ABCE.

A similar instruction, J S R , is used to call
subroutines. This may be used only in the absolute
addressing mode, for which the instruction code is
$20.

JSR $CO O O Jumps to the subroutine at $COOO.

Machine Code on the 64 253

Before jumping to the subroutine, the 6510 stores
the current value of the program counter in a
special area of memory called the stack, so that it
may be restored on completion of the subroutine.
The command RTS causes the return from
subroutine; the 6510 reads the first two bytes on
the stack and resets the program counter to that
address.

The stack is held in page 1 of the 64's memory,
locations $0100 to $OIFF. The stack is designed to
be used as a last-in first-out store, and the stack
pointer register is used to indicate the first free
location in the stack. When the 6510 is reset, the
pointer is set to $FF (the high byte is always $01
and can be disregarded) , and the pointer is
decremented as the data is added by subroutine
calls, and is incremented as data is removed by
RTS commands, so that it always indicates the
first free location, to which the next byte to be
added will be written. This allows the nesting of
subroutines; as subroutines are called the return
addresses are added to the stack, which fills down
from $OIFF. Data is removed in reverse order, and
the stack empties up to $OIFF.

If the stack pointer should reach zero and a further
subroutine call is made, the pointer would return to
$IFF, and the oldest items in the stack would be
overwritten, which would cause havoc! This is
unlikely to happen except in very complicated
programs; most of the time you can forget about the
working of the stack and let it look after itself.

Data may be written to the stack by a program,
using the instruction PHA, which 'pushes' the
contents of the accumulator onto the stack. This
can be useful if you want to put a number on one
side for a moment while performing another

254 The Commodore 64 Omnibus - Part 2

calculation. Numbers are pulled from the st�ck by
the instruction PLA.

It is also possible to store the processor status
register P on the stack and recall it, using PHP
and PLP.

COD E OPE RATION

PHA 48 A to STACK

PLA 68 STACK to A

PHP 08 P to STACK

PLP 28 STACK to P

The stack pointer is automatically adjusted by the
6510 when these instructions are used. Don't
forget to take things off the stack in the reverse
order to that in which you put them on.

Be careful using these instructions. Remember
that they all use the same stack as is used to store
subroutine return addresses. This means that you
must be careful not to execute a RTS instruction
between writing data to the stack and reading it
back, or the program will return to the wrong
place. You can of course call a subroutine after
writing the data; it will return without any
problem. What you must not do is return from a
subroutine which has pushed data onto the stack
before taking the data back off the stack.

Two further instructions, TSX and TXS, allow you
. to modify the stack pointer.

TSX BA Copies the stack pointer to the X
register

Machine Code on the 64 255

TXS 9A Copies the X register to the stack
pointer

This means you could, if you felt confident,
maintain two or more stacks, but this is not
advisable. There would be a slight speed advantage
in using an area of page 1 as a table, indexed by the
stack pointer, but it would be both easier and less
hazardous to use indirect indexed addressing in
another part of the memory.

INTERRUPTS

A microprocessor in a computer such as the 64 has
several jobs to do. As well as running the BASIC
interpreter program, the screen must be managed,
the keyboard checked for keypresses, and many
other routine operations performed. The ideal
microprocessor would be able to run many separate
programs at the same time, but such a processor
does not exist. Instead, the 6510 has a facility
which allows programs to be interrupted while
another program is run and then restarted at the
point at which they were stopped.

Two of the 40 pins on the 6510 chip are interrupt
request pins. Peripheral devices applying signals
to one or other of these pins will stop the 6510 in
the middle of whatever it is doing, and divert it to
another piece of program. The 6510 will be
returned to the original program by an instruction
at the end of the interrupt program. The two pins
are similar in use, the difference being that the
IRQ (interrupt request) pin is ignored if the I bit of
the processor status register has been set by an SEI
instruction, whereas the NMI (non-maskable
interrupt) pin can not be ignored.

When a suitable signal is applied to the IRQ pin the
6510 finishes the current instruction, stores the P
register and the program counter on the stack, sets

256 The Commodore 64 Omnibus - Part 2

the interrupt disable flag (I) in the P register and
jumps to the program at the address held in
locations $FFFE and $FFFF. The processor
continues to execute the program from this point
until a RTI instruction is reached. The RTI
(return from interrupt) acts in a similar way to
RTS, but restores the P register from the stack as
well as the program counter.

Interrupts in response to the NMI pin are similar,
except that the start address for the interrupt
program is held in locations $FFFA and $FFFB.

The interrupt feature allows the effects of several
programs running at once . The 64 has a clock
circuit which interrupts the 6510 every 1/60 second
to call the keyboard scanning routine. This checks
the keyboard and puts the ASCII code of any key
held down into the keyboard buffer before RTIing.
The effect of this is that the rest of the BASIC
interpreting routines do not need any complex
subroutines to read the keys; they just look in the
keyboard buffer (this is what the BASIC GET
command does).

Interrupts are discussed further in Chapter 21 ,
which shows how interrupt programs may be used
to modify the display.

LOGIC

The two logical operations AND and OR, familiar
in BASIC, are also available in machine code, as is
a third, the Exclusive OR. The Exclusive OR
differs from OR in that 1 OR 1 gives 1, but 1 EOR 1
gives O. The mnemonics for the three instructions
are AND, ORA and EOR.

The truth tables for these operations are:

Machine Code on the 64 257

A B A. OR B A EOR B A AND B
0 0 0 0 0

0 1 1 1 0

1 0 1 1 0

1 1 1 0 1

The instructions all act on the accumulator.

Logical instructions are useful for testing and
modifying selected bits within a byte without
altering the rest. For example the AND instruction
may be used to mask a part of a byte. To inspect the
first four bits of location $1234, the data would be
loaded into the accumulator and ANDed with the
number 15 (15 in binary is 00001111) . As the AND
operation only sets the bits which are set in both
the numbers in the operation, the top four bits of
the result will be zero, and the lower four bits will
be a copy of the lower four bits of location $1234.
The instruction sequence would be:

LDA $ 1 2 3 4
AND # 1 5

SH IFTS

There are four shift instructions available which
shift or rotate the bits in the accumulator or
memory.

ASL Shifts the accumulator to the left. A
zero is placed in Bit 0 and Bit 7 is moved
to the carry flag. This is equivalent to
multiplying the accumulator by two.

258 The Commodore 64 Omnibus - Part 2

C BIT 7 ACCUM U LATOR

The ASL operation

BIT O

LSR Shifts the accumulator to the right. A
zero is placed in Bit 7 , and Bit 0 it moved
to the carry flag. This is equivalent to
dividing the number in the accumulator
by 2.

BIT 7 ACCU M U LATO R BIT O C

The LSR operation

ROL Rotates the number in the accumulator
to the left. The carry flag is copied to Bi t
0, and Bit 7 is moved to the carry flag.

I �
BIT O�

'-------. D -----'-
C

The ROL operation

ROR Rotates the accumulator to the right.

Machine Code on the 64 259

c

The ROR operation

USING MACH I N E CODE WITH BASIC

Machine code programs are called from BASIC by
the SYS command. This is similar in effect to the
GOSUB command except that the subroutine
called is a machine code routine at the address
specified in the SYS command. Control is returned
to BASIC when the routine is completed by the
machine code instruction RTS. The SYS command
is followed by the address of the start of the
machine code program. For example:

SYS 6 4 7 3 8

calls the routine in ROM which resets the 64 when
it is switched on. Don't try this if you have a
valuable program loaded - it will be erased.

Storing Machine Code Programs

The most convenient place to store most machine
code programs is in the 4k block of memory
between 49152 ($COOO) and 52247 ($CFFF) which
is not used by the 64 in the execution of BASIC
programs.

If your program is longer than 4k it may be placed
lower down in memory in the area usually reserved
for BASIC programs. This area normally extends

260 The Commodore 64 Omnibus - Part 2

from 2048 to 40759 but you can reserve a part of it
for machine code programs by altering the 'top of
memory' pointer in locations 55 and 56.

To use this method, work out the new top of
memory you need by subtracting the length of your
machine code program from 40759, and POKE the
low byte of that address into location 55 and the
high byte into location 56. Finally reset the
pointers by typing:

CLR

The memory above the new 'top of memori is now
protected from being overwritten by BASIC
variables.

The Kernal Routines

Many of the subroutines present in the 64's ROM
can be used in your machine code programs. Some
of the most accessible and well documented form
part of the operating system called the kernal.

To enable you to make use of these routines, a table
of their start addresses is kept in memory - a
feature shared by all Commodore machines.
Calling each routine involves a JSR to the
appropriate part of the table. By arranging the
table in this way, programs wri tten on one
Commodore mach ine may be more e asi ly
translated to run on another. An example of the
use of the kernal routines to send output to a
printer may be found in Chapter 26, and a list of
the routines and their functions is given in
Appendix II .

Learning to Write Machine Code

This chapter is not intended to teach you all there
is to know about machine code programming,

Machine Code on the 64 261

rather it introduces the fundamentals of the
language. If you wish to study the subject further,
there are a number of books aboout the 6502/6510
microprocessors which you may find helpful.

We have written a number of machine code
programs for this book, and if you study these you
will soon get a feel for the language, and realise
that despite first appearances, machine code
programming is not really very difficult.

CHAPTER 1 9

B IT-MAPPE D G RAPH ICS - PART 1

As well as the normal text display, the 64 can
produce a high resolution bit-mapped display in
which the pixels correspond to individual bits in a
defined area of memory. There are two alternative
bit-mapped display modes: standard bit-mapped
mode, which has a screen resolution of 320 pixels
by 200 pixels in two colours; and multicolour bit
mapped mode which has a lower resolution of 160
by 200 pixels, but in four colours.

The graphics modes are controlled by the VIC-TI
chip. Bit 5 of the control register at location 53265
selects bit-map mode: if the bit is set, bit-mapped
mode is selected; if the bit is clear the 64 display is
in text mode. To select multicolour bit-mapped
mode, Bit 4 of the second VIC control register at
location 53270 must also be set .

Display Memory

When you enable bit-mapped mode, you must also
decide where in memory the screen information
will be stored. Bit mapped displays need nearly 9k
of memory, 8000 bytes for the picture data and
1000 for the text screen memory, which in the bit
mapped modes is used to hold colour information.
The VIC chip can only address 16k of memory at a
time, so the two blocks of memory needed for bi t
mapped displays must lie within one of the four 16k
banks or sections which make up the 64k of total
memory space in the 64.

Within the 16k bank, the lk of text screen memory
may be set to begin at any location whose address is

Bit-Mapped Graphics - Part 1 263

a multiple of 1024, but the 8k bit-map display
memory area must begin either at the beginning of
the bank, or at the mid point, 8k above the start.
These limitations mean that the bit-map screen
memory can not be put in the obvious place at the
top of the user RAM (from 32k to 40k), as there is
no more RAM in this bank into which the text
screen memory could be placed. The best place for
the bit-map display memory is therefore at the top
of the second bank, from 24576 to 32575, with the
text screen memory beginning at 23k (23552). This
leaves about 2 1k of memory free for BASIC
programs, which should be enough for most
purposes.

The bank which the VIC chip addresses is set by
two POKE commands. First the lowest two bits of
the data direction register of the CIA interface chip
must be set to 1 by:

POKE 5 6 57 8 , PEEK (5 6 57 8) OR 3

and the bank number must be POKEd to the
lowest two bits of the interface port at 56576:

POKE 5 6 5 7 6 , (PEEK (5 6 5 7 6) AND2 5 2) OR B

where B is the bank number given by the table:

B BAN K
Start ing
Location

3 o to 1 6k 0

2 1 6k t0 32k 1 6384

1 32k to 48k 32768

0 48k to 64k 49 1 52

264 The Commodore 64 Omnibus - Part 2

Screen Memory Positioning

The position within the 16k bank of the bit-mapped
screen is controlled by Bit 3 of location 53272. If
the bit is zero the bit-mapped display is placed at
the beginning of the bank. If the bit is 1 the screen
memory begins at the mid-point of the bank.

The position of the text screen within the bank is
controlled by the four highest bits of location
53272. The value of these bits is the number of 1k
uni ts by which the start of the screen memory is
offset from the beginning of the 16k bank.

To set the bit-map display to begin at 24k, which is
the mid-point of the 16k-32k bank, Bit 3 of 53272
must be set. To place the text screen memory at
23k, the four most significant bytes must be set to
23-16, which is 7. The value to be POKEd into
location 53272 is therefore 7*16 + 8, which is 120.

So, to set the 64 to the bit-mapped display mode
with the display at 24k, we need the following short
program:

5 REM SELECT BANK 1 6 - 3 2K
10 POKE 5 6 57 8 , PEEK (5 6 5 7 8) OR 3
20 POKE 5 6 5 7 6 , (PEEK (5 6 5 7 6) AND

2 5 2) OR 2
3 0 POKE 5 3 26 5 , PEEK (5 3 26 5) OR

3 2 : REM SET BIT MAPPED MODE ON
4 0 POKE 5 3 27 2 , 1 2 0 : REM SET MEMORY

POINTERS

Restoring the Text Display

To restore the normal display manually, you can
hold down RUN/STOP and tap RESTORE .
Restoring the text display by program is a matter
of returning all the registers to their normal values
- clearing Bit 5 in location 53265 and resetting the

Bit-Mapped Graphics - Part 7 265

address pointers. Add the following lines to the
previous program:

1 0 0 GET K$: IF K$= " " THEN 1 0 0
2 0 0 POKE 5 3 26 5 , PEEK (5 3 26 5) AND 2 3
210 POKE 5 3 27 2 , 2 1
2 2 0 POKE 5 6 57 8 , PEEK (5 6 57 8) OR 3
2 3 0 POKE 5 6 57 6 , PEEK (5 6 5 7 6) OR 3

When run, the program will set up a high
resolution display and wait until you press a key,
after which the normal display will be restored.

Clearing the Screen

The display you see when you run the program will
be filled with random blocks of colour. These
correspond to the data with which the memory
happened to be filled when you set bit-mapped
mode. To clear the screen, you must clear the
memory by POKEing it with zeros.

Colour

The colour of a hit-mapped display is controlled by
the numbers in the text screen memory. Each
number in this memory area controls the colour of
an 8x8 block of pixels on the high resolution
display. The 'foreground' colour - the colour
displayed for a bit set to 1 in display memory - is
controlled by the four highest bits of the screen
memory, while the background colour depends on
the four lowest hits. For example , to set a
foreground colour of red (colour 2) and a white
background (colour 1) , each location in the text
memory must be set to 16*2 + 1, which is 33.

Add the following two lines to the program. Line
50 sets the colours, and line 60 clears the screen
memory.

266 The Commodore 64 Omnibus - Part 2

50 FOR L= 2 3 5 5 2 TO 2 4 5 51 : POKE L ,
3 3 : NEXT L

60 FOR M=2 4 5 7 6 TO 3 2 57 5 : POKE M ,
0 : NEXT

The process of setting the colours and clearing the
screen takes around 35 seconds - far from
instantaneous! The only way of speeding up the
screen clearing is to use a machine code program.
A program to set the screen mode and clear the
screen is described later, but first a few words
about multicolour bit-mapped mode.

M U LTICOLOUR BIT-MAPPED M ODE

Multi colour b it-mapped mode i s simi l ar to
standard bit-mapped mode, except that the screen
resolution is reduced, and that each pixel may take
one of four colours. The two extra colours are
controlled by the colour memory (always located
from 55296 to 56295) and the background colour
stored in location 53281 . Each pixel is controlled
by two bits of data in the display memory as
follows:

COLOU R
BIT

COLO U R DISPLAY ED
PATTERN

0 00 Backgrou nd - l ocation 5328 1

1 0 1 U pper fou r bits of screen memory

2 1 0 Lower fou r bits of screen memory

3 1 1 Colour memory

To change from standard bit-mapped mode to
multicolour bit-mapped mode, B it 4 of location
53270 must be set, by the command:

POKE 5 3 27 0 , PEEK (5 3 2 7 0) OR 16

Bit-Mapped Graphics - Part 1 267

The multicolour bit must be cleared on returning to
text mode by:

POKE 5 3 2 7 0 , PEEK (5 3 2 7 0) AND 2 39

USING MAC H I N E CODE WITH GRAPH ICS

Because of the speed problems using BASIC to
control the graphics, machine code can be very
useful. Included in this book are a number of
machine code programs to speed up graphics
functions, and the first of these sets bit-mapped
mode (BMM) or multicolour bit-mapped mode
(MCBMM) and clears the bit-mapped screen.

If you have an assembler and are familiar with
machine code you can enter the machine code as it
is given i n this chapter and Chapter 2 0 .
Alternatively, you can type in the BASIC loader
programs in Appendix 18 which you can use to load
the machine code into your 64. These programs
comprise a series of DATA statements which form
the machine code program and a short routine to
READ the DATA and POKE it into memory.

10
20
30
40

*
* * * BIT-MAP MODES * * *
*

5 0 * = $CO O O
6 0
70
80
90

COLI =

COL2 =

686
687

100 COL3

1 1 0 MCBM

1 2 0
1 3 0

= 688

= 689

Starts at 49152

Colour 1
Colour 2 (Background
in Standard BMM)
Colour 3 (MC BMM
only)
1 = BMM, ° = MC
BMM

268 The Commodore 64 Omnibus - Part 2

1 4 0
1 6 0 BMM LOA #1 Start for BMM
1 7 0 STA MCBM
180 BNE CLEAR
1 9 0
2 1 0 MCBMM LOA # 0 Start for MCBMM
2 2 0 STA MCBM
2 3 0
2 4 0 ! START BY CLEARING BMM SCREEN
2 4 5
2 5 0 CLEAR LOA # $ 6 0 Wipe 64x256 bytes

starting at $6000
2 6 0 STA 2 5 2
2 7 0 LOA #0
2 8 0 STA 2 5 1
2 9 0 LOX # 6 4
3 0 0 JSR WIPE
3 1 0 ! SET COLOURS
3 2 0 COLOUR LOA # 9 2 Put COLI and COL2

into screen mem
3 3 0 STA 2 5 2
3 4 0 LOA # 0
3 5 0 STA 251
360 LOA COLI Multiply COLI by 1 6
3 7 0 ASL A
3 8 0 ASL A
3 9 0 ASL A
4 0 0 ASL A
4 1 0 ORA COL2 Add COL2
4 2 0 LOX #8
4 3 0 JSR WIPE
4 4 0
4 5 0 LOA MCBM
4 6 0 BNE HIRES
4 7 0 LOA #$08 If MC, put COL3 into

colour memory
4 8 0 STA 2 5 2
4 9 0 LOA # 0
5 0 0 STA 2 5 1
5 1 0 LOX #8
5 2 0 LOA COL3

Bit-Mapped Graphics - Part 1 269

5 3 0 JSR WIPE
5 4 0 ! NOW SET POINTERS FOR BM MODE
5 4 5
5 5 0 HIRES LOA 5 6 57 8 Set bank 2
5 6 0 ORA # 3
5 7 0 STA 5 6 57 8
5 8 0 LOA 5 6 5 7 6
5 9 0 AND # 2 5 2
6 0 0 ORA # 2
6 1 0 STA 5 6 5 7 6
6 2 0 LOA 5 3 2 6 5 Set BMM on
6 3 0 ORA # 3 2
6 4 0 STA 5 3 2 6 5
6 5 0 LOA # 1 2 0 Set screen position
6 6 0 STA 5 3 2 7 2
6 7 0
6 8 0 LOA MCBM
6 9 0 BNE BMMENO
7 0 0 LOA 5 3 2 7 0 [fMC, set MC mode
7 1 0 ORA # 16
7 2 0 STA 5 3 2 7 0
7 3 0
7 4 0
7 5 0 BMMENO RTS
7 6 0
7 7 0
7 8 0
7 9 0 ! SWITCH TO TEXT MODE
7 9 5 !
8 0 0 LORES LOA 5 6 5 7 8 Reset all pointers for

text
8 1 0 ORA # 3 Restore Bank 3
8 2 0 STA 5 6 5 7 8
8 3 0 LOA 5 6 5 7 6
8 4 0 AND # 2 5 2
8 5 0 ORA # 3
8 6 0 STA 5 6 5 7 6
8 7 0 LOA 5 3 2 6 5 Clear BMM bit
880 AND # 2 2 3
8 9 0 STA 5 3 2 6 5
9 0 0 LOA 5 3 2 7 0 Clear MC bit

270 The Commodore 64 Omnibus - Part 2

9 1 0 AND # 2 3 9
9 2 0 STA 5 3 2 7 0
9 3 0 LOA # 2 1 Reset pointers
9 4 0 STA 5 3 2 7 2
9 5 0 RTS
9 5 5
9 6 0 WIPE OVER BLOCK WITH

CHARACTER IN ACCUMULATOR
9 6 5
9 7 0 WIPE LOY # 1 2 7 Subroutine to fill

memory with
character in
accumulator

9 8 0 F1 STA (2 51) , Y
9 9 0 DEY

1 0 0 0 BPL F1
1 0 1 0 PHA
1 0 2 0 CLC
1 0 3 0 LOA 2 5 1
1 0 4 0 AOC # 1 2 8
1 0 5 0 STA 2 5 1
1 0 6 0 LDA # 0
1 0 7 0 AOC 2 5 2
1 0 8 0 STA 2 5 2
1 0 9 0 PLA
1 1 0 0 DEX
1 1 1 0 BNE WI PE
1 1 2 0 RTS
1 1 3 0 END

The exclamation marks in the listing are used by
this assembler to indicate comments, and do not
form part of the program.

To use the machine code routine to set bit-mapped
mode, POKE the foreground colour into location
686 and the background colour into location 687,
and call the routine with the command:

SYS 4 9 1 5 2

Bit-Mapped Graphics - Part 1 271

To return to text mode, use:

SYS 4 9 2 6 6

To set multicolour bit-mapped mode , store the
number of the third colour in location 688, and
start the routine at line 210 of the listing using the
command:

SYS 4 9 1 5 9

Other call addresses allow you to switch from text
to bit-mapped mode without clearing the screen, to
clear the screen, or to reset the colours. The full list
of entry points is:

BMM 49152 Clear, set BMM and colours

MCBMM 49159 Clear, set MCBMM and
colours

CLEAR 49164 Clear BM screen and reset
colours

COLOUR 49177 Set colours

IDRES 49221 Set to BM or MCBMM

LORES 49266 Return to text mode

NOTE: Because these routines place the bit
mapped screen in the middle of the
BASIC program area, at 24k, there is a
risk that the display may be corrupted
by the BASIC or by program variables.
The bit-mapped screen can be protected
from BASIC by resetting the top of
BASIC memory thus:

POKE 5 5 , 0 : POKE 5 6 , 9 2 : CLR

272 The Commodore 64 Omnibus - Part 2

Which sets the top of memory to 23732
and thus prevents any BASIC programs
or variables overwriting the colour
memory. A line such as this should be
the first in every program which uses
bit-mapped graphics.

PLOTTING POINTS

The bit-mapped screen is arranged as a grid of 200
rows of 320 pixels (or 160 pixels in multicolour
mode) . Each byte in the screen memory represents
a row of 8 pixels.

320 P IXELS HORIZONTALLY

V
E
R
T
I
C
A
L
L
Y

However, the layout of the memory is a little
complicated. The top line (Row 0) of the display is
mapped onto the display memory like this:

o
1
2

8 16 24
9 17 25
10 18 26

312
313
314

3
4
5
6
7

Bit-Mapped Graphics - Part 1

315
316
317
318
319

273

The bytes are l aid out in blocks of e i ght ,
corresponding to the characters of a text display.
This layout means that plotting points on the bit
mapped screen requires some calculation to convert
X and Y co-ordinates to byte addresses. The
following formulae can be used to set and clear
pixels (the value BASE represents the address of
the start of the bit-mapped screen memory).

ROW = INT (Y/8)
CHAR = INT (X/8)
LINE = Y AND 7
BYTE = ROW* 3 2 0 + CHAR* 8 + LINE + BASE
BIT = 7- (X AND 7)

The pixel is set by:

POKE BYTE , PEEK (BYTE) OR 2 tBIT

and cleared by:

POKE BYTE , PEEK (BYTE) AND (2 5 5-2 tBIT)

The second program in our machine code graphics
package plots points on the bit-mapped screen.

10 * * * * * * * * * * * *
20 * * * PLOT * * *
30 * * * * * * * * * * * *
40
50
60 * = $COB8
80
90

1 0 0 BYTELO = 2 5 1

Starts at 49366

274 The Commodore 64 Omnibus - Part 2

110 BYTEHI = 2 5 2
1 2 0 T1 = 2 5 3
1 3 0 T2 = 2 5 4
1 4 0 XLO = 6 7 9
1 5 0 XHI = 680
1 6 0 Y = 681
1 7 0
1 8 0 COLNO = 6 8 5
1 9 0 MCBM = 689
200 BASE = 2 4 57 6
2 2 0
2 3 0
2 4 0
2 5 0 PLOT LOA Y Find ROW = YI8
2 6 0 LSR A
2 7 0 LSR A
280 LSR A
2 9 0 STA ROW
3 0 0
3 1 0 LOA XHI Find CHAR
3 2 0 LSR A
3 3 0 LOA XLO
3 4 0 ROR A
3 5 0 LSR A
3 6 0 LOX MCBM If MC mode then

CHAR = X14
3 7 0 BEQ PLOT1
380 LSR A If not MC mode CHAR

= X18
3 9 0 PLOT1 STA CHAR
4 0 0
4 1 0 LOA Y LINE = Y AND 7
4 2 0 AND #7
4 3 0 STA LINE
4 4 0
4 5 0 LOA ROW ROW = ROW*64
4 6 0 STA T1
4 7 0 LOA #0
480 STA T2
4 9 0 LOX # 6
5 0 0 PI JSR TIMES2

Bit-Mapped Graphics - Part 1 275

5 1 0 DEX
5 2 0 BNE PI
530 LDA T2
5 4 0 STA BYTEHI
5 5 0 LDA Tl
560 STA BYTELO
5 7 0
5 8 0 JSR TIMES2 Add ROW * 256
5 9 0 JSR TIMES 2
6 0 0 CLC
6 1 0 LDA Tl
6 2 0 ADC BYTELO
6 3 0 STA BYTELO
6 4 0 LDA T2
6 5 0 ADC BYTEHI
6 6 0 STA BYTEHI B YTE now holds

ROW*320
6 7 0
6 8 0 LDA # 0 Find CHAR*8
6 9 0 STA T2
7 0 0 LDA CHAR
7 1 0 STA Tl
7 20 JSR TIMES2
7 3 0 JSR TIMES2
7 4 0 JSR TIMES2
7 50 CLC
7 6 0 LDA Tl Add CHAR*8 to

B YTE
7 7 0 ADC BYTELO
7 8 0 STA BYTELO
7 9 0 LDA T2
800 ADC BYTEHI
8 1 0 STA BYTEHI B YTE now holds

ROW*320 + CHAR*8
8 2 0
8 3 0 CLC Add LINE to B YTE
8 4 0 LDA LINE
8 5 0 ADC BYTELO
8 6 0 STA BYTELO
8 7 0 LDA # 0
880 ADC BYTEHI

276 The Commodore 64 Omnibus - Part 2

8 9 0 STA BYTEHI B YTE holds
ROW*320 + CHAR*8
+ LINE

9 0 0
9 1 0 CLC Add screen start

address
9 2 0 LOA #<BASE Low byte o{BASE
9 3 0 AOC BYTELO
9 4 0 STA BYTELO
9 5 0 LOA #>BASE High byte o{BASE
9 6 0 AOC BYTEHI
9 7 0 STA BYTEHI
9 7 5
9 8 0 ! BYTE = BASE + ROW* 3 2 0 +

CHAR* 8 + LINE
9 8 5
9 9 0 LOA MCBM Branch i{MC mode

selected
1 0 0 0 BEQ MCPLOT
1 0 1 0
1 0 2 0
1 0 40
1 0 5 0 BMPLOT LOA XLO Normal mode PLOT
1 0 6 0 ANO #7
1 0 7 0 STA BITT BITT = X AND 7
1 08 0 SEC
1 0 9 0 LOA #7
1 1 0 0 SBC BITT
1 1 1 0 STA BITT BITT = 7-(X AND 7)
1 1 2 0
1 1 3 0 CLC I{BITT < > 0 then

find 2 tBITT
1 1 4 0 LOA # 1
1 1 5 0 LOX BITT
1 1 6 0 BEQ P 3
1 1 7 0 P 2 ASL A
1180 OEX
1 1 9 0 BNE P 2 Accumulator now

holds 2 t BITT
1 2 0 0
1 2 1 0 P 3 LOY # 0

Bit-Mapped Graphics - Part 1 277

1 2 2 0
1 2 3 0 LDX COLNO Test for Plot or Unplot
1 2 4 0 BEQ UNPLOT Branch ifCOLNO = O
1 2 5 0 ORA (BYTELO) , Y
1 2 6 0 STA (BYTELO) , Y Plot the pixel
1 2 7 0
1 28 0 RTS
1 2 9 0 !
1 3 1 0 UNPLOT EOR # $FF Clear the pixel
1 3 2 0 AND (BYTELO) , Y
1 3 3 0 STA (BYTELO) , Y
1 3 4 0 RTS Standard mode plot

ends here
1 3 5 0
1 3 6 0
1 38 0
1 3 9 0 MCPLOT LDA XLO Plot in MC mode
1 4 0 0 AND # 3
1 4 1 0 STA BITT
1 4 2 0 SEC
1 4 3 0 LDA # 3
1 4 4 0 SBC BITT
1 4 5 0 ASL A
1 4 6 0 STA BITT BITT =2*(3-(X AND

3)
1 4 7 0
1 4 8 0 LDY # 0 Move colour number to
1 4 9 0 LDA COLNO correct position in byte
1 5 0 0 AND # 3
1 5 1 0 LDX BITT
1 5 1 5 BEQ MCP 2
1 5 2 0 MCP l ASL A
1 5 3 0 DEX
1 5 4 0 BNE MCP1
1 5 5 0 MCP2 STA COLS COLS = COL NO *

2tBITT
1 56 0
1 5 7 0 LDA # % 1 1 1 1 1 1 0 0 Set up mask

for pixel
1 580 LDX BITT
1 585 BEQ MCP 4

278 The Commodore 64 Omnibus - Part 2

1 5 9 0 SEC
1 6 0 0 MCP 3 ROL A Rotate mask to fit reqd

pixel
1610 DEX
1 6 2 0 BNE MCP3
1 6 3 0
1 6 4 0 MCP4 AND (BYTELO) , Y Mask out bits

of pixel
1650 ORA COLS Set new pixel

state
1660 STA (BYTELO) , Y Store the byte
1 6 6 5
1 6 7 0 RTS End of MC plot
1680
1690
1 7 0 0 MULTIPLY (T1 , T2) BY 2
1 7 1 0 !
1 7 2 0 TIMES2 LDA # 0
1 7 3 0 ASL T2
1 7 4 0 ASL T1
1 7 5 0 ADC T2
1760 STA T2
1770 RTS
1780
1790
1800 ROW NOP
1810 CHAR NOP
1 8 2 0 LINE NOP
1830 BITT NOP Called BITT because
1 8 4 0 COLS NOP BIT is a 6510
1850 instruction
1860
1870 END

To use the program, POKE the low byte of the X
co-ordinate into location 679, the high byte into
location 680, and Y into location 681 (these
locations are labelled XLO, XHI and Y in the
program above) using the commands:

POKE 6 7 9 , X AND 2 5 5

Bit-Mapped Graphics - Part 1

POKE 680 , X/2 56
POKE 681 , Y

279

Note that the program does not perform any checks
to make sure that the co-ordinates are within the
screen limits. Using overlarge values of X or Y is
unlikely to have any ill effects other than spoiling
the appearance of the display, but you should
design your BASIC programs to avoid using
incorrect values.

Location 685 (called COLNO in the program) is
used to select the colour in which the pixel is
plotted. In standard two colour mode, PO KE 685
with 1 to plot in the foreground colour, or with zero
to plot in the background colour (to erase a pixel).
In multicolour mode, the colours are numbered
from 0 to 3, as shown in the table on page 56.

The PLOT routine begins at location 49336, and so
may be run by the command:

SYS 4 9 3 36.

CHAPTER 20

BIT MAPPE D G RAPH ICS - PART 2

In this chapter we look further at the uses and
applications of bit-mapped graphics, and introduce
line drawing and block fill routines.

DRAWING LIN ES

Straight lines may be drawn using the equation:

Y=M*X+C

in which M represents the gradient of the line, and
C is a constant. To find the equation of the straight
line between the two points Xl ,Yl and X2,Y2, we
can perform the following calculations:

M = DY/DX = (Y2-Yl) / (X2-Xl)
C = Yl - M*Xl

and then plot the line with:

FOR X=Xl TO X2 : Y=M* X+C : JSR (PLOT)

with a suitable subroutine to plot the pixels.

If you try plotting a few lines by this method you
will find that the lines appear broken if Y2-Yl is
greater than X2-Xl . If this is so, reverse the
algorithm to loop from Yl to Y2 and calculate the
values ofX.

Bit-Mapped Graphics - Part 2 281

The third program in the machine code graphics
package draws lines in this manner between two
points on the screen:

1 0 0 * * * * * * * * * * * *
1 1 0 * * * DRAW * * *
1 2 0 * * * * * * * * * * * *
1 3 0
1 4 0
1 5 0 * = $C1C8 Starts at 49608
1 6 0 !
1 7 0
1 9 0
2 0 0 DRAW LOA X2L Take copy of line end

co-ordinates
2 1 0 STA XTL
2 2 0 LOA X 2H
2 3 0 STA XTH
2 4 0 LOA Y
2 5 0 STA YT
2 6 0
270 LOA # 0
2 8 0 STA NEG
2 9 0 SEC DY = ABS(Y2-Y)
3 0 0 LOA Y 2
3 1 0 SBC Y
3 2 0 BCS DRAWl
3 3 0 LDA NEG IfY2 <Y then set NEG
3 4 0 EOR # 1
3 5 0 STA NEG
3 6 0 SEC
3 7 0 LDA Y
380 SBC Y 2
3 9 0 DRAWl STA DY
4 0 0
4 1 0 SEC DX = ABS (X2-X)
4 2 0 LDA X2L
4 3 0 SBC XL
4 4 0 STA DXL

282 The Commodore 64 Omnibus - Part 2

4 5 0 LDA X2H
4 6 0 SBC XH
4 7 0 BCS DRAW 2
4 8 0 LDA NEG IfX2 <x then switch

NEG
4 9 0 EOR # 1
5 0 0 STA NEG
5 1 0 SEC
5 2 0 LDA XL
5 3 0 SBC X2L
5 4 0 STA DXL
5 5 0 LDA XH
5 6 0 SBC X2H
5 7 0 DRAW 2 STA DXH
5 8 0
5 9 0 BNE DRAW2A
6 0 0 LDA DXL
6 1 0 BNE DRAW2A
6 2 0 LDA #1 IfDX =0 then set

NEG = I
6 3 0 STA NEG
6 4 0
6 5 0 DRAW2A LDA DY IfDY=O then set

NEG = I
6 6 0 BNE DRAW2B
6 7 0 LDA # 1
6 8 0 STA NEG
6 9 0
7 0 0 DRAW2B LDA DXH If DX > =DY then

SHALLOW else
STEEP

7 1 0 BNE SHALLOW
7 2 0 LDA DXL
7 3 0 CMP DY
7 4 0 BCS SHALLOW
7 5 0 JMP STEEP
7 6 0
7 7 0 SHALLOW SEC Draw shallow lines

with DYIDX < = I
7 8 0 LDA X2L If X2 <Xl then swap

co-ordinates

Bit-Mapped Graphics - Part 2 283

7 9 0 SBC XL
8 0 0 LOA X2H
8 1 0 SBC XH
8 2 0 BCS SHALl
8 3 0 JSR SWAP
8 3 5
8 4 0 SHALl LOA DY Find gradient

M =DYIDX
8 5 0 STA DIVLO
8 6 0 LOA # 0
8 7 0 STA DIVHI
8 8 0 LOA DXL
8 9 0 STA 01
9 0 0 LOA DXH
9 1 0 STA 0 2
9 2 0 JSR DIVIDE
9 3 0
9 4 0 LOA XL Calculate C
9 5 0 STA MXL First find X* M
9 6 0 LOA XH
9 7 0 STA MXH
9 8 0 JSR MULT
9 9 0 STA C

1 0 0 0 LOA P 4
1 0 1 0 STA CH
1 0 2 0 LOX NEG
1 0 3 0 BEQ DRAW3 IfM + ve then branch
1 0 4 0 CLC C = M*X+ Y
1 0 5 0 LOA C
1 0 6 0 ADC Y
1 0 7 0 STA C
1 0 8 0 LOA CH
1 0 9 0 ADC # 0
1 1 0 0 STA CH
1 1 1 0 JMP SHLOOP
1 1 2 0 DRAW 3 LOA Y C = Y-(M*X)
1 1 3 0 SBC C
1 1 4 0 STA C
1 1 5 0 LOA # 0
1 1 6 0 SBC CH
1 1 7 0 STA CH

284 The Commodore 64 Omnibus - Part 2

1180 !
1 1 9 0 SHLOOP LOA XH Loop from X to X2
1 2 0 0 STA MXH
1 2 1 0 LOA XL
1 2 2 0 STA MXL
1 2 3 0 JSR MULT Find M*X
1 2 4 0
1 2 5 0 LOX NEG
1 2 6 0 BNE SHL1
1 2 7 0 CLC IfM + ue then Y =

M*X + C
1 28 0 AOC C
1 2 9 0 STA Y
1 3 0 0 JMP SHL2
1 31 0 SHL1 SEC If M -ue then Y = C -

M*X
1 3 2 0 LOA C
1 3 3 0 SBC P 3
1 3 4 0 STA Y
1 3 5 0 SHL2 JSR PLOT Plot the point
1 3 5 5
1 3 6 0 CLC Increment X
1 3 7 0 LOA XL
1 380 AOC # 1
1 3 9 0 STA XL
1 4 0 0 LOA XH
1 4 1 0 AOC # 0
1 4 2 0 STA XH
1 4 2 5
1 4 3 0 SEC See ifX=X2
1 4 4 0 LOA X2L
1 4 5 0 SBC XL
1 4 6 0 LOA X2H
1 4 7 0 SBC XH
1480 BCS SHLOOP IfX2 > =X then repeat
1 4 9 0 JMP TIOY Finish off
1 5 0 0
1 5 1 0
1 5 2 0 STEEP SEC Draw steep lines with

DYIDX > l
1 5 3 0 LOA Y2

Bit-Mapped Graphics - Part 2 285

1 5 4 0 CMP Y
1 5 5 0 BCS STEEP1
1 56 0 JSR SWAP If Y2 <Y then swap

coordinates
1 5 6 5
1 5 7 0 STEEP1 LDA DXL Find gradient DXIDY
1580 STA DIVLO
1 5 9 0 LDA DXH
16 0 0 STA DIVHI
1 6 1 0 LDA DY
1 6 2 0 STA D1
1 6 3 0 LDA #0
1 6 4 0 STA D2
1 6 5 0 JSR DIVIDE
1 6 5 5
1 6 6 0 LDA Y Find Y*M
1 6 7 0 STA MXL
1680 LDA #0
1690 STA MXH
1 7 0 0 JSR MULT
1 7 1 0 STA C
1 7 2 0 LDX NEG
1 7 3 0 BEQ ST1
1 7 4 0 CLC IfM -ue then C = M*Y

+ X
1 7 5 0 ADC XL
176 0 STA C
1 7 7 0 LDA #0
1780 ADC XH
1 7 9 0 STA CH
1 8 0 0 JMP STLOOP
1810 ST1 LDA XL If M + ue then C = X -

M* Y
1 8 2 0 SBC C
1 8 3 0 STA C
1 8 4 0 LDA XH
1 8 5 0 SBC # 0
1860 STA CH
1865
1870 STLOOP LDA Y Loop from Y to Y2
1880 STA MXL

286 The Commodore 64 Omnibus - Part 2

1890 LDA # 0
1 9 0 0 STA MXH
1 9 1 0 JSR MULT Find M*Y
1 9 2 0 LDX NEG
1 9 3 0 BNE STL1 If slope -ue then

branch
1 9 4 0 CLC X = M*Y + C
1 9 5 0 ADC C
1960 STA XL
1 9 7 0 LDA CH
1980 ADC P4
1 9 9 0 STA XH
2 0 0 0 JMP STL2
2 0 0 5
2 0 1 0 STL1 SEC X = C-M*Y
2 0 2 0 LDA C
2 0 3 0 SBC P3
2 0 4 0 STA XL
2 0 5 0 LDA CH
2 0 6 0 SBC P 4
2 0 7 0 STA XH
2 0 7 5
2 0 8 0 STL2 JSR PLOT Plot pixel
2085
2 0 9 0 CLC If Y < = Y2 then repeat
2 1 0 0 LDA Y
2 1 1 0 ADC #1
2 1 2 0 STA Y
2 1 3 0 CMP Y2
2 1 4 0 BCC STLOOP
2 1 5 0 BEQ STLOOP
2 1 5 5
2 1 5 6
2 1 6 0 TIDY LDA XTH Set X and Y to new

line end coordinates
2 1 7 0 STA XH
2180 LDA XTL
2190 STA XL
2 2 0 0 LDA YT
2 2 1 0 STA Y
2 2 2 0 RTS

Bit-Mapped Graphics - Part 2 287

2 2 3 0
2 2 3 5
2 2 40 MULT LOA 01 Multiply number in

MX by gradient in Q 1 -
Q3

2 2 5 0 STA M1 Copy gradient to M1 -
M3

2 2 6 0 LOA 02
2 2 7 0 STA M2
2280 LOA 03
2 2 9 0 STA M3
2 3 0 0 LOA # 0 Initialise product P to

zero
2 3 1 0 STA P1
2 3 2 0 STA P 2
2 3 3 0 STA P 3
2 3 4 0 STA P 4
2 3 5 0 STA MX3
2 3 6 0 STA MX4
2 3 6 5
2 3 7 0 LOY # 2 4 Set Y to repeat 24

times
2 3 7 5
2 38 0 MULT1 LSR M3 Shift M to the right
2 3 9 0 ROR M2
2 4 0 0 ROR M1
2 4 1 0 BCC MULT2 If nothing in carry

then branch
2 4 2 0 CLC Add MX to P
2 4 3 0 LOA MXL
2 4 4 0 AOC P 1
2 4 5 0 STA P 1
2 4 6 0 LOA MXH
2 4 7 0 AOC P 2
2 48 0 STA P 2
2 4 9 0 LOA MX3
2 5 0 0 AOC P 3
2 5 1 0 STA P 3
2 5 2 0 LOA MX4
2 5 3 0 AOC P 4
2 5 4 0 STA P4

288 The Commodore 64 Omnibus - Part 2

2 5 4 5 !
2 5 5 0 MULT2 ASL MXL Multiply MX by 2
2 5 6 0 ROL MXH
2 5 7 0 ROL MX3
2 58 0 ROL MX4
2 58 5
2 5 9 0 DEY Repeat if Y <0
2 6 0 0 BNE MULTI
2 6 0 5
2 6 1 0 LDA P 3 Store result in

accumulator
2 6 2 0 RTS
2 6 3 0
2 6 3 5
2 6 4 0 DIVIDE LDA # 0 Divides DIV by D
2 6 5 0 STA 03 First set result Q to

zero
2 6 6 0 STA 02
2 6 7 0 STA 01
2680 STA DIV3
2685
2 6 9 0 LDY # 2 4 Set to repeat 24 times
2 6 9 5
2 7 0 0 SEe Subtract D from high

bytes of DIV
2 7 1 0 LDA DIVHI
2 7 2 0 SBe Dl
2 7 3 0 STA DIVHI
2 7 4 0 LDA DIV3
2 7 5 0 SBe D2
2 7 6 0 STA DIV3
2 7 6 5
2 7 7 0 DVDl PHP Save P register for

later
2 7 7 5
2 7 8 0 ROL 01 Rotate Q: mult by 2

and add carry
2 7 9 0 ROL 02
2 8 0 0 ROL 03
2 8 1 0 ASL DIVLO Multiply Div by 2
2 8 2 0 ROL DIVHI

Bit-Mapped Graphics - Part 2 289

2 8 3 0 ROL OIV3
2 8 3 5
2 8 4 0 PLP Reload P register
2 8 5 0 BCC OV02 IfDN-D was <0 then

branch
2 8 5 5
2 8 6 0 LOA OIVHI Subtract D from new

value ofDN
2 8 7 0 SBC 01
2880 STA OIVHI
2 8 9 0 LOA OIV3
2 9 0 0 SBC 02
2 9 1 0 STA OIV3
2 9 2 0 CLV
2 9 3 0 BVC OV03 Jump on to DVD3
2 9 3 5
2 9 4 0 OV02 LOA OIVHI Add D to new value of

DIV
2 9 5 0 AOC 01
2 9 6 0 STA OIVHI
2 9 7 0 LOA OIV3
2 9 8 0 AOC 02
2 9 9 0 STA OIV3
2885
3 0 0 0 OV03 DEY
3 0 1 0 BNE OV01 Repeat loop 24 times
3 0 1 5
3 0 2 0 ROL Q1 Multiply result by 2
3 0 3 0 ROL Q2
3 0 4 0 ROL Q3
3 0 50 RTS
3 0 6 0 !
3 0 7 0 !
3 0 8 0 SWAP LOA X2L Swap (X,Y) with

(X2,Y2)
3 0 9 0 LOY XL
3 1 0 0 STA XL
3 1 1 0 STY X2L
3 1 2 0 LOA X 2H
3 1 3 0 LOY XH
3 1 4 0 STA XH

290 The Commodore 64 Omnibus - Part 2

3 1 5 0
3 1 6 0
3 1 7 0
3 1 8 0
3 1 9 0
3 2 0 0
3 2 1 0

STY
LDA
LDY
STA
STY
RTS

X 2H
Y 2
Y
Y
Y 2

3 2 2 0 Label def i n i t ions
3 2 2 5
3 2 3 0 PLOT
3 2 4 0 XL
3 2 5 0 XH
3 26 0 Y
3 2 7 0 X2L
3 280 X2H
3 2 9 0 Y2
3 3 0 0 XTL
3 3 1 0 XTH
3 3 2 0 YT
3 3 3 0 DXL
3 3 4 0 DXH
3 3 5 0 DY
3 3 6 0 D1
3 3 7 0 D2
3 380 DIVLO
3 3 9 0 DIVHI
3 4 0 0 DIV3
3 410 MXL
3 4 2 0 MXH
3 4 3 0 MX3
3 4 4 0 MX4
3 4 5 0 C
3 4 6 0 CH
3 4 7 0 01
3480 02
3 4 9 0 03
3 5 0 0 M1
3 5 1 0 M2
3 5 2 0 M3
3 5 3 0 PI
3 5 4 0 P2

= $COB8
= 6 7 9
= 6 8 0
= 6 8 1
= 6 8 2
= 6 8 3
= 6 8 4
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

Bit-Mapped Graphics - Part 2

3 5 5 0 P3 NOP
3 5 6 0 P4 NOP
3 5 7 0 NEG NOP
3 58 0 END

29 1

To use the program to draw from (X,Y) to (X2,Y2),
POKE the low byte of X into 679, the high byte of
X into 680, and Y into 681. Similarly POKE X2
into 682 and 683, and Y2 into 684. Set the colour in
which the line is to be drawn by POKEing a
suitable number into 685, in the same way as with
the PLOT routine. The program works equally
well in either screen mode. The program begins at
location 49608, and so is run by:

SYS 4 9 6 0 8

Like the PLOT routine, this program does not
include any checks to ensure that the lines do not
run off the screen. You will find that if a line runs
off one side of the screen it will reappear at the
other, and it is unlikely that any memory other
than the display memory will be corrupted. You
should however include suitable checks in your
BASIC programs to avoid spoiling the displays.

The program works by first checking the gradient
of the line. If the line is shallow (the gradient is
less than or equal to 1) , the line is drawn by the
SHALLOW routine which scans from X to X2,
finding Y for each value of X by the formula
Y = M*X + C. If the l ine is steep , the STEEP
routine is used to draw the line by scanning from Y
to Y2 and finding X by each point with the formula
X = M*Y + C.

The subroutine DIVIDE is used to calculate the
gradient. The number stored in DIV (DIVLO,
DIVHI and DIV3) i s divided by the number in D
(D1 and D2), and the result (the quotient) is stored
in Q (Q1 to Q3) . The lower two bytes of the result

292 The Commodore 64 Omnibus - Part 2

are the fractional part of the gradient: as the
program is designed always to draw lines with a
gradient less than 1 the fractional part is very
important.

The MULT subroutine multiplies the gradient
stored in Q by the value of X or Y stored in MX
(MXLO, MXHI, MX3 and MX4) and stores the
product in P (PI to P4). Again the lower two bytes
of the result are the fractional part, so the X or Y
coordinate to be plotted is found in P3, with the
highest bit in P4 if the product represents the X co
ordinate of a steep line.

F ILLING BLOCKS

The fourth machine code program in the graphics
set is a FILL routine, to plot all the pixels in a
given rectangle in one colour. The routine is very
short, the machine code equivalent of a BASIC
program such as:

1 0 FOR X = Xl TO X2
2 0 POKE 6 7 9 , X AND 2 5 5 : POKE 680 ,

X/2 5 6
3 0 FOR Y = Yl TO Y 2
40 POKE 681 , Y
5 0 SYS 4 9 3 3 6
6 0 NEXT Y
7 0 NEXT X

The machine code routine is:

10 * * * * * * * * * * * *
20 * * * FILL * * *
3 0 * * * * * * * * * * * *
40
50
60 * = $C4E2
70

Starts a t 50402

Bit-Mapped Graphics - Part 2 293

9 0
1 0 0 !
1 1 0 XL = 6 7 9
1 2 0 XH = 680
1 3 0 Y = 681
1 4 0 !
1 5 0 X2L = 682
1 6 0 X2H = 683
1 7 0 Y2 = 684
1 8 0 !
1 9 0 PLOT = $COB8
2 0 0
2 1 0
2 3 0
2 4 0 FILL LOA Y Save Y to reset for

each loop
2 5 0 STA YT
2 6 0
2 8 0 FILLI JSR PLOT Plot point
2 9 0 CLC
3 0 0 LOA Y Increment Y
3 1 0 AOC # 1
3 2 0 STA Y
3 3 0
3 4 0 LOA Y2
3 5 0 CMP Y Repeat loop
3 6 0 BCS FILLI until Y > Y2
3 7 0
3 8 0 LOA YT Reset Y
3 9 0 STA Y
4 0 0 CLC
4 1 0 LOA XL Increment X
4 2 0 AOC # 1
4 3 0 STA XL
4 4 0 LOA XH
4 5 0 AOC # 0
4 6 0 STA XH
4 7 0
4 8 0 SEC Find X2-X
4 9 0 LOA X2H
5 0 0 SBC XH

294 The Commodore 64 Omnibus - Part 2

5 1 0
5 2 0
5 3 0

LOA X 2 L
SBC XL
BCS FILL1 Repeat loop if

X < =X2
5 4 0 RTS
5 5 0
5 6 0 !
5 7 0 YT NOP

The FILL routine uses the same locations as the
Draw routine. POKE the X co-ordinate of the top
left-hand corner of the block to be filled into
locations 679 and 680, and the Y co-ordinate into
location 681 . The co-ordinates of the bottom right
hand corner of the block should be PO KEd in to
location 682, 683 and 684. Location 685 is again
used to select the colour.

Using the Graphics Routines

To finish off, here are some short programs which
show the use of all the machine code routines we
have introduced in the last two chapters. Before
running them you must load the graphics machine
code into the 64 - see Appendix 18 for details of how
to do this. The graphics routines are split into four
separate BASIC loader programs which should
each be run in accordance with the instructions in
Appendix 18 . In addition to the four graphics
routines, the first program below requires the
mixed mode machine code described in Chapter 21
to run - a loader program for this is also given in
Appendix 18.

Graphics Demonstration Program

The first program shows the routines in use and
also uses the mixed mode display routine described
in Chapter 21 .

100 REM *

Bit-Mapped Graphics - Part 2

1 1 0 REM * * * GRAPHICS DEMO * * *
1 2 0 REM *
1 3 0 REM
1 4 0 REM GRAPHICS PACKAGE MUST BE

LOADED

295

1 5 0 REM BEFORE THI S PROGRAM I S RUN
160 REM
1 7 0 REM
1 0 0 0 REM SET MULTICOLOUR MODE
1 0 1 0 POKE 5 3 2 81 , 1 5 : POKE 6 86 , 2 : POKE

6 87 , 6 : POKE 688 , 0
1 0 2 0 SYS 4 9 1 5 9
1 0 3 0 REM SET SPLIT SCREEN
1 0 4 0 POKE 5 0 518 , 2 2 5 : SYS 5 0 4 6 8
1 0 5 0 PRINT " { CL S } { 2 3 * CD} "
1 0 6 0 PRINT " { RVS }MULTI COLOUR BIT

MAPPED DI SPLAY{ ROF } "
1 0 7 0 FOR T=l TO 1 0 0 0 : NEXT T
2 0 0 0 REM PLOT POINTS
2 0 0 5 PRINT " { CL S } { 2 3 * CD} "
2 0 1 0 PRINT " {RVS} PLOTTING

POINTS "
2 0 2 0 FOR A=O TO 2 * n STEP 0 . 1
2 0 3 0 X=1 0 0 + 5 0 * S IN (A)
2 0 4 0 Y=6 0 - 5 0 *COS (A)
2 0 5 0 GOSUB 2 5 0 0
2 0 6 0 NEXT A
2 0 9 0 FOR T = 1 TO 1 0 0 0 : NEXT T
2 1 0 0 GOTO 3 0 0 0
2 5 0 0 POKE 6 7 9 , X
2 5 1 0 POKE 681 , Y
2 5 2 0 POKE 6 8 5 , 1
2 5 3 0 SYS 4 9 3 36
2 5 4 0 RETURN
3 0 0 0 REM DRAW LINES
3 0 1 0 PRINT " { CLS } { 2 3 * CD} "
3 0 2 0 PRINT " {RVS} DRAWING

LINES "
3 0 3 0 X1=10 : Y2=1 5 0 : POKE 685 , 2
3 0 4 0 FOR Y1=10 TO 1 5 0 STEP 5
3 0 5 0 X2=Y1

296

3 0 6 0

3 0 7 0
3 0 8 0
3 0 9 0
4 0 0 0
4 0 1 0
4 0 2 0

4 0 3 0
4 0 4 0
4 0 5 0
4 0 6 0
4 0 7 0

The Commodore 64 Omnibus - Part 2

POKE 6 7 9 , X1 : POKE 6 8 1 , Y1 : POKE
6 8 2 , X2 : POKE 684 , Y2
SYS 4 9 6 0 8
NEXT Y 1
FOR T = 1 TO 1 0 0 0 : NEXT T
REM FILL BLOCK
PRINT " { CLS } { 23 * CD} "
PRINT " (RVS } FILLING
BLOCKS "
POKE 6 8 5 , 1
POKE 6 7 9 , 70 : POKE6 81 , 3 0
POKE 6 8 2 , 13 0 : POKE68 4 , 9 0
SYS 5 0 4 0 2
FOR T = 1 TO 1 0 0 0 : NEXT : END

The program will end with the computer in mixed
display mode. Use RUN/STOP and RESTORE to
return to normal text mode.

Plotting Points

This program uses the PLOT routine to draw a
pattern on the screen.

1 0 REM PLOT PATTERN
2 0 POKE 68 5 , 1 : POKE 6 86 , 2 : POKE

687 , 7
30 SYS 4 9 1 5 2 : REM SET UP BMM
3 5 J=0 : K=80
40 FOR N=O TO 2 * IT STEP . 0 5
5 0 X = 1 60 +J* S IN (N)
6 0 Y = 9 5+K*COS (N)
7 0 POKE 6 7 9 , X : POKE 6 8 1 , Y
80 SYS 4 9 3 3 6 : REM PLOT IT !
9 0 NEXT N
1 0 0 J = J+1 0 : K = K-1 0
1 1 0 IF K >-10 THEN 4 0
1 2 0 GET K$: IF K$= " " THEN 1 2 0
1 3 0 SYS 4 9 2 6 6 : REM BACK TO TEXT

Bit-Mapped Graphics - Part 2 297

Headache!

This program uses the DRAW routine to create a
pattern on the multi-colour bit-mapped mode
screen and demonstrates the effect of changing the
colours using the COLOUR routine.

4 H=1 8 0 : W=1 4 0 : XC=80 : YC=1 0 0 : S= 1 0
5 POKEI 0 20 , 0 : POKEI 0 2 1 , 9 6
6 POKE6 85 , 1
1 0 POKE 686 , 2 : POKE 6 87 , 1 : POKE

6 88 , 6 : POKE 5 3 281 , 1 2 : SYS 4 9 1 5 9
1 5 FOR Y=YC-H/2 TO YC+H/2 STEP S
2 0 POKE 6 7 9 , (XC-W/2) AND 2 5 5 : POKE

680 , (XC-W/ 2) /2 5 6 : POKE 681 , Y
3 0 POKE 6 8 2 , XC AND 2 5 5 : POKE 6 8 3 ,

XC/2 56 : POKE 6 84 , YC
4 0 SYS 4 9 6 0 8 : POKE 6 8 5 , (PEEK (68 5)

+1- (PEEK (68 5) =3 » AND 3
4 5 NEXT
5 0 FOR X=XC-W/2+S TO XC+W/2 STEP

S
6 0 POKE 679 , X AND 2 5 5 : POKE 680 ,

X/2 56 : POKE 6 8 1 , YC+H/ 2
7 0 POKE 6 8 2 , XC AND 2 5 5 : POKE 6 8 3 ,

XC/2 56 : POKE 6 8 4 , YC
80 SYS 4 9 6 0 8 : POKE 685 , (PEEK (68 5) +

1- (PEEK (68 5) =3 » AND 3
9 0 NEXT
1 1 5 FOR Y=YC+H/2-S TO YC-H/2 STEP

S
1 2 0 POKE 679 , (XC+W/2) AND 2 5 5 : POKE

680 , (XC+W/2) /2 56 : POKE 681 , Y
1 3 0 POKE 682 , XC AND 2 5 5 : POKE 6 8 3 ,

XC/2 56 : POKE 6 8 4 , YC
1 4 0 SYS 4 9 6 0 8 : POKE 68 5 , (PEEK (68 5) +

1- (PEEK (68 5) =3 » AND 3
1 4 5 NEXT
1 5 0 FOR X=XC+W/2-S TO XC-W/2 STEP

S

298 The Commodore 64 Omnibus - Part 2

160 POKE 6 7 9 , X AND 2 5 5 : POKE 680 ,
X/2 56 : POKE 681 , YC-H/2

170 POKE 682 , XC AND 2 5 5 : POKE 6 8 3 ,
XC/2 56 : POKE 684 , YC

180 SYS 4 9 6 0 8 : POKE 685 , (PEEK (68 5) +
1- (PEEK (68 5) =3 » AND 3

185 NEXT
190 FOR CC=l TO 9 6
1 9 1 POKE 5 3 2 80 , (PEEK (5 3 28 0) +1) AND

1 5
192 POKE 686 , (PEEK (686) +1) AND 1 5
193 POKE 687 , (PEEK (687) +1) AND 1 5
1 9 4 POKE 6 88 , (PEEK (688) +1) AND 1 5
1 9 5 POKE 5 3 2 81 , (PEEK (5 3 28 1) +1) AND

1 5
196 SYS 4 9 1 7 7
1 9 7 FOR T=l TO 2 0 0 : NEXT : NEXT
2 0 0 GET A$: IFA$ = " " THEN 2 0 0
2 1 0 SYS 49 266
220 END

Lace

This program uses the DRAW routine to create a
lace pattern on the standard hit-mapped screen.

10 DIM A (36) , B (3 6)
20 POKE 686 , 6 : POKE 687 , 3 : SYS

4 9 1 5 2
3 0 L=1 2 0 : J=80
40 FOR H=l TO 5
50 FOR N=l TO 3 6
6 0 K = N/18 * n
70 A (N) = 1 28+L* SIN (K) :

B (N) =88+J*COS (K)
1 0 0 NEXT N
110 FOR N=l TO 36
1 2 0 M = N+1 2
1 3 0 IF M>36 THEN M=M-3 6
160 POKE 6 7 9 , A (N) AND 2 5 5 : POKE

680 , A (N) /2 5 6 : POKE 681 , B (N)

Bit-Mapped Graphics - Part 2

1 7 0 POKE 6 8 2 , A (M) AND 2 5 5 : POKE
683 , A (M) /2 5 6 : POKE68 4 , B (M) :
POKE 6 8 5 , 1

180 SYS 4 9 6 0 8
1 9 0 NEXT N
2 0 0 L=L/ 2 : J=J/2
2 1 0 NEXT H
5 0 0 GET K$: IF K$= " " THEN 5 0 0
5 1 0 SYS 4 9 2 6 6 : END

J R's Hat

299

This program uses the DRAW routine to draw a
three dimensional graph - it takes quite a while to
run.

1 0 0 DIM UB (4 2 4) , LB (4 2 4)
1 1 0 XC= 3 2 0 : YC=1 1 5 : XR=1 7 5 : ZR= 1 2 0
1 2 0 H=4 0 : W= 0 . 0 4 3 : XA=1 0 7
2 0 0 FOR S = l TO 4 2 4
210 UB (S) =0 : LB (S) =1 0 0 0
2 2 0 NEXT S
3 0 0 POKE 686 , 2 : POKE 687 , 1 : SYS

4 9 1 5 2
5 0 0 FOR Z =-ZR+1 TO ZR-1 STEP 5
5 1 0 XL= INT (XR* SQR (l- (Z * Z) /

(ZR* ZR » + . 5)
5 2 0 X=-XL
5 3 0 Y=H* SIN (W* SQR (X*X+Z * Z »
5 4 0 X1=X+XC+ Z
5 5 0 Y1=INT (199- (YC+Y+ Z/ 2) + . 5)
6 0 0 FOR X=-XL+1 TO XL-1
6 1 0 Y=H* S IN (W* SQR (X*X+Z * Z »
6 2 0 X2=XC+X+Z
6 3 0 Y2=INT (1 9 9 - (YC+Y+Z/2) + . 5)
6 4 0 IF Y2>=LB (X2-XA) THEN 680
6 5 0 LB (X2-XA) =Y 2
6 6 0 IF UB (X2-XA) =0 THEN UB (X2-XA)

= Y2
6 7 0 GOTO 7 0 0
680 IF Y2<=UB (X2-XA) THEN 7 3 0

300

6 9 0
7 0 0

7 1 0

7 2 0
7 3 0
7 4 0
7 5 0
7 6 0
1 0 0 0
1 0 1 0

The Commodore 64 Omnibus - Part 2

UB (X2-XA) =Y 2
POKE 679 , (X1/2) AND 2 5 5 : POKE
6 80 , (X1/2) /2 5 6 : POKE 681 , Y1
POKE 68 2 , (X2/2) AND 2 5 5 : POKE
68 3 , (X2/2) /2 56 : POKE 6 8 4 , Y2
POKE 6 85 , 1 : SYS 4 9 6 0 8
X1=X2
Y1=Y2
NEXT X
NEXT Z
GET K$: IF K$= " " THEN 1 0 0 0
SYS 4 9 266

CHAPTER 2 1

DISPLAY I NTERRUPTS

The VIC-II chip is a very powerful device and
allows many different graphics displays to be
created. It is possible to extend these capabilities
to enable the creation of displays using several
different character sets, or more than eight sprites
for example - you can even have mixed text and
graphics.

This chapter deals with the techniques used in
creating such displays, but to understand fully you
must know how the VIC-II chip generates its
displays, and how a TV or monitor works.

TV Pictures

The pictures on a TV screen are created by an
electron beam which is directed at the phosphor
coated inner surface of the screen. Where this
beam strikes the screen the phosphor glows. To
create a full picture the electron beam scans across
the screen in rows, varying in intensity as it goes.
This variation in in tensity i s dictated by
information from the TV transmitter and produces
a corresponding variation in the intensity with
which the phosphor glows. When the electron
beam reaches the edge of the screen it is turned off
and the process starts again from a position just
below the last starting position. This process,
called raster scanning, continues until the bottom
of the screen is reached, at which point it starts all
over again at the top. The process must happen

302 The Commodore 64 Omnibus - Part 2

many times a second to create a picture that doesn't
flicker.

To create a colour picture, the screen is coated with
three different types of phosphor which emit the
colours red, blue and green when struck by the
electron beam. The different phosphors are
distributed in tiny dots or blocks over the screen
and the colour TV signal must contain information
about which of these points the electron beam
should strike, as well as luminance information.

In generating its displays the VIC-II chip takes
data from video memory and uses it to create a
signal which controls the electron beam in the TV
in much the same way as a transmitted TV signal
does.

The Raster Register

One of the VIC-II registers, the raster register
(location 53266), is concerned with the current
raster position (position down the screen) of the
scaning electron beam. It has two functions
depending on whether data is written to it or read
from it.

If you read the raster register the number returned
is the bottom eight bits of the current raster
position, as shown in this program:

1 0 PRINT " { CLS } " ; PEEK (5 3 2 66) :
GOTO 1 0

Obviously this number is changing very rapidly
and incidentally is a good source of random
numbers. Since the raster position can be greater
than 255, a ninth bit is required and this is Bit 7 of
the control register at location 53265.

Display Interrupts 303

If data is written to the raster register, it is stored
within the VIC chip and used in a raster compare
operation - the current raster position is compared
with the stored value, and when the two are equal
this fact is indicated in the interrupt register.

The Interrupt Status Register

When the current raster position equals the stored
value, Bit 0 of the interrupt status register is set
(Bit 7 is also set for any VIC interrupt). Bit 0 will
remain set until you clear it by writing a 1 to that
bit.

So far we have seen how we can get an indication of
when the scanning electron beam reaches a given
point on the screen, but to use this knowledge we
must make use of another VIC register - the
interrupt enable register.

The Interrupt Enable Register

If Bit 0 of this register is set when a raster
interrupt is indicated in the interrupt status
register, an interrupt will be generated and the
6510 will begin to execute a machine code program
whose start address is stored in locations $FFFE
and $FFFF (65534 and 65535). Before returning to
whatever program was being executed at the time
of the interrupt, a program whose start address is
stored in locations 788 and 789 is run. If we change
the contents of788 and 789 (the Interrupt ReQuest
vectors) to point to a routine of our own, we can
alter the display midway through a scan, and so
create the effects mentioned at the beginning of the
chapter.

To illustrate the technique, here is a short machine
code program which changes the background
colour of the display half way down the screen. If
you don't have an assembler, type in the BASIC

304 The Commodore 64 Omnibus - Part 2

loader program which follows the assembly
language listing.

1 0 0 IRQLO=788 IRQ vectors
1 1 0 IRQHI=789
1 2 0 RASREG=5 3 2 6 6 Raster register
1 3 0 IENREG=5 3 2 7 4 Interrupt enable
1 4 0 SCREEN=5 3 28 1 Screen colour reg
1 5 0 INTREG=5 3 2 7 3 Interrupt status
1 6 0 IRQVEC=5 9 9 5 3 default IRQ vector
1 7 0 !
1 8 0 SETUP SEI disable interrupts
1 9 0 LOA #<PROG load IRQ vectors with
2 0 0 STA IRQLO address of new program
2 1 0 LOA #>PROG
2 2 0 STA IRQHI
2 3 0 LOA #1 set bit 0 of interrupt enable
2 4 0 STA IENREG register
2 4 2 LOA #0 initialise raster register
2 4 4 STA RASREG
2 4 5 LOA 5 3 2 6 5 including bit 81
2 4 6 AND # 1 2 7
2 4 7 STA 5 3 2 6 5
2 5 0 CLI enable interrupts
2 6 0 RTS back to BASIC
2 7 0 !
2 8 0 ! if we get here an interrupt has occurred.
2 9 0 !
3 0 0 !
PROG LOA INTREG examine interrupt register
3 5 0 AND # 1 for bit O = 1 ?
3 6 0 BEQ NORMAL ifnot, exit
3 7 0 STA INTREG raster interrupt
3 8 0 LOA RASREG - clear RASREG
3 8 2 BNE RR if < >0 then branch
3 8 4 LOA # 1 4 5 next interrupt is half way
386 STA RASREG down the screen
388 STA SCREEN change screen colour
3 9 0 JMP RR2 exit
3 9 2 RR LOA # 0 next interrupt is at the top
3 9 4 STA RASREG of the screen

Display Interrupts

3 9 6 STA SCREEN
4 2 0 RR2 PLA
4 2 1 TAY
4 2 2 PLA
4 2 3 TAX
4 2 4 PLA
4 2 5 RTI
NORMAL JMP IRQVEC

change colour
restore values in registers
before interrupt

end
handle other interrupts

305

Here is the BASIC loader for the program, which
loads the code into the cassette buffer, runs it and
clears itself from memory.

5

1 0
2 0
3 0
4 0
5 0
2 0 0 0 0

2 0 0 1 0

2 0 0 2 0

2 0 0 3 0

2 0 0 4 0

REM BASIC LOADER FOR INTERRUPT
DEMO
FOR Z=828 TO 9 0 1
READ D
POKE Z , D
NEXT Z
SYS 8 2 8 : NEW
DATA 1 2 0 , 169 , 9 1 , 1 4 1 , 2 0 , 3 , 16 9 ,
3 , 1 4 1 , 2 1 , 3 , 16 9 , 1 , 1 4 1 , 26 , 2 0 8
DATA 169 , 0 , 1 4 1 , 18 , 2 08 , 17 3 , 17 ,
2 08 , 41 , 1 2 7 , 14 1 , 17 , 2 08 , 88 , 9 6 , 17
3
DATA 2 5 , 2 0 8 , 41 , 1 , 2 4 0 , 3 3 , 1 4 1 ,
2 5 , 2 0 8 , 17 3 , 18 , 20 8 , 2 0 8 , 11 , 16 9 , 1
4 5
DATA 1 4 1 , 18 , 2 0 8 , 1 4 1 , 3 3 , 2 0 8 , 7 6 ,
1 2 5 , 3 , 16 9 , 0 , 1 41 , 18 , 2 0 8 , 1 4 1 , 3 3
DATA 2 0 8 , 1 0 4 , 168 , 1 0 4 , 17 0 , 1 0 4 ,
6 4 , 7 6 , 49 , 2 3 4

How the Program works

Lines 180 to 260 load the IRQ vectors with the start
address of the new routine and initi alise the
registers. Notice that the I flag is set to prevent
any interrupts occurring while the program is
running (and cleared afterwards!) .

306 The Commodore 64 Omnibus - Part 2

The interrupt program itself starts at line 340 by
checking for Bit 0 of the interrupt register being
set. If it is not then the interrupt wasn't generated
by a raster compare routine and control is passed to
the normal interrupt routines by line 440.

If a raster interrupt has occurred, Bit 0 of the
interrupt register is cleared and the contents of the
raster register are examined.

If the interrupt occurred at the top of the screen
then the raster register will contain zero. In this
case the raster register is loaded with 145
(corresponding to a position half way down the
screen - the position where we want the next
interrupt to occur) and the screen colour is changed
to white.

If the interrupt was at the middle of the screen (Le.
the raster register contained 1 45) , the raster
register is cleared so that the next interrupt
happens at the top of the screen, and the screen
colour is set to 0 which is black.

Before return i n g from the rou ti n e , the
accumulator, X and Y registers are retrieved from
the stack where they were placed by the 64's
in terrupt handling routines.

If you run the program you will see that the top
half of the screen will be white while the bottom is
black. Once running it will have no effect on your
BASIC programs, and can be disabled by pressing
RUN/STOP and RESTORE.

You will notice that the screen flickers slightly and
that the rate of flicker increases when you press a
key. This is because each time you press a key an
interrupt is generated, calling the new interrupt
routine before control is passed to the 64's routine
at 59953. If the running of this routine coincides

Display Interrupts 307

with the processing of a key press then a raster
interrupt will be tmissed' and the screen will
flicker. This effect is particularly noticeable with
this example, but can be minimised as you will see
in later examples.

As we mentioned earlier raster interrupts can be
used to create effects not possible by any other
means. For example you could display text in
different fonts on different parts of the screen by
having several character sets i n RAM and
arranging your interrupt routine to change the
character set pointer when a raster interrupt
occurs. This technique is used in the next program
to display 8 standard sprites and 8 multicolour
sprites on the screen at the same time!

An Abundance of Sprites!

1 0
1 5
2 0
2 5
3 0
4 0
5 0
6 0
7 0
1 0 0
1 1 0
1 2 0
1 3 0
1 5 0
1 6 0
1 7 0
1 7 5
1 8 0
1 9 0
2 0 0
2 1 0
2 2 0

.
,

SET

. * * * * * * * * * * * * * * ,
· * * ,

; * 1 6 spr i tes *
· * * ,
. * * * * * * * * * * * * * * ,
·
,

POlNTER=2 0 4 0
YPOS= 5 3 2 4 9
SMCREG= 5 3 2 7 6
lRQLO=7 8 8
lRQHl=789
RASREG=5 3 2 6 6
lENREG= 5 3 2 7 4
lNTREG= 5 3 2 7 3
lRQVEC=599 5 3
* =$CO O O

SEl
LDA #<PROG
STA lRQLO
LDA #>PROG
STA lRQHl

308 The Commodore 64 Omnibus - Part 2

2 3 0 LOA # 1
2 4 0 STA I ENREG
2 4 2 LOA # 0
2 4 4 STA RASREG
2 4 5 LOA 5 3 2 6 5
2 4 6 ANO # 1 2 7
2 4 7 STA 5 3 2 6 5
2 5 0 CLI
2 6 0 RTS
2 7 0
3 0 0 PROG LOA INTREG
3 1 0 ANO # 1
3 2 0 BEQ NOR
3 3 0 STA INTREG
3 4 0 LOA RASREG
3 5 0 BNE MULT
3 6 0 LOA # 1 4 5
3 7 0 STA RASREG
3 8 0 LOX # 7
3 9 0 STO LOA # 1 4
4 0 0 STA POINTER , X
4 1 0 OEX
4 2 0 BPL STO
4 2 1 LOX # 1 4
4 2 2 LOA # 7 0
4 2 4 Y 1 STA YPOS , X
4 2 5 OEX
4 2 6 OEX
4 2 7 BPL Y1
4 3 0 LOA # 0
4 4 0 STA SMCREG
4 5 0 JMP EXIT
5 0 0 MULT LOA # 0
5 1 0 STA RASREG
5 2 0 LOX # 7
5 4 0 LOA # 1 3
5 5 0 LOOP STA POINTER , X
5 7 0 OEX
5 8 0 BPL LOOP
581 LOA # 20 0
5 8 2 LOX # 1 4

Display Interrupts 309

584 Y2 STA YPOS , X
585 DEX
586 DEX
587 BPL Y 2
5 9 0 LOA # 2 5 5
6 0 0 STA SMCREG
6 1 0 EXIT PLA
6 2 0 TAY
6 3 0 PLA
6 4 0 TAX
6 5 0 PLA
6 6 0 RTI
6 7 0 NOR JMP IRQVEC

The next program is a BASIC loader for the
machine code.

NOTE:

10
20
30
4 0
5 0
2 0 0 0 0

2 0 0 1 0

2 0 0 2 0

2 0 0 3 0

2 0 0 4 0

The code occupies the same area of
memory as the graphics routines, which
will be overwritten.

REM LOADER FOR 16 SPRITE DEMO
FOR Z = 4 9 1 5 2 TO 4 9 2 7 1
READ D : POKE Z , D
NEXT Z
REM
DATA 1 2 0 , 1 6 9 , 3 1 , 14 1 , 2 0 , 3 , 16 9 ,
1 9 2 , 14 1 , 2 1 , 3 , 16 9 , 1 , 1 4 1 , 26 , 2 0 8
DATA 1 69 , 0 , 1 4 1 , 18 , 20 8 , 17 3 ,
17 , 2 0 8 , 4 1 , 1 27 , 1 4 1 , 17 , 2 08 , 88 , 9 6
, 17 3
DATA 2 5 , 2 0 8 , 4 1 , 1 , 2 40 , 79 ,
1 4 1 , 2 5 , 2 08 , 17 3 , 18 , 2 08 , 2 0 8 , 3 4 ,
169 , 14 5
DATA 1 4 1 , 18 , 20 8 , 16 2 , 7 , 169 ,
1 4 , 1 57 , 2 4 8 , 7 , 20 2 , 16 , 2 4 8 , 1 6 2 , 1 4
, 16 9
DATA 7 0 , 1 57 , 1 , 20 8 , 2 0 2 , 2 0 2 , 16 ,
2 4 9 , 1 6 9 , 0 , 1 4 1 , 28 , 2 0 8 , 7 6 , 1 1 1 ,
1 9 2

3 10 The Commodore 64 Omnibus - Part 2

2 0 0 5 0 DATA 1 6 9 , 0 , 14 1 , 18 , 2 0 8 , 16 2 , 7 ,
1 69 , 1 3 , 1 5 7 , 248 , 7 , 20 2 , 16 , 2 5 0 ,
1 6 9

2 0 0 6 0 DATA 2 0 0 , 162 , 1 4 , 1 5 7 , 1 , 20 8 , 2 0 2 ,
2 0 2 , 16 , 2 4 9 , 169 , 2 5 5 , 1 4 1 , 28 , 2 0 8 ,
1 0 4

2 0 0 70 DATA 168 , 1 0 4 , 1 7 0 , 1 0 4 , 6 4 , 76 ,
4 9 , 2 3 4

You will see that the program is very similar to the
last one, the only difference is that when the scan is
half-way down the screen the sprite Y position
re�sters are changed to 200 , the sprite data
polnters are switched to use another set of data and
multicolour mode is selected. To see the effect of
the interrupt program, enter it followed by this
BASIC program:

1 REM 16 SPRITES ON ONE SCREEN
DEMO

5 POKE 5 3 2 8 1 , 0
1 0 FOR I = O TO 127 : READ D
20 POKE 8 3 2 + I , D : NEXT
30 FOR I = 2 0 4 0 TO 2 0 4 7
4 0 POKE I , 1 4 : NEXT
6 0 FOR I=O TO 1 4 STEP 2
70 POKE 5 3 2 48+I , 2 5+ (1 5 * I)
7 5 POKE 5 3 2 48+I+l , 7 0
8 0 NEXT I
9 0 FOR I = O TO 7
1 0 0 POKE 5 3 2 87+I , 2 5+ I
1 1 0 NEXT : POKE 5 3 2 9 4 , 2
1 2 0 POKE 5 3 2 8 5 , 1
1 3 0 POKE 5 3 286 , 2
1 4 0 POKE 5 3 2 6 9 , 25 5
1 5 0 PRINT " { CLS } { YEL} HERE ARE 8

STANDARD SPRITES "
1 6 0 FOR DE= O TO 1 0 0 0 : NEXT
1 7 0 S Y S 4 9 1 5 2

Display Interrupts 31 1

1 8 0 PRINT " { 15 * CD}HERE ARE 8
M{WHT}U{RED } L { CYN} T { PUR } I { GRN }
C { BLU}O{YEL } L { ORG}O{ BRN}U { YEL }
R SPRITES"

1 9 0 PRINT " { CD } { CD } { CD } { CD } { CD }
{ CD } {WHT } IT ' S ALL DONE WITH
INTERRUPTS ! ! "

2 0 0 GOTO 2 0 0
9 9 8 REM
9 9 9 REM DATA FOR MULTI COLOR

SPRITES
1 0 0 0 DATA 8 , 1 3 6 , 1 3 6 , 4 2 , 17 0
1 0 1 0 DATA 1 6 8 , 4 2 , 17 0 , 1 6 8 , 3 7
1 0 2 0 DATA 1 7 0 , 88 , 1 4 8 , 1 0 5 , 2 2
1 0 3 0 DATA 1 6 5 , 1 7 0 , 9 0 , 1 7 0 , 17 0
1 0 4 0 DATA 1 7 0 , 1 7 0 , 17 0 , 1 7 0 , 4 2
1 0 5 0 DATA 4 0 , 1 6 8 , 4 2 , 4 0 , 1 6 8
1 0 6 0 DATA 1 7 0 , 1 7 0 , 1 7 0 , 17 5 , 2 5 5
1 0 7 0 DATA 2 5 0 , 1 8 1 , 8 5 , 9 4 , 1 8 1
1 0 8 0 DATA 8 5 , 9 4 , 1 7 3 , 8 5 , 1 2 2 , 4 3
1 0 9 0 DATA 8 5 , 2 3 2 , 4 2 , 2 5 5 , 1 6 8
1 1 0 0 DATA 1 0 , 17 0 , 1 6 0 , 2 , 1 7 0
1 1 1 0 DATA 1 2 8 , 0 , 17 0 , 0 , 0 , 4 0 , 0 , 0
1 1 2 0 REM
1 9 9 9 REM DATA FOR STANDARD SPRITES
2 0 0 0 DATA 2 4 , 2 4 , 2 4 , 2 4 , 6 0 , 2 4 , 2 4 , 1 2 6
2 0 1 0 DATA 2 4 , 1 2 , 2 5 5 , 4 8 , 1 5 , 2 5 5 , 2 4 0 , 3
2 0 2 0 DATA 2 5 5 , 1 9 2 , 7 , 2 5 5 , 2 2 4 , 1 5 , 2 5 5
2 0 3 0 DATA 4 0 , 2 4 , 1 2 6 , 2 4 , 4 8 , 1 2 6 , 1 2 , 9 6
2 0 4 0 DATA 1 2 6 , 6 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5
2 0 5 0 DATA 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 ,

2 5 5
2 0 6 0 DATA 1 2 7 , 2 5 5 , 2 5 4 , 5 6 , 6 0 , 2 8 , 2 8 ,

2 4
2 0 7 0 DATA 5 6 , 1 4 , 0 , 1 1 2 , 2 8 , 0 , 5 6 , 5 6 , 0 ,

2 8 , 0

You could use this method to get even more sprites
on one display, but you would need a machine code
program to move them around satisfactorily.

3 12 The Commodore 64 Omnibus - Part 2

M IXED MODE DISPLAYS

One of the disadvantages of the 64's display
compared with some other micros is that you
cannot display text at the same time as high
resolution graphics. Raster interrupts can be put
to use here by switching between hit-mapped mode
and standard text mode at the appropriate place on
the screen. That is how the split screen in the
program demonstrating the graphics routines in
Chapter 20 was created.

Here is a listing of the split screen interrupt
program and a BASIC loader:

1 0 0 IRQLO = 7 8 8
1 1 0 IRQHI = 7 8 9
1 2 0 RASREG = 5 3 26 6
1 3 0 IENREG = 5 3 2 7 4
1 4 0 INTREG = 5 3 2 7 3
1 5 0 IRQVEC = 5 9 9 5 3
1 6 0 LORES = 4 9 26 6
1 7 0 HIRES = 4 9 2 2 1
2 0 0 * = $C512
210 SETUP SEI
2 2 0 LOA # < PROG
2 2 5 STA IRQLO
2 3 0 LOA #>PROG
2 4 0 STA IRQHI
2 5 0 LOA # 1
2 5 5 STA IENREG
2 6 0 LOA # 0
2 6 5 STA RASREG
2 7 0 LOA 5 3 2 6 5
2 8 0 ANO # 1 2 7
2 9 0 STA 5 3 2 6 5
3 0 0 CLI
3 1 0 RTS
5 0 0 PROG LOA INTREG
5 1 0 ANO # 1

5 2 0
5 3 0
5 4 0
5 5 0
5 6 0
5 6 5
5 6 6
5 7 0
6 0 0 TEXT
6 1 0
6 2 0
7 0 0 EXIT
7 1 0
7 2 0
7 3 0
7 4 0
7 5 0
8 0 0 NORM

Display Interrupts

BEQ NORM
STA INTREG
LOA RASREG
BNE TEXT
JSR HIRES
LOA # 2 0 0
STA RASREG
JMP EXIT
JSR LORES
LOA # 0
STA RASREG
PLA
TAY
PLA
TAX
PLA
RTI
JMP IRQVEC

313

The routine is loaded by the following BASIC
program and is located immediately after the
graphics routines, which obviously must be in situ
for it to work.

1 0
2 0
3 0
4 0
2 0 0 0 0

2 0 0 1 0

2 0 0 2 0

2 0 0 3 0

REM MIX MODE LOADER
FOR Z = 5 0 4 6 8 TO 5 0 5 4 1
READ D : POKE Z , D
NEXT Z
DATA 1 2 0 , 1 6 9 , 6 7 , 1 4 1 , 2 0 , 3 , 1 6 9 ,
1 9 7 , 1 4 1 , 2 1 , 3 , 1 6 9 , 1 , 1 4 1 , 2 6 , 2 0 8
DATA 1 6 9 , 0 , 1 4 1 , 1 8 , 2 0 8 , 1 7 3 , 1 7 ,
2 0 8 , 4 1 , 1 2 7 , 1 4 1 , 1 7 , 2 0 8 , 8 8 , 9 6 ,
1 7 3
DATA 2 5 , 2 0 8 , 4 1 , 1 , 2 4 0 , 3 3 , 1 4 1 ,
2 5 , 2 0 8 , 1 7 3 , 1 8 , 2 0 8 , 2 0 8 , 1 1 , 3 2 , 6 9
DATA 1 9 2 , 1 6 9 , 2 0 0 , 1 4 1 , 1 8 , 2 0 8 ,
7 6 , 8 3 , 1 9 7 , 3 2 , 1 1 4 , 1 9 2 , 1 6 9 , 0 , 1 4 1
, 1 8

3 14 The Commodore 64 Omnibus - Part 2

2 0 0 4 0 DATA 2 0 8 , 1 0 4 , 1 6 8 , 1 0 4 , 1 7 0 , 1 0 4 ,
6 4 , 7 6 , 4 9 , 2 3 4

To initialise the routine type:

SYS 5 0 4 5 0

The display will now comprise a graphics screen
with a six line text window at the foot of the screen.

We have mentioned just a few of the ways raster
interrupts can be used to create more interesting
displays - it's up to you to adapt the principles to
suit your own applications.

OTH ER I NTERRUPTS

In addition to setting Bit 0 when the current raster
position equals the stored raster position, the
interrupt status register provides an indication of
sprite collisions.

Bit 1 is set when a sprite to data collision occurs
and will remain set unti l c leared . If the
corresponding bit in the interrupt enable register is
set, an interrupt will be generated. Similarly, Bit 2
will be set when a sprite to sprite collision occurs.

No information is provided as to which sprite(s) are
involved - that must be done by your program. But
using interrupts means your program does not
have to be constantly checking the sprite collision
registers so it will run more quickly.

Interrupts are used in many ways by computers -
another example is in the program in Chapter 22,
where movement of the joystick generates an
interrupt. This allows very smooth motion of the
cursor, and means that other programs can run at
the same time.

CHAPT E R 22

PRO G RAM S AN D PEOPLE

Writing programs to be used by other people is a
very different art from the writing of programs
which only you will use . Most people who use
programs written by others are not skilled in the
use of computers, and may not be familiar with the
typewriter keyboard. In this chapter we will look
at a few ideas for making programs easier to use -
making them �user friendly' as the jargon puts it.

USER FR IENDLINESS

There are two sides to making programs user
friendly. They must allow the user to select options
easily and quickly, and they must also tell the user
what options are available at all times. A program
may have supporting documentation, but the
screen display should present enough information
for the program to be usable without referring to
the notes once the basics have been learnt.

Menus

One of the simplest and most effective ways of
assisting the user to control the program is the
menu. This is a list of the options available, with
some means of indicating how to select an option.
The simplest form presents the list with a key
legend next to each item, indicating that the key
should be pressed to select that feature . The
function keys of the 64 work well with this type of
menu; other possibilities are to use the initial letter

3 1 6 The Commodore 64 Omnibus - Part 2

of each option as the selecting key, or to use
numbers.

A second form of menu displays the list as before,
but indicates the selected item by displaying it in a
different colour, or in inverse video. One or two
keys are then used to move the selection up and
down the list, and a third key acts as the ((go"
button, indicating that the selected item is to be
acted on. The cursor keys and the RETURN key
are probaby best in this application.

Mice and Pointers

The typewriter keyboard is far from the ideal
device for communicating with a computer for the
newcomer. Many people have no experience of
using a keyboard, and find using programs very
difficult if they are constantly searching for the
right key to press. In addition, the keyboard is not
always the best way of controlling a computer, even
for an expert. To get round these problems, there
are a number of different devices now being used to
allow the operator to make inputs by pointing at
symbols on the screen.

Perhaps the best known of these devices at the
moment is the mouse, a small box with a ball
bearing underneath which moves a cursor around
the screen as the mouse is rolled about on the desk.
The mouse usually has one or two buttons on the
top which are used to make selections when the
cursor reaches the right point on the screen.

Other pointing devices which perform a similar
function are the light-pen, which detects the light
emitted by the screen and so may be used to point
directly at the screen, and the tracker ball, which
rolls a cursor round the screen . The latest
innovation is the touch sensitive screen, which

Programs and People 3 1 7

allows the humble human finger to select objects on
the display.

The type of display used with these devices may be
very different from that used in ordinary textual
menus. If the user is making selections by pointing
at the screen, the display describing what is
available need not use text, but can use small
pictorial symbols to indicate options. These
symbols are called icons, and are used in several of
the most advanced business micros now on the
market.

SKETCH PAD PROGRAM

This program demonstrates the use of icons on the
64, using a joystick to draw pictures in multicolour
bit-mapped mode.

9 0 PRINT n {CLS } {WHT } { CD } n TAB (1 2)
n {RVS} 6 4 SKETCH PAD { ROF } n :
PRINT : PRINT : PRINT

1 0 0 CO=6 : Cl=1 0 : C2=1 : C3=0 : IC=1
105 POKE 5 3 281 , CO : POKE 686 , Cl :

POKE 687 , C2 : POKE 688 , C3
1 1 0 FB= 2
1 2 0 REM READ SPRITE DATA
1 3 0 FOR 1=0 TO 383 : READ X : POKE

2 3 168+I , X : NEXT
1 4 0 REM READ MACHINE CODE DATA
1 5 0 FOR 1=0 TO 2 0 2 : READ X : POKE

5 0 5 4 2+ I , X : NEXT
160 REM SET SPRITE Y COORDS
170 FOR 1=53251 TO 53263 STEP 2 :

POKE 1 , 2 2 5 : NEXT
180 FOR 1=0 TO 12 STEP 2 : POKE

5 3 2 5 0 + 1 , (2 4 + 2 4 * 1) AND 2 5 5 :
NEXT

9 9 0 REM MAIN MENU

3 1 8 The Commodore 64 Omnibus - Part 2

1 0 0 0 PRINT " {CLS } {WHT } { CD } " TAB (1 2)
" {RVS } 6 4 SKETCH PAD {ROF } " :
PRINT : PRINT : PRINT

1 0 1 0 PRINT TAB (S) " SHOW CURRENT
P ICTURE . • . { RVS } Fl {ROF } " :
PRINT : PRINT

1 0 2 0 PRINT TAB (S) " NEW P ICTURE
• • • { LTRED} {RVS } F2

{ ROF} {WHT } " : PRINT : PRINT
1 0 3 0 PRINT TAB (S) " LOAD PICTURE

FROM DISK • • • { RVS } F3 {ROF} " :
PRINT : PRINT

1 0 4 0 PRINT TAB (S) " SAVE PICTURE TO
DISK • • • { RVS } F S { ROF} " :
PRINT : PRINT

1 0 S 0 PRINT TAB (S) " CHANGE COLOURS
. . . { RVS } F7 {ROF } " :

PRINT : PRINT
1 0 6 0 PRINT TAB (S) " STOP PROGRAM

. . . { LTRED} {RVS } FS
{ ROF } {WHT } "

1 1 0 0 GET K$: IF K$=" " THEN 1 1 0 0
1 1 1 0 IF K$= " { Fl } " THEN SYS 4 9 1 7 7 :

GOSUB 2 0 1 0 : GOTO 1 0 0 0
1 1 2 0 I F K$= " { F2 } " THEN GOSUB 2 0 0 0 :

GOTO 1 0 0 0
1 1 3 0 I F K$= " { F3 } " THEN GOSUB S O O O :

SYS 4 9 1 7 7 : GOSUB 2 0 1 0 : GOTO
1 0 0 0

1 1 4 0 I F K$ = " { FS } " THEN GOSUB 6 0 0 0 :
GOTO 1 0 0 0

1 1 S 0 I F K$= " { F7 } " THEN GOSUB 7 0 0 0 :
GOTO 1 0 0 0

1 1 6 0 I F K$= " { FS } " THEN END
1170 GOTO 1 1 0 0
1 9 9 0 REM BIT-MAPPED DRAWING
2 0 0 0 SYS 4 9 1 S 9 : REM TURN ON MC BIT

MAP DI SPLAY
2 0 1 0 REM NOW SET SPRITE DATA

POINTERS
2 0 2 0 POKE 2 4 S6S , 10 6 : POKE 2 4 S69 , 1 0S

Programs and People 319

2 0 3 0 FOR 1 = 2 4 5 7 0 TO 2 4 57 2 : POKE I ,
1 0 7 : NEXT

2 0 4 0 POKE 2 4 5 7 3 , 10 9 : POKE
2 4 5 7 4 , 1 1 0 : POKE 2 4 5 7 5 , 1 1 1

2 0 4 5 POKE 5 3 2 4 8 , 17 2 : POKE 5 3 2 4 9 , 1 2 0
2 0 5 0 POKE 5 3 288 , IC : POKE 5 3 289 , C1 :

POKE 5 3 2 9 0 , C2 : POKE 5 3 29 1 , C 3
2 0 5 5 POKE 5 3 2 9 2 , IC : POKE 5 3 2 9 3 , IC :

POKE 5 3 29 4 , IC : POKE 5 3 287 , IC
2 0 6 0 POKE 5 3 2 69 , 2 5 5 : REM TURN

SPRITES ON
2 0 6 5 POKE 5 3 26 4 , 19 2 : REM SPRITE X

MSB
2 0 7 0 SYS 5 0 5 4 2 : POKE69 0 , 1 : REM TURN

ON CURSOR MACHINE CODE
2 0 7 5 C=PEEK (5 3 27 8)
2 0 8 0 POKE 5 3 2 7 1 , 0 : REM SPRITE Y

EXPANSION
2 0 9 0 POKE 5 3 2 7 7 , 2 t (FB+1) : REM

SPRITE Y EXPANSION
2 0 9 5 POKE 685 , FB : POKE 5 3 281 , CO
2099 REM ICON HANDLING
2 1 0 0 C=PEEK (5 3 2 7 8) : IF C=O THEN

2 1 0 0
2 1 0 5 IF (PEEK (5 6 3 2 0) AND 16) <>0

THEN 2 1 0 0
2 1 1 0 CC = C AND 2 5 4
2 1 2 0 I F CC= 2 THEN FB=O : GOTO 2 0 9 0
2 1 3 0 IF CC=4 THEN FB=l : GOTO 2 0 9 0
2 1 4 0 IF CC=8 THEN FB= 2 : GOTO 2 0 9 0
2 1 5 0 I F CC=1 6 THEN FB= 3 : GOTO 2 0 9 0
2 1 6 0 IF CC= 3 2 THEN GOSUB 3 0 0 0 :

GOT020 9 0
2170 I F CC=6 4 THEN GOSUB 4 0 0 0 : GOTO

2 0 9 0
2 1 8 0 IF CC<>1 2 8 THEN 2 1 0 0
2190 REM RETURN TO MENU
2 2 0 0 POKE 5 3269 , 0 : REM TURN OFF

SPRITES
2 2 1 0 SYS 5 07 3 2 : REM TURN OFF CURSOR

INTERRUPT PROG

320

2 2 2 0

2 2 3 0
2 2 4 0
2 9 9 0
3 0 0 0
3 0 0 5

3 0 1 0

3 0 2 0

3 0 3 0

3 0 4 0

3 0 5 0

3 0 6 0
3 0 7 0

3 0 8 0
3 1 0 0

3 1 1 0

3 1 2 0
3990
4000
4 0 0 5

4 0 1 0

4 0 2 0

4 0 3 0

4 0 4 0

The Commodore 64 Omnibus - Part 2

SYS 4 9 26 6 : REM BACK TO TEXT
MODE
POKE 5 3 281 , 6
RETURN
REM DRAW LINE
POKE 6 9 0 , 0 : POKE 5 3 2 7 7 , CC
IF (PEEK (5 6 3 2 0) AND16) <> 1 6
THEN 3 0 0 5
IF (PEEK (5 6 3 2 0) ANDI 6) < > 0
THEN 3 0 1 0
X1=PEEK (69 1) : X2=PEEK (69 2) :
Y1=PEEK (69 3)
IF (PEEK (5 6 3 2 0) ANDI 6) <> 1 6
THEN 3 0 3 0
IF (PEEK (5 6 3 2 0) ANDI 6) < > 0
THEN 3 0 4 0
XL=PEEK (69 1) : XH=PEEK (6 9 2) :
Y=PEEK (69 3)
GOSUB 3 1 0 0
IF (PEEK (5 6 3 2 0) AND16) < > 1 6
THEN POKE 6 8 5 , 0 : GOSUB 3 1 0 0 :
POKE 6 8 5 , FB : GOTO 3 0 5 0
POKE 6 9 0 , 1 : RETURN
POKE 682 , Xl : POKE 6 8 3 , X2 : POKE
6 8 4 , Yl
POKE 6 7 9 , XL : POKE 680 , XH : POKE
681 , Y
SYS 4 9 6 0 8 : RETURN
REM FILL BLOCK
POKE 6 9 0 , 0 : POKE 5 3 2 7 7 , CC
IF (PEEK (5 6 3 2 0) ANDI 6) <> 16
THEN 4 0 0 5
I F (PEEK (5 6 3 2 0) ANDI 6) <>0 THEN
4 0 1 0
X1=PEEK (69 1) : X2=PEEK (69 2) :
Y1=PEEK (69 3)
IF (PEEK (5 6 3 2 0) ANDI 6) <>16
THEN 4 0 3 0
I F (PEEK (5 6 3 2 0) ANDI 6) <>0 THEN
4 0 4 0

Programs and People

4 0 5 0 XL=PEEK (69 1) : XH=PEEK (69 2) :
Y=PEEK (69 3)

4 0 6 0 GOSUB 4 2 0 0 : POKE 6 85 , 0 : GOSUB
4 20 0 : POKE68 5 , FB

4 0 7 0 IF (PEEK (5 6 3 2 0) ANDI6) <>16
THEN 4 0 50

4 0 8 0 GOSUB 4 2 0 0
4 0 9 0 I F Xl+ 2 56 *X2>XL+ 2 56 *XH THEN

Tl=Xl : T 2=X 2 : Xl=XL : X2=XH :
XL=Tl : XH=Tl

32 1

4 1 0 0 IF Yl>Y THEN T=Y : Y=Yl : Yl=T
4 1 1 0 POKE 6 7 9 , Xl : POKE 6 8 0 , X2 : POKE

681 , Yl
4 1 2 0 POKE 6 8 2 , XL : POKE 6 8 3 , XH : POKE

6 8 4 , Y
4 1 3 0 SYS 5 0 4 0 2
4 1 4 0 POKE 6 9 0 , 1 : RETURN
4 2 0 0 POKE 682 , Xl : POKE 6 8 3 , X2 : POKE

684 , Yl
4 2 1 0 POKE 6 7 9 , XL : POKE 6 8 0 , XH : POKE

681 , Yl
4 2 2 0 SYS 4 9 6 0 8
4 2 3 0 POKE 682 , XL : POKE 6 8 3 , XH : POKE

684 , Yl
4 2 4 0 POKE 6 7 9 , XL : POKE 6 8 0 , XH : POKE

681 , Y
4 2 5 0 SYS 4 9 6 0 8
4 2 6 0 POKE 682 , XL : POKE 6 8 3 , XH : POKE

684 , Y
4 2 7 0 POKE 6 7 9 , Xl : POKE 6 8 0 , X2 : POKE

681 , Y
4 2 8 0 SYS 4 9 6 0 8
4 2 9 0 POKE 682 , Xl : POKE 6 8 3 , X2 : POKE

684 , Y
4 3 0 0 POKE 6 7 9 , Xl : POKE 6 8 0 , X2 : POKE

681 , Yl
4 3 1 0 SYS 4 9 6 0 8 : RETURN
4990 REM LOAD PICTURE
5 0 0 0 PRINT n { CLS} {WHT } { CD } n TAB (1 2)

n {RVS } 6 4 SKETCH PAD { ROF} n :
PRINT : PRINT : PRINT

322

5010

5 0 2 0
5 0 3 0
5 0 4 0
5 0 5 0
5060
5070
5080
5090
5100
5110
5120
5 1 3 0
5140
5150
59 9 0
6 0 0 0

6 0 1 0

6 0 2 0
6 0 3 0
6 0 4 0
6 0 5 0
6060
6 0 7 0
6 0 8 0
6 0 9 0
6 1 0 0
6 1 1 0
6120
6 1 3 0
7 0 0 0

7010

7020

The Commodore 64 Omnibus - Part 2

PRINT TAB (5) " {RVS } LOAD
PICTURE { ROF} " : PRINT : PRINT
INPUT " PICTURE TITLE " � F$
OPEN 1 , 8 , 2 , F$ + " S , R"
INPUT#l , C O
INPUT#l , Cl : POKE 686 , Cl
INPUT#1 , C2 : POKE 687 , C2
INPUT# 1 , C3 : POKE 688 , C3
INPUT# l , IC
FOR 1 = 2 4 5 7 6 TO 3 2 5 7 5
GET # l , 0$
IF 0$= " " THEN D$=CHR$ (O)
POKE I , ASC (D$)
NEXT
CLOSE 1
RETURN
REM SAVE PICTURE
PRINT " { CLS } {WHT } { CD } " TAB (1 2)
" { RVS } 6 4 SKETCH PAD { ROF} " :
PRINT : PRINT : PRINT
PRINT TAB (5) " {RVS } SAVE
PICTURE { ROF} " : PRINT : PRINT
INPUT II PICTURE TITLE" : F$
OPEN 1 , 8 , 2 , F$ + " S ,W"
PRINT# l , CO
PRINT# l , C l
PRINT# 1 , C 2
PRINT#1 , C3
PRINT# l , IC
FORI = 2 4 5 7 6T03 2 5 7 5
PRINT#l , CHR$ (PEEK (I » ;
NEXT
PRINT#l : CLOSEI
RETURN
PRINT " { CLS } { CO} " : INPUT
" BACKGROUNO" : CO
PRINT : INPUT " COLOUR
l " : Cl : POKE 686 , Cl
PRINT : INPUT " COLOUR
2 " � C2 : POKE 687 , C2

Programs and People 323

7 0 3 0 PRINT : INPUT " COLOUR
3 " : C3 : POKE 6 8 8 , C 3

7 0 4 0 PRINT : INPUT " ICON COLOUR " ; IC
7 0 5 0 RETURN
1 9 9 9 0 REM DATA FOR SPRITES
2 0 0 0 0 DATA 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
2 0 0 1 0 DATA 2 4 , 0 , 1 5 , 2 5 5 , 2 4 0 , 1 2 , 2 4 , 4 8 ,

1 2 , 2 4 , 4 8 , 1 2 , 0 , 4 8 , 1 2 , 0 , 4 8 , 1 2 , 0 ,
4 8 , 3 1 , 0 , 2 4 8

2 0 0 2 0 DATA 1 2 , 0 , 4 8 , 1 2 , 0 , 4 8 , 1 2 , 0 , 4 8 ,
1 2 , 2 4 , 4 8 , 1 2 , 2 4 , 4 8 , 1 5 , 2 5 5 , 2 4 0 , 0
, 2 4

2 0 0 3 0 DATA 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
2 0 1 0 0 DATA 0 , 0 , 0 , 3 1 , 1 9 2 , 6 0 , 1 2 7 , 2 5 2 ,

2 5 4 , 1 2 7 , 2 5 5 , 2 5 4 , 1 2 7 , 2 5 5 , 2 5 4 ,
2 5 5 , 2 5 5

2 0 1 1 0 DATA 2 5 5 , 2 5 5 , 2 5 5 , 2 5 5 , 6 3 , 2 5 5 ,
2 5 5 , 6 3 , 2 5 5 , 2 5 5 , 1 2 7 , 2 5 5 , 2 5 4 ,
1 2 7 , 2 5 5 , 2 5 4 , 1 2 7

2 0 1 2 0 DATA 2 5 5 , 2 5 2 , 1 2 7 , 2 5 5 , 2 4 8 , 6 3 ,
2 5 5 , 2 5 2 , 3 1 , 2 5 5 , 2 5 2 , 3 1 , 2 5 5 , 2 5 4 ,
3 1 , 2 5 5 , 2 5 5

2 0 1 3 0 DATA 1 5 , 2 5 5 , 2 5 5 , 3 , 2 5 5 , 2 3 1 , 0 ,
6 3 , 2 2 4 , 0 , 7 , 1 9 2 , 0 , 0 , 0 , 0 , 3 1

2 0 1 4 0 DATA 1 9 2 , 6 0 , 6 3 , 2 5 2 , 2 5 4 , 1 1 2 ,
1 2 7 , 2 3 0 , 9 6 , 7 , 1 3 4 , 2 2 4 , 0 , 7 ,
2 4 0 , 0 , 3

2 0 1 5 0 DATA 4 8 , 0 , 3 , 4 8 , 0 , 7 , 1 1 2 , 0 , 6 , 9 6 ,
0 , 1 4 , 9 6 , 0 , 2 8 , 1 1 2 , 0

2 0 1 6 0 DATA 2 4 , 4 8 , 0 , 1 2 , 2 4 , 0 , 1 2 , 2 4 , 0 ,
6 , 3 0 , 0 , 6 3 , 1 5 , 2 2 4 , 1 2 7 , 3

2 0 1 7 0 DATA 2 5 2 , 1 0 3 , 0 , 6 3 , 2 2 4 , 0 , 7 , 1 9 2 ,
0 , 2 2 4 , 0 , 0 , 1 1 2 , 0 , 0 , 5 6 , 0

2 0 1 8 0 DATA 0 , 2 8 , 0 , 0 , 1 4 , 0 , 0 , 7 , 0 , 0 , 3 ,
1 2 8 , 0 , 1 , 1 9 2 , 0 , 0

2 0 1 9 0 DATA 2 2 4 , 0 , 0 , 1 1 2 , 0 , 0 , 5 6 , 0 , 0 ,
2 8 , 0 , 0 , 1 4 , 0 , 0 , 7 , 0

2 0 2 0 0 DATA 0 , 3 , 1 2 8 , 0 , 1 , 1 9 2 , 0 , 0 , 2 2 4 ,
0 , 0 , 1 1 2 , 0 , 0 , 5 6 , 0 , 0

2 0 2 1 0 DATA 2 8 , 0 , 0 , 1 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
6 3 , 2 5 5 , 2 5 2 , 6 3 , 2 5 5 , 2 5 2

324 The Commodore 64 Omnibus - Part 2

2 0 2 2 0 DATA 6 3 , 2 5 5 , 2 5 2 , 6 3 , 0 , 2 5 2 , 6 3 ,
6 3 , 2 5 2 , 6 3 , 6 3 , 2 5 2 , 6 3 , 6 3 ,
2 5 2 , 6 3 , 3

2 0 2 3 0 DATA 2 5 2 , 6 3 , 6 3 , 2 5 2 , 6 3 , 6 3 , 2 5 2 ,
6 3 , 6 3 , 2 5 2 , 6 3 , 6 3 , 2 5 2 , 6 3 ,
6 3 , 2 5 2 , 6 3

2 0 2 4 0 DATA 6 3 , 2 5 2 , 6 3 , 2 5 5 , 2 5 2 , 6 3 , 2 5 5 ,
2 5 2 , 6 3 , 2 5 5 , 2 5 2 , 0 , 0 , 0 , 0 , 0 , 0

2 0 2 5 0 DATA 0 , 0 , 0 , 0 , 0 , 0 , 0 , 6 3 , 2 5 5 , 2 5 2 ,
4 8 , 0 , 1 2 , 4 8 , 2 5 5 , 1 2 , 4 8

2 0 2 6 0 DATA 0 , 1 2 , 4 8 , 0 , 1 2 , 5 1 , 2 5 2 , 2 0 4 ,
4 8 , 0 , 1 2 , 4 8 , 0 , 1 2 , 5 1 , 2 5 2 , 2 0 4

2 0 2 7 0 DATA 4 8 , 0 , 1 2 , 4 8 , 0 , 1 2 , 5 1 , 2 5 2 ,
2 0 4 , 4 8 , 0 , 1 2 , 4 8 , 0 , 1 2 , 5 1 , 2 5 2

2 0 2 8 0 DATA 2 0 4 , 4 8 , 0 , 1 2 , 6 3 , 2 5 5 , 2 5 2 ,
0 , 0 , 0 , 0 , 0 , 0 , 0

2 4 9 9 0 REM DATA FOR MACHINE CODE
2 0 5 0 0 DATA 1 2 0 , 1 6 9 , 1 2 3 , 1 4 1 , 2 0 , 3 , 1 6 9 ,

1 9 7 , 1 4 1 , 2 1 , 3 , 88 , 9 6 , 1 7 3 , 0 ,
2 2 0 , 7 4

2 0 5 1 0 DATA 1 7 6 , 1 2 , 7 2 , 1 7 3 , 1 , 2 0 8 , 2 0 1 ,
4 1 , 1 4 4 , 3 , 2 0 6 , 1 , 2 0 8 , 1 0 4 ,
7 4 , 1 7 6 , 1 2

2 0 5 2 0 DATA 7 2 , 1 7 3 , 1 , 2 0 8 , 2 0 1 , 2 3 9 , 1 7 6 ,
3 , 2 3 8 , 1 , 2 0 8 , 1 0 4 , 7 4 , 1 7 6 , 3 5 ,
7 2 , 1 7 3

2 0 5 3 0 DATA 1 6 , 2 0 8 , 4 1 , 1 , 2 0 8 , 7 , 1 7 3 , 0 ,
2 0 8 , 2 0 1 , 1 4 , 1 4 4 , 1 9 , 5 6 , 1 7 3 , 0 , 2 0 8

2 0 5 4 0 DATA 2 3 3 , 1 , 1 4 1 , 0 , 2 0 8 , 1 7 6 , 8 ,
1 7 3 , 1 6 , 2 0 8 , 4 1 , 2 5 4 , 1 4 1 , 1 6 ,
2 0 8 , 1 0 4 , 7 4

2 0 5 5 0 DATA 1 7 6 , 2 9 , 7 2 , 1 7 3 , 1 6 , 2 0 8 , 4 1 ,
1 , 2 4 0 , 7 , 1 7 3 , 0 , 2 0 8 , 2 0 1 , 7 5 ,
1 7 6 , 1 3

2 0 5 6 0 DATA 2 3 8 , 0 , 2 0 8 , 2 0 8 , 8 , 1 7 3 , 1 6 ,
2 0 8 , 9 , 1 , 1 4 1 , 1 6 , 2 0 8 , 1 0 4 , 7 4 ,
1 7 6 , 6 8

2 0 5 7 0 DATA 5 6 , 1 7 3 , 1 , 2 0 8 , 2 3 3 , 4 0 , 1 4 1 ,
1 8 1 , 2 , 5 6 , 1 7 3 , 0 , 2 0 8 , 2 3 3 ,
1 2 , 1 4 1 , 1 7 9

Programs and People 325

2 0 5 8 0 DATA 2 , 1 7 3 , 1 6 , 2 0 8 , 2 3 3 , 0 , 4 1 , 1 ,
1 4 1 , 1 8 0 , 2 , 1 7 3 , 1 8 0 , 2 , 7 4 , 1 4 1 , 1 8 0

2 0 5 9 0 DATA 2 , 1 7 3 , 1 7 9 , 2 , 1 0 6 , 1 4 1 , 1 7 9 ,
2 , 1 7 3 , 1 7 8 , 2 , 2 4 0 , 2 1 , 1 7 3 ,
1 7 9 , 2 , 1 4 1

2 0 6 0 0 DATA 1 6 7 , 2 , 1 7 3 , 1 8 0 , 2 , 1 4 1 , 1 6 8 ,
2 , 1 7 3 , 1 8 1 , 2 , 1 4 1 , 1 6 9 , 2 , 3 2 ,
1 8 4 , 1 9 2

2 0 6 1 0 DATA 7 6 , 4 9 , 2 3 4 , 1 2 0 , 1 6 9 , 4 9 , 1 4 1 ,
2 0 , 3 , 1 6 9 , 2 3 4 , 1 4 1 , 2 1 , 3 , 8 8 , 9 6

How to use the program

This program uses the machine code graphics
routines introduced in Chapters 18 and 19. The
machine code must be loaded into the 64 before
this program is run . Appendix 1 8 gives full
instructions on how to do this.

The program requires a joystick, which must be
plugged into control port 2 at the right hand side of
the 64. The joystick is used to move a cursor
around the multicolour bit-mapped display, and
the fire button of the joystick plots points on the
screen.

When you run the program, after a short pause
while the data is read, a menu is displayed offering
you the following options, which are selected by the
function keys:

Show Current Picture: This will change the display
to bit-mapped mode without
clearing the bit-mapped
screen.

New Picture: This clears and displays the
bit-mapped screen.

326 The Commodore 64 Omnibus - Part 2

Load Picture:

Save Picture:

Change Colours:

Stop Program:

Loads previously saved
pictures from the disk.

Saves the current b i t
mapped picture on to the
disk.

Allows you to change the
colours of the display and
the icons.

Stops the program!

Selecting either of the first two options displays a
multicolour bit-mapped screen with seven icons at
the bottom and a cross-hair cursor in the middle.
Moving the joystick will move the cursor, and
holding down the fire button will cause points to be
plotted under the cursor.

The icons are used to select different line colours,
and to use the line drawing and block fi lling
routines. The four left-hand icons represent blobs
of paint, and are used to select the line colour.
Simply fire at the appropriate icon to change the
colour. The selected icon will expand to twice its
normal width.

The fifth icon (the line) is used to select line
drawing mode. Once this is selected, the next point
at which you fire will be the start of the line, and
pressing fire again will mark the line end, and the
line will be drawn. If you hold down the fire button
while marking the line end a line will be flashed on
and off, and will follow the cursor around until you
release the button, when the line will be drawn in
the currently selected colour.

The sixth icon (the F) is used in a similar way to fill
blocks on the screen. The two fire pushes after

Programs and People 327

selecting the fill icon will mark diagonally opposite
corners of the rectangle to be filled.

The seventh icon represents the main menu, and is
used to return there.

The 64's sprites are used as the icons and the
cursor. The collisions detection facility of the VIC
chip is used to check whether the cursor sprite is
over one of the icon sprites.

The program uses an additional machine code
routine to move the cursor and to plot on the bit
mapped screen when the joystick fire button is
pressed. This machine code is included in the
DATA statements in lines 20500 to 20610, and is
loaded into memory when you run the program.
This program is listed below.

1 0 0 IRQLO = 7 8 8
1 1 0 IRQHI = 7 8 9
1 2 0
1 3 0 XL = 6 7 9
1 4 0 XH = 6 8 0
1 5 0 Y = 6 8 1
1 6 0
1 7 0 CURSORXL = 6 9 1

1 8 0 CURSORXH = 6 9 2
1 9 0 CURSORY = 6 9 3
2 0 0
2 1 0 XMIN = 1 4
2 2 0 XMAX = 7 5
2 3 0 YMIN = 4 1
2 4 0 YMAX = 2 3 9
2 5 0
2 6 0 IRQVEC = 5 9 9 5 3
2 7 0
2 8 0 PLOT = $COB8
2 9 0 PLOTOK = 6 9 0
3 0 0

64 interrupt vector
stored here

Co-ordinates for plot

Cursor sprite co
ordinates

Max and min
cursor co-ordinates

Normal interrupt
address
Plot routine
Plot on/off

328 The Commodore 64 Omnibus - Part 2

3 1 0 JOYREG = 5 6 3 2 0
3 2 0
3 3 0
3 4 0
3 5 0
3 6 0
3 7 0

SPRXL
SPRXH
SPRY

= 5 3 2 48
= 5 3 2 6 4
= 5 3 2 4 9

3 8 0 * = $C56E
3 9 0
4 0 0
4 1 0

Joystick port

Cursor (sprite 0)
position registers

Starts at 50542

4 2 0 SETUP SEI
4 3 0 LOA
4 4 0 STA

Reset interrupt vector
#<PROG to point at this
IRQLO program

4 5 0 LOA
4 6 0 STA
4 7 0 CLI
480 RTS
4 9 0
5 0 0

#>PROG
IRQHI

5 1 0 PROG
5 2 0

LOA
LSR
BCS
PHA
LOA
CMP
BCC
DEC
PLA

JOY REG Readjoystick port
A

5 3 0
5 4 0
5 5 0
560
5 7 0
5 8 0
5 9 0 JIB
6 0 0
6 1 0 J 2
6 2 0
6 3 0
6 4 0
6 5 0
6 6 0
6 7 0
680 J2B
6 9 0
7 0 0 J 3
7 1 0

J 2

SPRY
#YMIN
JIB
SPRY

LSR A
BCS J 3
PHA
LOA SPRY
CMP #YMAX
BCS J2B
INC SPRY
PLA

LSR A
BCS J 4

Branch if bit 0 set

Stick held up
If not at top
move cursor up

Branch if bit 1 of
joystick port set

Stick held down
If not at bottom
move cursor down

Branch if bit 2
ofjoystick port set

Programs and People 329

7 2 0 PHA
7 3 0 LDA SPRXH Stick held left
7 4 0 AND #1 If not at left-hand
7 5 0 BNE J3A edge of screen
7 6 0 LDA SPRXL move cursor left
7 7 0 CMP #XMIN
7 8 0 BCC J3B
7 9 0 J3A SEC
8 0 0 LDA SPRXL
8 1 0 SBC #1
820 STA SPRXL
8 3 0 BCS J3B
8 4 0 LDA SPRXH
8 5 0 AND # 2 5 4
860 STA SPRXH
8 7 0 J3B PLA
880
890 J4 LSR A B ranch if bit 3 of
9 0 0 BCS J5 joystick port set
9 1 0 PHA
9 2 0 LDA SPRXH Stick held right
9 30 AND #1 If not at right-hand
9 4 0 BEQ J4A edge of screen
9 5 0 LDA SPRXL move cursor right
9 6 0 CMP #XMAX
9 7 0 BCS J4B
980 J4A INC SPRXL
9 9 0 BNE J4B

1 0 0 0 LDA SPRXH
1 0 1 0 ORA #1
1 0 2 0 STA SPRXH
1 0 3 0 J4B PLA
1 0 4 0
1 0 5 0 J5 LSR A Branch ifbit 4 of
1 0 6 0 BCS EXIT joystick port set
1 0 7 0 SEC
1 0 8 0 LDA SPRY Fire button down
1 0 9 0 SBC # 4 0 reset plot co-ordinates
1 1 0 0 STA CURSORY
1 1 1 0 SEC
1 1 2 0 LDA SPRXL

330 The Commodore 64 Omnibus - Part 2

1 1 3 0 SBC # 1 2
1 1 4 0 STA CURSORXL
1 1 5 0 LDA SPRXH
1 1 6 0 SBC # 0
1 1 7 0 AND # 1
1 1 8 0 STA CURSORXH
1 1 9 0 LDA CURSORXH
1 2 0 0 LSR A
1 2 1 0 STA CURSORXH
1 2 2 0 LDA CURSORXL
1 2 3 0 ROR A
1 2 4 0 STA CURSORXL
1 2 5 0 LDA PLOTOK Check i{plot allowed
1 2 6 0 BEQ EXIT [{not branch
1 2 7 0 LDA CURSORXL
1 2 8 0 STA XL
1 2 9 0 LDA CURSORXH
1 3 0 0 STA XH
1 3 1 0 LDA CURSORY
1 3 2 0 STA Y
1 3 3 0 JSR PLOT Plot pixel
1 3 4 0
1 3 5 0
1 3 6 0 EXIT JMP IRQVEC Jump to normal
1 3 7 0 interrupt routine
1 3 8 0
1 3 9 0
1 4 0 0 RESET SEI Disable routine
1 4 1 0 LDA #<IRQVEC by resetting
1 4 2 0 STA IRQLO interrupt vector
1 4 3 0 LDA #>IRQVEC to point to
1 4 4 0 STA IRQHI normal interrupt
1 4 5 0 CLI handler
1 4 6 0 RTS

C H APT E R 2 3

SOU N D AND M USIC - PART 2

Sound adds another dimension to programs -
making them more interesting and exciting or
more user friendly. This chapter covers some of the
ways in which the 64 can be used to play tunes and
melodies, by exploiting the capabilites of its built
in synthesiser - the SID chip.

TH E S ID C H IP

The SID chip provides the 64 with three voices,
each with a range of eight octaves, which can be
independently programmed to produce an almost
infinite variety of waveforms. The sound so
produced may be heard either through the TV
speaker or fed to a hi-fi system.

Playing Tunes

To get the 64 to play tunes, you must 'feed' the SID
chip with the appropriate frequency data for the
notes comprising the tune, in the correct order and
at the correct speed.

One way of doing this is shown in this example:

1 GOSUB 1 0 0 0
1 0 LO= INT (RND (1) * 2 5 6)
20 HI=INT (RND (1) * 2 5 6)
3 0 GOSUB 5 0 0
4 0 FOR D=O TO 5 0 : NEXT D
50 GOTO 10
5 0 0 REM CHANGE NOTE

332

510
5 2 0
5 3 0
999
1000
1030
1040
1 0 5 0
1 0 6 0

The Advanced Commodore 64 Handbook

POKE 5 4 27 2 , LO
POKE 5 4 27 3 , HI
RETURN
REM SET UP SID CHIP
POKE 5 4 2 9 6 , 1 5 : REM VOL
POKE 5 4 2 7 7 , 54 : REM ATTACK/DECAY
POKE 5 4 2 7 8 , 16 8 : REM SUST/REL
POKE 5 4 2 7 6 , 3 3 : REM WAVEFORM
RETURN

This idea can be extended to cover all three
channels like this:

1 GOSUB 1 0 0 0 : GOSUB 2 0 0 0 : GOSUB
3 0 0 0

1 0 LO= INT (RND (1) * 2 5 6)
20 HI=INT (RND (1) * 2 5 6)
3 0 POKE L1 , LO : POKE L2 , LO/2 : POKE

L 3 , LO/ 4
40 POKE H1 , HI : POKE H2 , HI/2 : POKE

H3 , HI/4
50 FOR D=OT050 : NEXT D
6 0 GOTO 1 0
999 REM SET UP SID CHIP REG 1
1 0 0 0 POKE 5 4 29 6 , 1 5 : REM VOL
1 0 1 0 L1= 5 4 27 2 : REM LOW
1 0 2 0 'H1 = 5 4 27 3 : REM HIGH
1 0 3 0 POKE 5 4 2 7 7 , 5 4 : REM ATTACK/DECAY
1 0 4 0 POKE 5 4 2 7 8 , 16 8 : REM SUST/REL
1 0 5 0 POKE 5 4 2 7 6 , 3 3 : REM WAVEFORM
1060 RETURN
1999 REM SET UP SID CHIP REG 2
2 0 0 0 L 2 = 5 4 2 7 9 : REM LOW
2 0 1 0 H2= 5 4 28 0 : REM HIGH
2 0 2 0 POKE 5 4 2 8 4 , 54 : REM ATTACK/DECAY
2 0 3 0 POKE 5 4 2 8 5 , 16 8 : REM SUST/REL
2 0 4 0 POKE 5 4 2 8 3 , 3 3 : REM CONTROL REG
2 0 5 0 RETURN
2099 REM SET UP SID CHIP REG 3
3 0 0 0 L 3 = 5 4 286 : REM LOW
3 0 1 0 H 3 = 5 4 2 8 7 : REM HIGH

Sound and Music - Part 2 333

3 0 2 0 POKE 5 4 2 9 1 , 5 4 : REM ATTACK/DECAY
3 0 30 POKE 5 4 2 9 2 , 16 8 : REM SUST/REL
3 0 40 POKE 5 4 2 9 0 , 3 3 : REM WAVEFORM
3 0 5 0 RETURN

N ei ther of these examples could be described as
music - for that we need a more controlled way of
calculating the note frequencies.

The table on page 152 of the Commodore 64 User
Guide gives a list of frequency values corres
ponding to musical notes (if you are unfamiliar
with musical notation refer to Appendix 9). Using
this table you can build up a series of numbers
corresponding to the high and low bytes of the
frequency of the notes, but can they be stored? One
way is to keep them in a string, reading them one
at a time and POKEing them into the appropriate
SID registers. This technique is illustrated in the
following program:

1 GOSUB 1 0 0 0
1 0 L$= " % % % % ? * * %%/% "
20 H$ = " { CD } { CD } { CD} { CD } { HOM}

{ RVS } {RVS } { CD } { CD } " +CHR$ (16) + "
{ CD} "

30 FOR Q=l TO LEN (L$)
4 0 LO=ASC (MID$ (L$, Q , l »
50 HI =ASC (MI D$ (H$, Q , l »
60 GOSUB 5 0 0
7 0 FOR X=O TO 1 0 0 : NEXT X
80 HI=O : LO=O : GOSUB 5 0 0
9 0 NEXT Q
1 0 0 STOP
5 0 0 REM CHANGE NOTE
510 POKE 5 4 27 2 , LO
5 2 0 POKE 5 4 27 3 , HI
5 3 0 RETURN
999 REM SET UP SID CHI P
1 0 0 0 POKE 5 4 2 9 6 , 1 5 : REM VOL
1 0 2 0 POKE 5 4 2 77 , 5 4 : REM ATTACK/DECAY

334

1 0 3 0
1 0 4 0
1 0 5 0

The Advanced Commodore 64 Handbook

POKE 5 4 2 7 8 , 168 : REM SUST/REL
POKE 5 4 2 7 6 , 3 3 : REM WAVEFORM
RETURN

The main limitation of this method is that the
notes are all the same length, which renders it
impractical for all but the simplest of tunes.

There are several ways of overcoming this. For
example, a second string could be used to hold the
data for the length of notes. Add these lines to the
last program to hear this technique in action.

2 5 L$= " 3 2 1 3 2 1 2 1 2 1 4 "
7 0 FOR D=O TO 1 0 0 *VAL (MID$ (L$, Q ,

1)) : NEXT D

This method is adequate for simple tunes, but a
better way is to hold information concerning notes
and note lengths in DATA statements. You can see
an example of this technique in the program at the
end of the chapter, in which data for high and low
frequencies is held in DATA statements.

Multi Channel Music

You can easily expand the DATA statement
method to cater for tunes using all three voices,
perhaps with different Attack/Decay and
Sustain/Release characteri stics to simulate
different musical instruments. An extra problem
occurs when a note on one voice is of a different
length to that on another. To overcome this you
could use three duration loop counters, one for each
voice, or, more simply, reduce each note to the
shortest common length and play a note several
times if it is longer than this. This technique is
illustrated in the program at the end of this
chapter.

Sound and Music - Part 2 335

MUSIC FROM MACHINE CODE PROGRAMS

Using the SID chip from within machine code
programs is very easy, since all you have to do is
duplicate the BASIC POKEs to achieve the same
effect, as the next program illustrates.

1 * =$CO O O
1 0 0 VOICEILOW= 5 4 2 7 2
1 1 0 VOICEIHIGH= 5 4 2 7 3
1 2 0 ATTOEC=5 4 2 7 7
1 3 0 SUSREL=5 4 2 7 8
1 4 0 CONTROL=5 4 2 9 6
1 5 0 NOTES=679
1 6 0
1 0 0 0 INIT LOX # 0
1 0 0 1 LOA # 1 3
1 0 0 2 STA NOTES
1 0 0 3 LOA # 1 5
1 0 0 4 STA CONTROL
1 0 0 5 LOA # 5 4
1 0 0 6 STA ATTOEC
1007 LOA # 16 8
1 0 0 8 STA SUSREL
1 0 0 9 PLAY LOA # 3 3
1 0 1 0 STA 5 4 27 6
1 0 1 5 LOA TABLE , X
1 0 2 0 STA VOICEILOW
1 0 3 0 INX
1 0 4 0 LOA TABLE , X
1 0 5 0 STA VOICEIHIGH
1 0 6 0 INX
1 0 7 0 LOA TABLE , X
1 0 7 5 INX
1 0 8 0 TAY
1 0 9 0 JSR OELAY
1 0 9 2 LOA # 3 2
1 0 9 3 STA 5 4 2 7 6
1 0 9 4 LOY # 2 5 5
1 0 9 6 LOOP OEY
1 0 9 7 BNE LOOP

336 The Advanced Commodore 64 Handbook

1 1 0 0 DEC NOTES
1 1 1 0 BNE PLAY
1 1 2 0 QUIET LOA # 3 2
1 1 3 0 STA 5 4 2 7 6
1 1 4 0 LOA # 0
1 1 5 0 STA 5 4 2 9 6
1 1 6 0 RTS
2 0 0 0 DELAY LOA # 1 0 0
2 0 1 0 STA 1 6 2
2 0 1 5 TIME LOA 1 6 2
2 0 2 0 BPL TIME
2 0 3 0 DEY
2 0 4 0 BNE DELAY
2 0 5 0 RTS
5 0 0 0 TABLE BYT 1 7 7 , 2 5 , 2 , 1 7 7 , 2 5 , 2 ,

2 2 7 , 2 2 , 1 , 1 7 7 , 2 5 , 1 , 2 1 4 , 2 8
, 2 , 1 5 4 , 2 1 , 4

5 0 1 0 BYT
6 3 , 1 9 , 4 , 3 7 , 1 7 , 2 , 3 7 , 1 7 ,
2 , 4 7 , 1 6 , 1 , 3 7 , 1 7 , 1 , 6 3 , 1 9 ,
2 , 1 0 7 , 1 4 , 4

However since machine code is so much faster than
BASIC you could introduce such tricks as altering
the volume of a note or changing the waveform,
dynamically. Another poss ib i l i ty i s to use
interrupts to allow tunes to be played while other
actions are being performed - you could even have
the 64 play soothing music as you type in a
program!!

Calculating Note Frequencies

The frequencies of musical notes are governed by
mathematical rules - for example any note is
exactly twice the frequency of the same note in the
octave below. This means you don't have to rely on
a table to calculate the frequencies you need for a
particular tune: you can get the 64 to do it for you.

Sound and Music - Part 2 337

The next program is a simple music editor which
allows you to enter a note and its octave in the form
C3, which is note C from the third octave, and
displays the appropriate frequency numbers for the
SID chip to play that note. The note is played and
the numbers and notes stored in the array TD%.
Sharps and flats can be specified by adding the # or
b symbol to the note when you type it in - C4# .
The strings describing the notes are stored in the
array N$.

1 0

9 9 2
9 9 3
9 9 4
9 9 5
9 9 6
9 9 7
9 9 8
1 0 0 0

1 0 1 0

1 0 2 0

1 0 3 0

1 0 4 0
199 2
19 9 3
1 9 9 4
1 9 9 5
1 9 9 6
1997
1 9 9 8
2 0 0 0
2 0 1 0
2 0 2 0
2 0 3 0
2 0 4 0

DIM TD% (2 , 19 9) , N$ (19 9) : HI=0 :
LO=O : GOTO 1 5 0 0 0
REM
REM *
REM * *
REM * CALCULATE NOTE , OCTAVE *
REM * *
REM *
REM
N=ASC (LEFT$ (Z $, 1 » - 6 5 : IF N<O
OR N>6 THEN EF=l : GOTO 1 0 4 0
0=ASC (MID$ (Z $, 2 , 1 » - 4 8 : IF 0<0
OR 0>7 THEN EF=l : GOTO 1 0 4 0
I F LEN (Z $) =2 THEN P=O : GOTO
1 0 4 0
P=ASC (RIGHT$ (Z $, l » : IF P<> 3 5
AND P<> 4 5 THEN EF=l
RETURN
REM
REM * * * * * * * * * * * * * *
REM * *
REM * CALC PITCH *
REM * *
REM * * * * * * * * * * * * * *
REM
IFN>l THEN N=N- 2 : GOTO 2 0 2 0
N=N+ 5
N=N* 2
IF N>4 THEN N=N-1
IF P= 3 5 THEN N=N+1

338 The Advanced Commodore 64 Handbook

2 0 5 0 I F P=4 5 THEN N=N-l
2 0 6 0 RETURN
2 9 9 2 REM
2 9 9 3 REM *
2 9 9 4 REM * *
2 9 9 5 REM * CALC FREQ VALUES *
2996 REM * *
2997 REM *
2998 REM
3 0 0 0 F= (27 4 * (2 tO » * 2 t (N/ 1 2)
3 0 1 0 HI=INT (F/ 2 5 6)
3 0 2 0 LO=INT (F-HI * 2 5 6)
3 0 3 0 RETURN
9 9 9 2 REM
9 9 9 3 REM * * * * * * * *
9 9 9 4 REM * *
9 9 9 5 REM * PLAY *
9 9 9 6 REM * *
9997 REM * * * * * * * *
9998 REM
1 0 0 0 0 POKE 5 4 2 7 7 , 5 4 : REM ATTACK/DECAY
1 0 0 1 0 POKE 5 4 2 7 8 , 1 68 : REM SUST/REL
1 0 0 2 0 POKE 5 4 2 7 6 , 3 3 : REM WAVEFORM
1 0 0 3 0 POKE 5 4 2 9 6 , 1 5
1 0 0 4 0 POKE 5 4 27 2 , LO
1 0 0 5 0 POKE 5 4 2 7 3 , HI
1 0 0 6 0 RETURN
1 4 9 9 2 REM
1499 3 REM * * * * * * * * * * * * * * *
1 4 9 9 4 REM * *
1 4 9 9 5 REM * ENTER NOTES *
1 4 9 9 6 REM * *
1 4 9 9 7 REM * * * * * * * * * * * * * * *
14998 REM
1 5 0 0 0 GOSUB 1 0 0 0 0 : REM SET UP SID
1 5 0 1 0 PRINTl s " : INPUT " NOTE" ; Z$
1 5 0 2 0 L=LEN (Z $) : IF L<2 OR L>3 THEN

1 5 0 0 0
1 5 0 3 0 GOSUB 1 0 0 0
1 5 0 4 0 I F EF=l THEN EF= O : GOTO 1 5 0 0 0
1 5 0 5 0 GOSUB 2 0 0 0

Sound and Music - Part 2

1 5 0 6 0 GOSUB 3 0 0 0
1 5 0 7 0 PRINT "HIGH FREQUENCY= " : HI
1 5 0 8 0 PRINT " LOW FREQUENCY= " : LO
1 5 0 8 5 TD% (O , Z) =HI : TD% (l , Z) =LO :

N$ (Z) =Z $
1 5 0 9 0 GOSUB 1 0 0 4 0 : Z = Z + l
1 5 0 9 5 PRINT " PRESS ANY KEY TO

CONTINUE "
1 5 1 0 0 GET K$: IF K$= " " THEN 1 5 1 0 0
1 5 1 1 0 HI=O : LO=O : GOSUB 1 0 0 4 0 : GOTO

1 5 0 1 0

PICTU RES AT A N EXH IB ITION

339

This program plays a piece of classical music in
three part harmony to demonstrate some of the
techniques covered in this chapter. A lot of typing
is involved but the end result is worth it!

1 GOSUB 1 0 0 0 : GOSUB 2 0 0 0 : GOSUB
3 0 0 0

1 0 READ H1 , L1 , H2 , L2 , H3 , L3
1 5 IF H1=9 9 9 THEN END
20 POKE 5 4 2 7 3 , H1 : POKE 5 4 2 7 2 , Ll
3 0 POKE 5 4 2 8 0 , H2 : POKE 5 4 2 7 9 , L2
4 0 POKE 5 4 287 , H3 : POKE 5 4 286 , L3
50 FOR D= O TO 1 2 0 : NEXT D
6 0 GOTO 1 0
9 9 9 REM SET U P SID CHI P REG 1
1 0 0 0 POKE 5 4 2 9 6 , 1 5 : REM VOL
1 0 3 0 POKE 5 4 277 , 5 4 : REM ATTACK/DECAY
1 0 4 0 POKE 5 4 2 7 8 , 19 1 : REM SUST/REL
1 0 5 0 POKE 5 4 2 7 6 , 3 3 : REM WAVEFORM
1 0 6 0 RETURN
1999 REM SET UP S I D CHI P REG 2
2 0 0 0 POKE 5 4 2 8 4 , 5 4 : REM ATTACK/DECAY
2 0 1 0 POKE 5 4 2 8 5 , 16 8 : REM SUST/REL
2 0 2 0 POKE 5 4 2 8 3 , 3 3 : REM CONTROL REG
2 0 3 0 RETURN
2 0 99 REM SET UP S I D CHIP REG 3
3 0 0 0 POKE 5 4 2 9 1 , 54 : REM ATTACK/DECAY

340 The Advanced Commodore 64 Handbook

3 0 1 0
3 0 2 0
3 0 5 0
1 0 0 0 0

1 0 0 1 0

1 0 0 2 0

1 0 0 2 5
1 0 0 3 0

1 0 0 4 0

1 0 0 5 0

1 0 0 5 5
1 0 0 6 0

1 0 0 7 0

1 0 0 8 0

1 0 0 9 0
1 0 0 9 5
1 0 1 0 0

1 0 1 1 0

1 0 1 2 0

POKE 5 4 2 9 2 , 16 8 : REM SUST/REL
POKE 5 4 2 9 0 , 3 3 : REM WAVEFORM
RETURN
DATA 1 2 , 21 6 , 0 , 0 , 0 , 0 , 1 2 , 2 16 , 0 ,
0 , 0 , 0 , 11 , 11 4 , 0 , 0 , 0 , 0 , 1 1 , 1 1 4 , 0 ,
0 , 0 , 0
DATA 1 5 , 7 0 , 0 , 0 , 0 , 0 , 1 5 , 7 0 , 0 , 0 ,
0 , 0 , 17 , 37 , 0 , 0 , 0 , 0 , 2 2 , 2 2 7 ,
0 , 0 , 0 , 0
DATA 19 , 6 3 , 0 , 0 , 0 , 0 , 19 , 6 3 ,
0 , 0 , 0 , 0
REM ***********************
DATA 1 7 , 37 , 0 , 0 , 0 , 0 , 2 2 , 2 2 7 ,
0 , 0 , 0 , 0 , 19 , 6 3 , 0 , 0 , 0 , 0 , 1 9 , 6 3 , 0 ,
0 , 0 , 0 , 1 5 , 7 0 , 0 , 0 , 0 , 0
DATA 1 5 , 7 0 , 0 , 0 , 0 , 0 , 17 , 37 , 0 , 0 ,
0 , 0 , 17 , 37 , 0 , 0 , 0 , 0 , 1 2 , 2 1 6 ,
0 , 0 , 0 , 0
DATA 1 2 , 21 6 , 0 , 0 , 0 , 0 , 1 1 , 1 1 4 ,
0 , 0 , 0 , 0 , 11 , 1 1 4 , 0 , 0 , 0 , 0
REM ***********************
DATA 1 2 , 2 1 6 , 9 , 1 59 , 7 , 16 3 , 1 2 ,
2 16 , 9 , 1 59 , 7 , 16 3 , 11 , 1 1 4 , 8 ,
1 47 , 7 , 5 3
DATA 1 1 , 1 1 4 , 8 , 1 4 7 , 7 , 5 3 , 1 5 , 7 0 ,
9 , 1 5� , 7 , 16 3 , 1 5 , 7 0 , 9 , 1 59 , 7 , 1 6 3
DATA 17 , 37 , 1 4 , 1 07 , 8 , 1 4 7 , 2 2 ,
2 27 , 1 4 , 1 0 7 , 8 , 1 47 , 19 , 6 3 , 1 4 , 1 0 7 ,
1 1 , 1 1 4
DATA 19 , 6 3 , 1 4 , 1 0 7 , 1 1 , 1 1 4
REM ***********************
DATA 17 , 37 , 1 4 , 1 0 7 , 8 , 1 47 , 2 2 ,
2 2 7 , 1 4 , 1 0 7 , 8 , 1 47 , 19 , 6 3 , 1 5 ,
7 0 , 1 1 , 1 1 4
DATA 19 , 6 3 , 1 5 , 7 0 , 1 1 , 11 4 , 1 5 , 7 0 ,
1 2 , 2 16 , 9 , 1 5 9 , 1 5 , 7 0 , 1 2 , 2 1 6 ,
9 , 1 5 9
DATA 17 , 37 , 1 2 , 2 16 , 1 0 , 2 0 5 , 1 7 ,
3 7 , 1 2 , 2 16 , 1 0 , 2 0 5 , 1 2 , 2 16 , 8 ,
1 47 , 6 , 1 0 8

Sound and Music - Part 1

1 0 1 3 0 DATA 1 2 , 2 1 6 , 8 , 1 4 7 , 6 , 1 0 8 , 1 1 ,
1 1 4 , 8 , 1 4 7 , 7 , 5 3 , 1 1 , 1 1 4 , 8 ,
1 4 7 , 7 , 5 3

34 1

1 0 1 3 5 REM *
1 0 1 4 0 DATA 1 1 , 1 1 4 , 0 , 0 , 0 , 0 , 1 1 , 1 1 4 , 0 ,

0 , 0 , 0 , 1 2 , 2 1 6 , 0 , 0 , 0 , 0 , 1 2 , 2 1 6 , 0 ,
0 , 0 , 0

1 0 1 5 0 DATA 9 , 1 5 9 , 0 , 0 , 0 , 0 , 9 , 1 5 9 , 0 , 0 ,
0 , 0 , 1 1 , 1 1 4 , 0 , 0 , 0 , 0 , 1 2 , 2 1 6 ,
0 , 0 , 0 , 0

1 0 1 6 0 DATA 8 , 1 4 7 , 0 , 0 , 0 , 0 , 8 , 1 4 7 , 0 ,
0 , 0 , 0

1 0 1 6 5 REM *
1 0 1 7 0 DATA 1 2 , 2 1 6 , 0 , 0 , 0 , 0 , 1 4 , 1 0 7 , 0 ,

0 , 0 , 0 , 1 1 , 1 1 4 , 0 , 0 , 0 , 0 , 1 1 , 1 1 4 ,
0 , 0 , 0 , 0

1 0 1 8 0 DATA 2 2 , 2 2 7 , 1 1 , 1 1 4 , 5 , 1 8 5 , 2 2 ,
2 2 7 , 1 1 , 1 1 4 , 5 , 1 8 5 , 1 9 , 6 3 , 1 1 ,
1 1 4 , 7 , 1 6 3

1 0 1 9 0 DATA 1 9 , 6 3 , 1 1 , 1 1 4 , 7 , 1 6 3 , 1 7 , 3 7 ,
1 1 , 1 1 4 , 6 , 1 0 8 , 1 5 , 7 0 , 1 1 , 1 1 4 ,
6 , 1 0 8

1 0 2 0 0 DATA 1 1 , 1 1 4 , 0 , 0 , 5 , 1 8 5 , 1 1 , 1 1 4 ,
0 , 0 , 5 , 1 8 5

1 0 2 0 5 REM *
1 0 2 1 0 DATA 1 1 , 1 1 4 , 0 , 0 , 0 , 0 , 1 1 , 1 1 4 , 0 ,

0 , 0 , 0 , 1 2 , 2 1 6 , 0 , 0 , 0 , 0 , 1 2 , 2 1 6 ,
0 , 0 , 0 , 0

1 0 2 2 0 DATA 9 , 1 5 9 , 0 , 0 , 0 , 0 , 9 , 1 5 9 , 0 , 0 ,
0 , 0 , 1 1 , 1 1 4 , 0 , 0 , 0 , 0 , 1 2 , 2 1 6 ,
0 , 0 , 0 , 0

1 0 2 3 0 DATA 1 0 , 6 0 , 0 , 0 , 0 , 0 , 1 0 , 6 0 , 0 ,
0 , 0 , 0

1 0 2 3 5 REM *
1 0 2 4 0 DATA 1 5 , 7 0 , 0 , 0 , 0 , 0 , 1 7 , 3 7 , 0 , 0 ,

0 , 0 , 1 3 , 1 5 6 , 0 , 0 , 0 , 0 , 1 3 , 1 5 6 ,
0 , 0 , 0 , 0

1 0 2 5 0 DATA 2 7 , 5 6 , 1 3 , 1 5 6 , 6 , 2 0 6 , 2 7 , 5 6 ,
1 3 , 1 5 6 , 6 , 2 0 6 , 2 2 , 2 2 7 , 1 3 , 1 5 6 ,
9 , 2 1

342 The Advanced Commodore 64 Handbook

1 0 2 6 0 DATA 2 2 , 2 2 7 , 1 3 , 1 5 6 , 9 , 2 1 , 2 0 ,
1 0 0 , 1 3 , 1 5 6 , 7 , 1 6 3 , 1 8 , 4 2 , 1 3 , 1 5 6 ,
7 , 1 6 3

1 0 2 7 0 DATA 1 3 , 1 5 6 , 0 , 0 , 6 , 2 0 6 , 1 3 , 1 5 6 ,
0 , 0 , 6 , 2 0 6

1 0 2 7 5 REM *
1 0 2 8 0 DATA 1 3 , 1 5 6 , 1 0 , 6 0 , 3 , 8 , 1 3 , 1 5 6 ,

1 0 , 6 0 , 3 , 8 , 1 5 , 7 0 , 1 0 , 6 0 , 3 , 8 , 1 5 ,
7 0 , 1 0 , 6 0 , 3 , 8

1 0 2 9 0 DATA 1 3 , 1 5 6 , 1 0 , 6 0 , 2 , 2 2 0 , 1 3 ,
1 5 6 , 1 0 , 6 0 , 2 , 2 2 0 , 1 5 , 7 0 , 1 0 ,
6 0 , 3 , 5 4

1 0 3 0 0 DATA 1 7 , 3 7 , 1 0 , 6 0 , 3 , 5 4 , 2 0 , 1 0 0 ,
1 0 , 6 0 , 3 , 5 4 , 1 5 , 7 0 , 1 0 , 6 0 , 3 , 5 4

1 0 3 1 0 DATA 1 3 , 1 5 6 , 1 0 , 6 0 , 6 , 1 6 , 1 3 , 1 5 6 ,
1 0 , 6 0 , 6 , 1 6

1 0 3 1 5 REM *
1 0 3 2 0 DATA 1 8 , 4 2 , 1 3 , 1 5 6 , 1 1 , 1 1 4 , 2 0 ,

1 0 0 , 1 7 , 3 7 , 1 3 , 1 5 6 , 2 2 , 2 2 7 , 1 8 , 4 2 ,
1 3 , 1 5 6

1 0 3 3 0 DATA 2 7 , 5 6 , 1 3 , 1 5 6 , 0 , 0 , 2 4 , 6 3 ,
2 0 , 1 0 0 , 1 5 , 7 0 , 2 2 , 2 2 7 , 1 8 , 4 2 ,
1 3 , 1 5 6

1 0 3 4 0 DATA 2 0 , 1 0 0 , 1 7 , 3 7 , 1 3 , 1 5 6 , 2 4 ,
6 3 , 0 , 0 , 1 2 , 3 2 , 2 2 , 2 2 7 , 1 8 ,
4 2 , 1 5 , 7 0

1 0 3 5 0 DATA 1 8 , 4 2 , 0 , 0 , 9 , 2 1 , 2 0 , 1 0 0 , 1 7 ,
3 7 , 1 3 , 1 5 6 , 2 0 , 1 0 0 , 1 7 , 3 7 , 1 3 , 1 5 6

1 0 3 5 5 REM *
1 0 3 6 0 DATA 1 3 , 1 5 6 , 1 0 , 6 0 , 3 , 8 , 1 3 , 1 5 6 ,

1 0 , 6 0 , 3 , 8 , 1 5 , 7 0 , 1 0 , 6 0 , 3 , 8 , 1 5 ,
7 0 , 1 0 , 6 0 , 3 , 8

1 0 3 7 0 DATA 1 3 , 1 5 6 , 1 0 , 6 0 , 2 , 2 2 0 , 1 3 ,
1 5 6 , 1 0 , 6 0 , 2 , 2 2 0 , 1 5 , 7 0 , 1 0 ,
6 0 , 3 , 8

1 0 3 8 0 DATA 1 7 , 3 7 , 1 0 , 6 0 , 3 , 8 , 2 0 , 1 0 0 ,
1 0 , 6 0 , 6 , 1 6 , 1 5 , 7 0 , 7 , 1 6 3 , 0 , 0

1 0 3 8 5 REM *
1 0 3 9 0 DATA 1 7 , 3 7 , 1 2 , 2 1 6 , 7 , 1 6 3 , 1 7 ,

3 7 , 1 2 , 2 1 6 , 7 , 1 6 3 , 1 9 , 6 3 , 1 2 , 2 1 6 ,
7 , 1 6 3

Sound and Music - Part 2 343

1 0 4 0 0 DATA 1 9 , 6 3 , 1 2 , 2 1 6 , 7 , 1 6 3 , 1 7 , 3 7 ,
1 2 , 2 1 6 , 7 , 5 3 , 1 7 , 3 7 , 1 2 , 2 1 6 , 7 , 5 3

1 0 4 1 0 DATA 1 9 , 6 3 , 1 2 , 2 1 6 , 7 , 1 6 3 , 2 2 ,
2 2 7 , 1 2 , 2 1 6 , 7 , 1 6 3 , 2 5 , 1 7 0 , 1 2 ,
2 1 6 , 7 , 1 6 3

1 0 4 2 0 DATA 1 9 , 6 3 , 1 2 , 2 1 6 , 7 , 1 6 3 , 1 7 ,
3 7 , 1 2 , 2 1 6 , 1 5 , 7 0 , 1 7 , 3 7 , 1 2 ,
2 1 6 , 1 5 , 7 0

1 0 4 2 5 REM *
1 0 4 3 0 DATA 2 2 , 2 2 7 , 1 7 , 3 7 , 1 4 , 1 0 7 , 2 5 ,

1 7 7 , 2 1 , 1 5 4 , 1 7 , 3 7 , 2 8 , 2 1 4 , 2 2 ,
2 2 7 , 1 7 , 3 7

1 0 4 4 0 DATA 3 4 , 7 5 , 0 , 0 , 1 7 , 3 7 , 3 0 , 1 4 1 ,
2 5 , 1 7 7 , 3 , 5 4 , 2 8 , 2 1 4 , 2 2 , 2 2 7 , 7 , 5 3

1 0 4 5 0 DATA 2 5 , 1 7 7 , 2 1 , 1 5 4 , 1 7 , 3 7 , 3 0 ,
1 4 1 , 0 , 0 , 1 5 , 7 0 , 2 8 , 2 1 4 , 2 2 , 2 2 7 ,
1 9 , 6 3

1 0 4 6 0 DATA 2 2 , 2 2 7 , 0 , 0 , 1 1 , 1 1 4 , 2 5 ,
1 7 7 , 2 1 , 1 5 4 , 1 7 , 3 7 , 2 5 , 1 7 7 , 2 1 ,
1 5 4 , 1 7 , 3 7

1 0 4 6 5 REM *
1 0 4 7 0 DATA 2 8 , 2 1 4 , 1 7 , 3 7 , 1 4 , 1 0 7 , 2 1 ,

1 5 4 , 1 7 , 3 7 , 1 4 , 1 0 7 , 2 2 , 2 2 7 , 1 9 ,
6 3 , 7 , 1 6 3

1 0 4 8 0 DATA 2 2 , 2 2 7 , 1 9 , 6 3 , 7 , 1 6 3 , 2 8 ,
2 1 4 , 1 7 , 3 7 , 2 , 2 2 0 , 2 8 , 2 1 4 , 1 7 ,
3 7 , 2 , 2 2 0

1 0 4 9 0 DATA 1 9 , 6 3 , 1 5 , 7 0 , 1 0 , 2 0 5 , 1 9 , 6 3 ,
1 5 , 7 0 , 1 0 , 2 0 5 , 2 8 , 2 1 4 , 1 7 , 3 7 ,
2 , 2 2 0

1 0 5 0 0 DATA 2 8 , 2 1 4 , 1 7 , 3 7 , 2 , 2 2 0 , 1 9 , 6 3 ,
1 5 , 7 0 , 1 0 , 6 0 , 1 9 , 6 3 , 1 5 , 7 0 , 1 0 , 6 0

1 0 5 0 5 REM *
1 0 5 1 0 DATA 2 2 , 2 2 7 , 1 4 , 1 0 7 , 1 1 , 1 1 4 , 1 7 ,

3 7 , 1 4 , 1 0 7 , 1 1 , 1 1 4 , 1 9 , 6 3 , 1 5 ,
7 0 , 1 1 , 1 1 4

1 0 5 2 0 DATA 1 9 , 6 3 , 1 5 , 7 0 , 1 1 , 1 1 4 , 2 2 ,
2 2 7 , 1 4 , 1 0 7 , 4 , 2 0 8 , 2 2 , 2 2 7 , 1 4 ,
1 0 7 , 4 , 2 0 8

344 The Advanced Commodore 64 Handbook

1 0 5 3 0 DATA 1 9 , 6 3 , 1 5 , 7 0 , 1 1 , 1 1 4 , 1 9 , 6 3 ,
1 5 , 7 0 , 1 1 , 1 1 4 , 2 2 , 2 2 7 , 1 4 , 1 0 7 ,
4 , 2 0 8

1 0 5 4 0 DATA 1 7 , 3 7 , 1 4 , 1 0 7 , 4 , 2 0 8 , 1 9 ,
6 3 , 1 5 , 7 0 , 1 1 , 1 1 4 , 1 9 , 6 3 , 1 5 ,
7 0 , 1 1 , 1 1 4

1 0 5 4 5 REM ************************
1 0 5 5 0 DATA 1 7 , 3 7 , 1 2 , 2 1 6 , 1 0 , 6 0 ,

1 7 , 3 7 , 1 2 , 2 1 6 , 1 0 , 2 0 5 , 1 4 , 1 0 7 , 1 1 ,
1 1 4 , 8 , 1 4 7

1 0 5 6 0 DATA 1 4 , 1 0 7 , 1 1 , 1 1 4 , 8 , 1 4 7 , 1 5 ,
7 0 , 1 1 , 1 1 4 , 9 , 1 5 9 , 1 5 , 7 0 , 1 1 , 1 1 4 ,
9 , 1 5 9

1 0 5 7 0 DATA 1 7 , 3 7 , 1 2 , 2 1 6 , 1 0 , 6 0 , 1 7 ,
3 7 , 1 2 , 2 1 6 , 1 0 , 2 0 5 , 1 4 , 1 0 7 , 1 1 ,
1 1 4 , 8 , 1 4 7

1 0 5 8 0 DATA 1 4 , 1 0 7 , 1 1 , 1 0 4 , 8 , 1 4 7 , 1 5 ,
7 0 , 1 1 , 1 1 4 , 9 , 1 5 9 , 1 9 , 6 3 , 1 1 , 1 1 4 ,
9 , 1 5 9

1 0 5 8 5 REM ************************
1 0 5 9 0 DATA 1 7 , 3 7 , 1 2 , 2 1 6 , 1 0 , 2 0 5 , 1 7 ,

3 7 , 1 2 , 2 1 6 , 1 0 , 2 0 5 , 1 4 , 1 0 7 , 1 1 , 1 1 4
, 9 , 1 5 9

1 0 6 0 0 DATA 1 4 , 1 0 7 , 1 1 , 1 1 4 , 9 , 1 5 9 , 1 7 ,
3 7 , 1 2 , 2 1 6 , 1 0 , 2 0 5 , 1 7 , 3 7 , 1 2 , 2 1 6 ,
1 0 , 2 0 5

1 0 7 0 0 DATA 2 2 , 2 2 7 , 1 1 , 1 1 4 , 0 , 0 , 2 2 , 2 2 7 ,
1 1 , 1 1 4 , 0 , 0 , 2 0 , 1 0 0 , 1 5 , 7 0 , 1 2 , 2 1 6

1 0 7 1 0 DATA 1 9 , 6 3 , 0 , 0 , 9 , 1 5 9 , 1 7 , 3 7 , 1 4 ,
1 0 7 , 1 1 , 1 1 4 , 1 5 , 7 0 , 1 1 , 1 1 4 , 9 , 1 5 9

1 0 7 1 5 REM ************************
1 0 7 2 0 DATA 1 7 , 3 7 , 1 1 , 1 1 4 , 3 , 1 5 5 , 1 7 , 3 7 ,

1 1 , 1 1 4 , 3 , 1 5 5 , 1 9 , 6 3 , 1 1 , 1 1 4 , 4 , 1 2
1 0 7 3 0 DATA 1 9 , 6 3 , 1 1 , 1 1 4 , 4 , 1 2 , 2 2 , 2 2 7 ,

1 7 , 3 7 , 1 4 , 1 0 7 , 2 2 , 2 2 7 , 1 7 , 3 7 ,
1 4 , 1 0 7

1 0 7 4 0 DATA 2 5 , 1 7 7 , 2 0 , 1 0 0 , 1 5 , 7 0 , 3 0 ,
1 4 1 , 0 , 0 , 1 5 , 7 0 , 2 2 , 2 2 7 , 1 1 , 1 1 4 ,
2 , 2 2 0

Sound and Music - Part 2 345

1 0 7 5 0 DATA 2 2 , 2 2 7 , 1 1 , 1 1 4 , 2 , 2 2 0 , 2 5 ,
1 7 7 , 1 2 , 2 1 6 , 3 , 5 4 , 2 5 , 1 7 7 , 1 2 , 2 1 6 ,
3 , 5 4

1 0 7 5 5 REM ************************
1 0 7 6 0 DATA 2 2 , 2 2 7 , 1 1 , 1 1 4 , 2 , 2 2 0 , 2 2 ,

2 2 7 , 1 1 , 1 1 4 , 2 , 2 2 0 , 2 0 , 1 0 0 , 1 5 , 7 0 ,
1 2 , 2 1 6

1 0 7 7 0 DATA 1 9 , 6 3 , 0 , 0 , 9 , 1 5 9 , 1 7 , 3 7 , 1 4 ,
1 0 7 , 1 1 , 1 1 4 , 1 5 , 7 0 , 1 1 , 1 1 4 , 9 , 1 5 9

1 0 7 7 5 DATA 1 7 , 3 7 , 1 1 , 1 1 4 , 8 , 1 4 7 , 1 7 , 3 7 ,
1 1 , 1 1 4 , 8 , 1 4 7 , 1 9 , 6 3 , 1 1 , 1 1 4 ,
9 , 1 5 9

1 0 7 7 6 DATA 1 9 , 6 3 , 1 1 , 1 1 4 , 9 , 1 5 9 , 2 2 ,
2 2 7 , 1 7 , 3 7 , 1 4 , 1 0 7 , 2 2 , 2 2 7 , 1 7 , 3 7 ,
1 4 , 1 0 7

1 0 7 7 7 REM ************************
1 0 7 8 0 DATA 2 5 , 1 7 7 , 2 0 , 1 0 0 , 1 5 , 7 0 , 3 0 ,

1 4 0 , 1 5 , 7 0 , 0 , 0 , 2 2 , 2 2 7 , 1 1 , 1 1 4 ,
2 , 2 2 0

1 0 7 9 0 DATA 2 2 , 2 2 7 , 1 1 , 1 1 4 , 2 , 2 2 0 , 2 5 ,
1 7 7 , 1 2 , 2 1 6 , 3 , 5 4 , 2 5 , 1 7 7 , 1 2 ,
2 1 6 , 3 , 5 4

1 0 8 0 0 DATA 2 2 , 2 2 7 , 1 1 , 1 1 4 , 2 , 2 2 0 , 2 2 ,
2 2 7 , 1 1 , 1 1 4 , 2 , 2 2 0 , 1 2 , 2 1 6 , 0 , 0 , 6 ,
1 0 8 , 1 2 , 2 1 6 , 0 , 0

1 0 8 1 0 DATA 6 , 1 0 8 , 1 1 , 1 1 4 , 0 , 0 , 5 , 1 8 5 ,
1 1 , 1 1 4 , 0 , 0 , 5 , 1 8 5

1 0 8 1 5 REM ************************
1 0 8 2 0 DATA 2 5 , 1 7 7 , 2 1 , 1 5 4 , 1 5 , 7 0 , 3 0 ,

1 4 1 , 0 , 0 , 1 5 , 7 0 , 2 2 , 2 2 7 , 1 1 , 1 1 4 ,
2 , 2 2 0

1 0 8 3 0 DATA 2 2 , 2 2 7 , 1 1 , 1 1 4 , 2 , 2 2 0 , 2 5 ,
1 7 7 , 1 2 , 2 1 6 , 3 , 5 4 , 2 5 , 1 7 7 , 1 2 , 2 1 6 ,
3 , 5 4

1 0 8 4 0 DATA 2 2 , 2 2 7 , 1 1 , 1 1 4 , 2 , 2 2 0 , 2 2 ,
2 2 7 , 1 1 , 1 1 4 , 2 , 2 2 0 , 1 2 , 2 1 6 , 1 0 , 6 0 ,
7 , 1 6 3

1 0 8 5 0 DATA 1 2 , 2 1 6 , 1 0 , 6 0 , 7 , 1 6 3 , 1 1 ,
1 1 4 , 8 , 1 4 7 , 7 , 5 3 , 1 1 , 1 1 4 , 8 , 1 4 7 ,
7 , 5 3

1 0 8 5 5 REM ************************

346 The Advanced Commodore 64 Handbook

1 0 8 6 0 DATA 1 5 , 7 0 , 1 1 , 1 1 4 , 7 , 1 6 3 , 1 5 , 7 0 ,
1 1 , 1 1 4 , 7 , 1 6 3 , 1 7 , 3 7 , 1 4 , 1 0 7 ,
1 1 , 1 1 4

1 0 8 7 0 DATA 2 2 , 2 2 7 , 0 , 0 , 1 1 , 1 1 4 , 1 9 , 6 3 ,
1 5 , 7 0 , 1 1 , 1 1 4 , 1 9 , 6 3 , 1 5 , 7 0 ,
1 1 , 1 1 4

1 0 8 8 0 DATA 1 7 , 3 7 , 1 4 , 1 0 7 , 1 1 , 1 1 4 , 2 2 ,
2 2 7 , 0 , 0 , 1 1 , 1 1 4 , 1 9 , 6 3 , 1 5 , 7 0 ,
1 1 , 1 1 4

1 0 8 9 0 DATA 1 9 , 6 3 , 1 5 , 7 0 , 1 1 , 1 1 4 , 1 5 , 7 0 ,
1 1 , 1 1 4 , 9 , 1 5 9 , 1 5 , 7 0 , 1 1 , 1 1 4 ,
9 , 1 5 9

1 0 8 9 5 REM ************************
1 0 9 0 0 DATA 1 7 , 3 7 , 1 2 , 2 1 6 , 1 0 , 6 0 , 1 7 , 3 7 ,

1 2 , 2 1 6 , 1 0 , 6 0 , 1 2 , 2 1 6 , 1 0 , 2 0 5 ,
8 , 1 4 7

1 0 9 1 0 DATA 1 2 , 2 1 6 , 1 0 , 2 0 5 , 8 , 1 4 7 , 1 1 ,
1 1 4 , 8 , 1 4 7 , 7 , 5 3 , 1 1 , 1 1 4 , 8 , 1 4 7 ,
7 , 5 3

1 0 9 2 0 DATA 1 2 , 2 1 6 , 9 , 1 5 9 , 6 , 1 0 8 , 1 2 ,
2 1 6 , 9 , 1 5 9 , 6 , 1 0 8 , 1 1 , 1 1 4 , 8 , 1 4 7 ,
7 , 5 3

1 0 9 3 0 DATA 1 1 , 1 1 4 , 8 , 1 4 7 , 7 , 5 3 , 1 5 , 7 0 ,
1 1 , 1 1 4 , 7 , 1 6 3 , 1 5 , 7 0 , 1 1 , 1 1 4 ,
7 , 1 6 3

1 0 9 3 5 REM ************************
1 0 9 4 0 DATA 1 7 , 3 7 , 1 4 , 1 0 7 , 1 1 , 1 1 4 , 2 2 ,

2 2 7 , 0 , 0 , 1 1 , 1 1 4 , 1 9 , 6 3 , 1 5 , 7 0 ,
1 1 , 1 1 4

1 0 9 5 0 DATA 1 9 , 6 3 , 1 5 , 7 0 , 1 1 , 1 1 4 , 1 5 , 7 0 ,
1 2 , 2 1 6 , 9 , 1 5 9 , 1 5 , 7 0 , 1 2 , 2 1 6 ,
9 , 1 5 9

1 0 9 6 0 DATA 2 0 , 1 0 0 , 1 7 , 3 7 , 1 2 , 2 1 6 , 2 0 ,
1 0 0 , 1 7 , 3 7 , 1 2 , 2 1 6 , 1 7 , 3 7 , 1 4 , 1 0 7 ,
1 1 , 1 1 4

1 0 9 7 0 DATA 1 7 , 3 7 , 1 4 , 1 0 7 , 1 1 , 1 1 4 , 1 5 ,
7 0 , 1 1 , 1 1 4 , 9 , 1 5 9 , 1 5 , 7 0 , 1 1 , 1 1 4 ,
9 , 1 5 9

5 0 0 0 0 DATA 0 , 0 , 0 , 0 , 0 , 0 , 9 9 9 , 0 , 0 , 0 , 0 , 0

Sound and Music - Part 2 347

The frequency data is stored in the order Low Byte,
High Byte for voices one, two and three.

Arranging music, especially classical music, for the
64 often involves a good deal of pruning to make it
work with only three voices - very little of it was
composed with the SID chip in mind!

C HAPTER 24

TH E 1 541 DI SK DRIVE

The 1541 disk drive provides a means of storing
and retrieving programs and data in a more
flexible way than is possible with the cassette unit.
The storage medium is the floppy disk, a flexible
disk of plastic coated with magnetic material and
enclosed in a protective envelope. The principal
advantages of floppy disks over cassette tapes are
greatly increased speed of data retrieval, and
random access to data.

Connecting the Disk Drive

The disk drive connects to the 64 via the serial bus,
which uses the 5 pin socket on the back of the
computer. A suitable cable is supplied with the
disk drive. Always switch on the disk drive before
the 64, to avoid damage to the computer. Never
switch the drive on or off with a disk in place.

HOW TH E DISK DRIVE OPERATES

The 1541 disk drive unit contains both mechanical
and electronic parts. The mechanics are used to
hold a disk firmly in place when the door is closed
and to rotate the disk at approximately 300 rpm. A
special motor called a stepper motor controls the
movement of a read/write head similar to the one
used in the cassette unit. The stepper motor can
place the head in contact with the disk, and move it
to and fro along the slot cut in the disk envelope.
Because the disk is rotating, this arrangement
means that any portion of the disk can be reached

The 154 1 Disk Drive 349

by the head. The head can read data from and
write it to the disk.

The 1541 contains its own microprocessor, a 6502,
which is very similar to the 6510 in the 64. The
processor has some RAM memory and a program
known as a disk operating system stored in ROM.
The 2k of RAM is arranged into 256 byte buffers,
and any data transfers between computer and disk
drive occur via these buffers. There are also some
chips to control the interface between the disk
drive and the 64.

The Disk Operating System

The disk operating system or DOS is contained in
16k of ROM in the disk drive. This controls all the
mechanical functions of the drive and the interface
with the computer. One advantage of having the
DOS resident within the disk drive is that for many
operations the transmission of the appropriate
command to the DOS is all the computer needs to
do. The DOS carries out the operation leaving the
computer free for other tasks.

Data Storage on Floppy Disks

Data is stored on a disk in a number of concentric
tracks each of which is divided into a number of
sectors. The diagram on the next page shows how
the tracks are arranged.

A disk for use in a 1541 drive has 35 tracks, track 1
being outermost. Each track is divided into a
number of sectors which can store a block of data -
256 bytes. The exact number of sectors per track
varies, since the tracks are of unequal length - the
outermost tracks have 21 sectors while track 35
has only 17 sectors.

350 The Commodore 64 Omnibus - Part 2

TRACK N U M B E R N U M B E R OF
SECTORS

1 - 1 7 2 1

1 8 - 24 20

25 - 30 1 8

3 1 - 35 1 7

Sector Distribution by Track

The A rrangement of Tracks and Sectors

In addition to the data bytes, each sector contains
information used by the DOS for v ar ious

The 1 54 1 Disk Drive 35 1

housekeeping functions and to indicate on which
track and sector the next block of data for a file is
located.

Care of Floppy Disks

Floppy disks are rather more delicate than cassette
tapest and to prevent damage great care must be
taken when handling and storing them. By
following the guidelines in this section you will
minimise the risk of losing your valuable programs
or data.

a) Always re turn the disk to i ts envelope
immediately after uset and keep disks in a
sturdy box designed for the purpose.

b) Do not store disks near magnetic fields (such as
those generated by the TV) t since stray
magnetic fields can destroy data.

c) Keep disks away from heat or sunlight.

d) Never write on the disk
t
s plastic jacket - fill in

sticky labels before applying them to the disk.

e) Do not touch the surface of the disk or try to
clean it.

f) Remove disks from the drive before switching it
on or off.

With the exception of the danger from magnetic
fieldst the rules for looking after floppy disks are
similar to those for audio records. Howevert the
penalties for not observing them are rather more
severe!

352 The Commodore 64 Omnibus - Part 2

Formatting Blank Disks

The 1541 disk drive uses standard 5.25 inch floppy
disks. Ask your dealer for single s ided s ingle
density disks.

Before you can use a new disk it must be prepared,
by a process called formatting to enable the DOS to
store data on it. The formatting operation defines
the tracks and sectors of the disk, and is carried out
by the DOS.

To pass instructions to the drive, you must open a
channel, in the same way as you would to send data
to the cassette unit or any other peripheral device.
The channel numb e r 1 5 i s r e s e rved fo r
communications with the disk unit.

To format the disk type:

OPEN 1 5 , 8 , 1 5

PRINTtt 1 5 , "NEW : TEST DISK , A1 " : CLOSE 1 5

These two commands will open the disk command
channel and send the NEW command to the disk
drive. The NEW command, in common with all
other DOS commands, can be abbreviated to its
first letter, so:

PRINTtt 1 5 , " N : TEST DISK , A1 " : CLOSE 1 5

would work equally well.

The disk drive will start to make a noise and the
cursor will reappear leaving the 64 free for use
while the DOS program formats the disk. The
process involves the clearing of any old data from
the disk and the setting up of the 683 blocks for
data storage. To keep track of what is saved on the
disk, some of these blocks are devoted to a

The 154 1 Disk Drive 353

directory, which holds the disk name (in this case
TEST DISK, but you could use any name of up to 16
characters) and a list of all the files on the disk.
Each block on the disk is labelled with the disk
identifier (in this case AI, but any two characters
are allowed) which enables the DOS to uniquely
identify the disk.

The formatting operation takes about 80 seconds,
after which disk activity will cease. You can now
examine the directory of the disk by typing:

LOAD " $ " , 8

L I ST

You will see the disk name and identifier in inverse
video, and the words (664 blocks free ' . The
characters (2A' indicate which version of the DOS
program was used to format the disk: this is the
same for all 1541 drives.

Because nothing has been stored on the disk yet,
the maximum number of blocks is available for use
(664*256 bytes = 169984 bytes of storage) , and
there are no entries in the directory.

Clearing the Directory

Once a disk has been formatted, there is no need to
do so again. If you have a disk containing
programs you no longer require (be certain!!), you
can clear the directory by using the NEW command
but omitting the disk ID:

OPEN 1 5 , 8 , 1 5

PRINT#1 5 , " NEW : RECLAIMED DI SK "

354 The Commodore 64 Omnibus - Part 2

This will not clear the disk, but will change the
directory header and make all the sectors available
for use so that you can write over any existing data.

TH E BLOCK AVAILABLITY MAP (BAM)

The DOS needs to know which of the sectors of a
disk have not yet been used, so that maximum use
can be made of the space available. To keep track
of what's left, track 18 sector 0 is reserved for a map
of the available sectors of each track on the disk.
This map is known as the block availablity map or
BAM.

The arrangement of data in the BAM is shown in
the diagram below:

BYTE CONTENTS USE

0, 1 1 8, 0 1 Po inter to Track & Sector
of fi rst Di rectory B lock

2 65 ASCl I 'A' i nd i cates d isk
format

3 0 Not used

4 - 1 43 BAM Bit map of b locks used i n
tracks 1 - 3 5

The BAM Format

The first four bytes of the BAM are used by the
DOS as storage for information about the disk, the
remainder is given over to a bit map of the 683
blocks on a disk. Each bit in a byte of the BAM
represents a block of data on the disk. If the bit is
set then the block is available for use; if not then

The 154 1 Disk Drive 355

that block has been used. The BAM is updated
every time a program is saved or when a data file is
closed so that the DOS has available an up to date
picture of the storage space left on the disk.

Loading and Saving Programs

The most obvious and immediate use of the 1541
drive is as a means of storing programs. The BASIC
commands LOAD and SAVE are used in the same
way as they are with the cassette unit, except that
you must specify the disk drive as the device you
wish to use by adding the device number 8 to a
command. For example to load a program from
disk, type:

LOAD "MUTO ATTACK" , 8

The BASIC program MUTO ATTACK will be
loaded from the disk into memory.

To save a BASIC program on disk:

SAVE "KILLER DAI S I ES " , 8

You can save a revised version of a program so that
it replaces the old one with the same name on the
disk. To do this insert an @ in the command like
this:

SAVE " @ : BEAN SHOOT " , 8

Machine code programs or blocks of data can also
be loaded from disk, by adding a secondary address
of 1 to the LOAD command:

LOAD " TANK BATTLE " , 8 , 1

will load the file into the area of memory from
which it was saved.

356 The Commodore 64 Omnibus - Part 2

SA VE always saves a BASIC program, so to save
machine code programs wi thou t a monitor or
assembler involves modifying the zero page
locations used to mark the beginning and end of a
BASIC program in memory. The locations
concerned are:

43 Low byte of start address of BASIC program
44 High byte of start address of BASIC program

45 Low byte of start of BASIC variables
46 High byte of start of BASIC variables

In normal use, the SAVE command stores the
contents of memory between the addresses pointed
to by the contents of these locations. To use SAVE
to save data from another area of memory, these
two pointers must be loaded with the start and end
address of that area. For example to save a
machine code program stored from $COOO to $CIOO,
you would type:

POKE 4 4 , 19 2 : POKE 4 3 , 0

POKE 4 6 , 19 3 : POKE 4 5 , 0

followed by:

SAVE "MACHINE CODE " , 8

These operations will occur much more rapidly
than with the cassette unit. Because of the random
access nature of disk drives, several programs can
be stored on the same disk wi thou t increasing the
time taken to load a program.

As with cassettes, i t is possible to prevent
overwriting of data. The small notch in one edge of
the disk is called a write p rotect notch, and to

The 154 1 Disk Drive 357

prevent overwriting this must be covered with one
of the small sticky tabs supplied with the disk.

The disk drive is a very flexible device, and is
useful for more than storage of programs. To
exploit it fully you'll need to know more about how
it works.

DISK H OUSEKE EPING OPERATIONS

The DOS recognises a group of commands known
as housekeeping commands. As the name suggests
these commands allow you to maintain the state of
the disk by renaming files, deleting files etc.

To use these commands you must 0 PEN a channel
to channel 15 of the disk drive (use the secondary
address 15). For example:

OPEN 1 5 , 8 , 1 5

The commands are then sent to the disk drive using
the PRINT# command. Remember to CLOSE the
channel after using it.

The first of the commands is a method of reading
the error status of the drive - an error is indicated
by the red LED flashivg on the front ofthe drive .

The following program reads the error status of the
drive from channel 15:

10 OPEN 1 5 , 8 , 1 5
20 INPUT# 1 5 , A$, B$, C$, D$
30 PRINT " ERROR CODE " A$
4 0 PRINT " ERROR TYPE " B$
50 PRINT " TRACK "C$
6 0 PRINT " SECTOR " D$

358 The Commodore 64 Omnibus - Part 2

A list of DOS errors and their meanings is given in
Appendix 6.

This is a very cumbersome way of obtaining error
information, and a more convenient method is
described in the section on the DOS support
program on page 150.

Initialise

The INITIALISE command (abbreviated to I)
returns the disk drive to its normal state by
copying the BAM into disk drive RAM. All files are
closed and error conditions cancelled. The syntax
IS:

PRINT# l S , " I "

You wil l find this command usefu l when
experimenting with some of the more complex disk
operations in the next chapter!

Validate

A VALIDATE operation will 'tidy up' and force the
DOS to re-organise the files on the disk and thus
make optimum use of the available disk space and
free any partially used blocks. The command is
abbreviated to V, and its format is:

PRINT# l S , "V"

Scratch

You can delete files from the disk with the
SCRATCH (abbreviated to S) command - the
format is:

PRINT# l S , " S : FI LE NAME"

The 1 54 1 Disk Drive 359

You can delete a group of files using the 'wild card'
facili ty, for example:

PRINT# 1 5 , " S : TEST* "

would delete all files on the disk whose file names
began with the characters TEST. Be careful when
using this facility, or you may delete files you want
to keep.

Copy

The COpy (C) command allows you to duplicate a file under a different name on the disk. The syntax
IS:

PRINT#1 5 , " C : NEW NAME=OLD NAME"

Another function of the COpy command is to
combine files - this technique is discussed in the
section on sequential files in the next chapter.

Rename

It is possible to alter the directory entry for a file
using the RENAME (R) command:

PRINT# 1 5 , "R : NEW ENTRY=OLD ENTRY "

TH E DOS SUPPORT PROGRAM

One of the programs on the demonstration disk
supplied with the 1541 disk drive is a short
machine code program which supports the DOS
resident in the disk drive. Known as "DOS 5.1", its
function is to simplify disk handling commands.

The machine code is loaded into the 64 by a short
BASIC program called "C-64 WEDGE", which is

360 The Commodore 64 Omnibus - Part 2

also on the disk. This simply loads DOS 5 .1 and
initialises it with a SYS call to its start address.

Since DOS 5 .1 is located in the 4k block of memory
from $COOO it has no effect on the amount of
memory available for BASIC programs.

Under DOS 5 . 1 the @ and > keys are used to issue
commands to the disk drive, in exactly the same
way as PRINT# is used to issue commands via
channel 15 .

Directory

For example to obtain a directory of a disk, use the
command:

@$

The directory will be loaded directly in to screen
memory and not as a program, so any program in
memory will not be overwritten. You can slow
down the scrolling of a long directory by holding
down the CTRL key, and use the space bar to stop
and start the scrolling.

DOS 5 .1 allows you to search the directory for a
specific program as follows:

@$ PROGRAM NAME

If the program is on the disk its name will appear
on the screen, otherwise the directory will appear
blank.

You can search for and display the names of
programs in a specified group by adding an asterisk
(*) to the program name:

@$ PROG*

The 1 54 1 Disk Drive 361

This will display the names of any programs in the
directory beginning with the characters PROG.

Similarly the command

@$? ? ? ?NAME

will search for and display the names of any
programs whose last four characters are NAME,
regardless of the preceding four characters.

Error Status

When a disk error is indicated by the flashing red
LED, the status can be read by typing:

@ (or »

without the need to run a program.

This will result in a display of the error code and
type (as given in Appendix 6), and the track and
sector on which the error occurred, in the following
format:

XX, ERROR MESSAGE, 'IT, SS

where

XX is the error code number

Tr is the track number

SS is the sector number

Loading BASIC Programs

To load a BASIC program under DOS 5. 1, type:

/PROGRAM NAME

362 The Commodore 64 Omnibus - Part 2

and press RETURN.

Quotation marks are optional.

Loading Machine Code Programs

To load a machine code program, type:

%MACH PROG

and press RETURN. This has the same effect as
the statement:

LOAD "MACH PROG " , 8 , 1

and loads the machine code program or data into
memory, starting at the location from which it was
saved, rather than at 2048 as with a normal LOAD
or / command. Again DOS 5 .1 does not require
quotation marks around the program name.

Auto Loading BASIC Programs

DOS 5.1 allows you to load a BASIC program so
that it will run automatically, by typing:

i PROGRAM NAME

Saving BASIC Programs

You can save a BASIC program by typing:

� PROGRAM NAME

All the other operations described earlier in this
chapter which involve issuing commands to the
disk drive via channel 15 can be duplicated with
the @ or > keys. For example, to format a disk,
type:

The 154 1 Disk Drive 363

@N : OISK NAME , IO

Quitting DOS 5.1

If you want to stop using DOS 5 .1 , it can be de
activated with the command:

@Q

This will return the 64 to its normal state, but will
not delete DOS 5. 1 from memory, and it can be
reactivated by typing:

SYS 5 2 2 2 4

DOS 5.1 makes the life of the 1541 disk user much
easier, but it's not very convenient to have to load it
into the computer from the demonstration disk
every time you use the machine. It is a good idea to
copy it onto your own disks. To do this first load
DOS 5. 1 into the 64 from the demonstration disk,
then type:

POKE 4 4 , 2 0 4 : POKE 4 3 , 0

POKE 4 6 , 2 0 7 : POKE 4 5 , 89

Now insert your disk and type:

SAVE " DOS 5 . 1 " , 8

The machine code will be saved on your disk for
your future use, because the four POKEs 'tricked'
the 64 into thinking " DOS 5 . 1 " was a BASIC
program - the technique is described earlier in this
chapter. To reset the pointers afterwards type:

NEW

CH APT E R 2 5

ADVANCED DISK OPERATIO N S

The disk drive is useful for more than program
storage and this chapter covers the various types of
data file available with the 1541 drive, and the
commands needed to make use of them. A section
on the use of machine code with the disk drive is
included.

SEQUENTIAL DATA F ILES

Most applications for computers require some
means of storing and retrieving data. In a simple
system, a cassette unit can be used for storage, but
this has the limitation that to access any item of
data on a tape, the computer must first read
through all those that precede it - the data is
stored sequentially, one byte after another, along
the tape. This method of data storage is acceptable
for small amounts of data, but only a very keen
enthusiast could make much serious use of such an
arrangement for an application such as a database.

Sequential files can also be stored on floppy disks
in exactly the same way as with cassettes, but are
much faster in use .

As with cassettes, disk sequential files are created
with the OPEN command. The syntax of the
9PEN statement when creating a sequential file
IS:

OPEN LFn , Dev , SA , " NAME , S , Type "

The logical file number, LFn, can be any number
between 0 and 255, and is used to reference that file

Advanced Disk Operations 365

throughout the program. A device number, Dev, of
8 specifies the disk drive, and the Secondary
Address, SA, may be any number between 2 and
14 . Filenames may contain up to sixteen
characters, and the character 'S ' indicates a
sequential file.

The type parameter specifies whether the file is to
be read (R) or written (W).

If no type parameter is included, a new file is
created ready for a write operation. When the
OPEN command is executed, the DOS checks to
see if the file already exists and if so the file is
opened ready for a read or write operation, as
specified by the type parameter. If the file doesn't
exist and a write operation is specified, a new file is
created. Any other use of OPEN, such as trying to
open a non-existent file for a read operation, will
result in an error.

Reading and Writing Sequential Files

The PRINT# command is used to write data to a
sequential file. Data items can be separated by
carriage returns (CHR$(13)) , commas or semi
colons. The rules are exactly the same as those for
printing to the screen and with cassette files and
need not be covered here.

The GET# and INPUT# commands are used to
read data from a sequential file and again their use
is exactly the same as with cassette files.

Closing Sequential Files

A file must be closed after use. This will complete
the transfer of data from the buffer onto the disk,
and free the channel for other uses. If the file is not

366 The Commodore 64 Omnibus - Part 2

closed, some data may be lost. The command to
close a file is:

CLOSE LFn

The next program shows how to create a sequential
file on a disk, and how data can be written to and
read from it:

1 REM SEQUENTIAL DEMO
1 0 OPEN 6 , 8 , 6 , " SEQUENTIAL FILE , S ,

W" : REM OPEN SEQUENTIAL FILE
FOR A WRITE OPERATION

2 0 FOR X=O TO 2 5 : REM WRITE DATA
3 0 PRINT#6 , CHR$ (6 5+X) ;
4 0 NEXT X
50 CLOSE 6
9 9 REM READ IT BACK !
1 0 0 OPEN 6 , 8 , 6 , " SEQUENTIAL FILE , S ,

R " : REM OPEN FOR A READ
OPERATION

110 FOR X=O TO 25
120 INPUT#6 , A$
1 3 0 PRINT A$;
1 4 0 NEXT X
1 5 0 CLOSE 6

You can re-open a sequential file to enable it to be
updated by inserting a @ symbol in the command
like this:

OPEN 3 , 8 , 1 0 , " @ : UPDATED FILE , S , W"

Concatenating Sequential Files

You can add the contents of up to four sequential
files together making one large file, with the COpy
command. For example the following statement
would add the contents of the file called STOCK to
the file called PRICES and create a new file called

Advanced Disk Operations 367

INVENTORY which would contain all the
information.

PRINT#1 5 , II C : INVENTORY=O : STOCK ,
O : PRICES II

Sequential files are useful for storing such things
as character sets or sprite data, in which no single
item of data is to be retrieved alone. The word
processor program which we used to write this book
stores its text as a sequential file. Because data is
stored one item after another, sequential files
make very efficient use of the disk space, but are
inflexible when it comes to more sophisticated
applications.

There is another type of data file you can use with
the 1541 drive which overcomes some of the
limitations of sequential files and allows you to
access data from any point on the disk without
having to read all that precedes it. This is known
as the relative file, and its use results in a large
time advantage over sequential fi les , at the
expense of less efficient use of disk space and more
complex programming.

RELATIVE DATA F ILES

Relative files allow the programmer ready access to
any item of data on the disk by structuring the data
into records. The DOS keeps a record of the tracks
and sectors used by a relative file by establishing
side sectors - a list of pointers to the start of each
record within a relative file. This procedure is
handled comple te ly by the D O S , thereby
simplifying the programming task.

Each record in a relative file may contain up to 254
characters - the arrangement is shown in the table
on the next page.

368 The Commodore 64 Omnibus - Part 2

BYTE CONTENTS

0, 1 Poi nter to T & S of next data bl ock

254 bytes of data. Empty records have FF as
2-255 fi rst character, a l l the rest are n u l l .

Partia l l y fi l l ed records are padded with n u l l s.

Relative File Data Block Format

Each side sector is contained in a single data block
and can store pointers, in the form of track and
sector numbers, for up to 120 records.

BYTE CONTENTS

0, 1 Poi nter to T & S of next side sector bl ock

2 S ide sector Number

3 Record Length

4, 5 Track & sector of side sector n u m ber 0

6, 7 Track & sector of side sector nu m ber 1

8, 9 Track & sector of side sector nu m ber 2

1 0, 1 1 Track & sector of side sector nu m ber 3

1 2, 1 3 Track & sector of side sector number 4

1 4, 1 5 Track & sector of side sector nu m ber 5

1 6-255 Track & sector poi nters to 1 20 data blocks

Relative File Side Sector Block Format

Each relative file can have up to 6 side sectors, and
so may comprise up to 720 records - more than the
capaci ty of a disk!

Creating a Relative File

When a relative file is created, a side sector is
created for that file, containing the data given in
the table above, and the first record of that file is

Advanced Disk Operations 369

set up. The BASIC OPEN command is used to
create a relative file:

OPEN LFn , Dev , Chan , INAME , L , " + CHR$
(Rec . Length)

An example of this command in use is:

OPEN 2 , 8 , 2 , I DATABASE , L , " +CHR$ (5 0)

where file number 2 has been used to create a
relative file called DATABASE, having records
which are 50 characters long.

Once a file has been created it can be accessed in
the usual way, without specifying file type:

OPEN 2 , 8 , 2 , I DATABASE "

Reading and Writing Relative Files

To read or write data in a relative file, the number
of the required record must be specified using the
POSITION command. Like other DOS commands,
POSITION (abbreviated as P) is sent to the drive
via channel 15 :

PRINT# 1 5 , I P " CHR$ (C) CHR$ (Low) CHR$ (Hi g h)

Where C is a channel number and Low and High
are the low and high bytes of the record number
(two bytes are needed because a record number
may be greater than 255).

The POSITION command positions the file pointer
to the specified record before a read or wri te
operation. If you position the pointer to a record
which hasn't been created, the error code 50 is
created, which should not be regarded as an error,
rather a warning that no INPUT# or GET#
operation should be attempted. It is quite in order

370 The Commodore 64 Omnibus - Part 2

to ignore the message if you intend to write data
into the record, since the act of writing will create
the record. Data is written to a relative file in the
same way as to a sequential file - using PRINT#
after setting the file pointer to the required
position.

If it is envisaged that a large number of records are
to be created, it is advisable to create the last
record at the start of the program. This will force
the DOS to create all the intermediate records, and
any extra side sectors as required. Each record so
created will contain 255 as the first character,
indicating that is unused. By creating these
records, all subsequent operations with the relative
file will be greatly speeded up.

The use of the POSITION command with relative
files is ill ustrated in the following program:

10 OPEN 1 5 , 8 , 1 5
2 0 OPEN 2 , 8 , 2 , "RELATIVE

TEST , L , " +CHR$ (1 0 0)
3 0 PRINT# 1 5 , " P " CHR$ (2) CHR$ (1 0 0)

CHR$ (O)
4 0 INPUT#1 5 , A , B$, C , D
5 0 PRINT " ERROR "A ; B$
6 0 PRINT#2 , " THIS I S THE 1 0 0TH

RECORD "
7 0 CLOSE 1 5 : CLOSE 2
8 0 END

How the Program Works

The program creates a relative file with a record
length of 100 characters, and uses the POSITION
command to place the file pointer at record 100. A
check of the error channel gives the error message
ERROR 50 - RECORD NOT PRESENT, but as
explained above, this is interpreted as a warning
not to read data. Line 60 ignores the error and

Advanced Disk Operations 371

writes some data into record 100. This also causes
records 1 to 99 to be created with 255 as the first
character, and the two channels are closed in line
70.

The next frogram will allow you to read the
contents 0 the relative file just created, by using
POSITION to move the file pointer to record 100
and read the contents.

99 REM READ IN 100 TH RECORD
100 OPEN 1 5 , 8 , 1 5
110 OPEN 2 , 8 , 2 , " RELATIVE TEST"
1 2 0 PRINT# 1 5 , " P " CHR$ (2) CHR$ (1 0 0)

CHR$ (O)
1 3 0 INPUT # 2 , D$
1 4 0 PRINT " THE CONTENTS OF RECORD

1 0 0 ARE : "D$
1 5 0 CLOSE1 5 : CLOSE 2

If you modify the program to read any other record,
a 'STRING TOO LONG' error will be generated
when the program attempts to read the data. This
occurs because each empty record contains a
CHR$(255) followed by 99 bytes ofCHR$(O) and no
terminator character, like a carriage return or
comma. The 80 character limit on the BASIC
INPUT# command is therefore exceeded and an
error occurs.

You can overcome this problem by using GET# to
check that the first character of a record isn't 255
before reading the contents of that record. To do
this, a further facility of the POSITION command
is used - the ability to place the file pointer at any
position within a record. This is achieved by
adding a further parameter to the P command
specifying the posi tion wi thin a record:

372 The Commodore 64 Omnibus - Part 2

PRINT# 1 5 , " P " CHR$ (2) CHR$ (1 5) CHR$ (0) CHR$
(10)

This command would place the file pointer at the
10th byte of record 15 in the relative file accessed
via channel 2.

If you change the following lines in the last
program, you will be able to use this technique to
test each record in the file:

115 INPUT "WHICH RECORD " ; R
1 2 0 PRINT# 1 5 , " P " CHR$ (2) CHR$ (R)

CHR$ (O) CHR$ (O)
1 2 5 GET# 2 , T$: IF T$=CHR$ (2 5 5) THEN

PRINT " EMPTY RECORD" : GOTO 1 5 0

If you run the modified program using any record
number between 0 and 99 you will discover empty
records. If you try record 100, the DOS will become
confused about the contents of the record because
the GET# in line 125 has moved several bytes of
data into the buffer, so you will get peculiar results!
To prevent this occuring in more ser ious
applications you must reset the file pointer after
checking .for an empty record if you then want to
use INPUT#.

The ability to position the file pointer to any point
within a record means that a record can be divided
into fields, allowing more efficient use of the disk
space and leading to a more flexible way of creating
databases. To make it work, you must keep track
of the length of each field in order to be able to read
and write into each field. The example given in the
1541 manual of a mailing list shows the principles
behind the technique (obvious errors aside !) . The
program l ater in th i s chapter i s a more
comprehensive example of the use of relative files
together with indexing sequential files.

Advanced Disk Operations 373

RAN DOM DATA F ILES

Random data files provide a means of specifying
the track and sector of the disk upon which your
data is stored. They are harder to program than
relative files and offer no advantage over them in
most applications. They do offer greater control
over what goes where on the disk, but are less
efficient in their use of disk space than relative
files.

To use random files two channels must be opened to
the disk drive, one for sending commands (channel
15) and another for sending data to one of the 256
byte RAM buffers in the disk drive.

Opening a Random File

The syntax of the OPEN command for a random
file is shown below:

OPEN LFn , Dev , Channel No , " # "

An example of its use is:

OPEN 5 , 8 , 5 , " # "

The # symbol can optionally be followed by a
number to specify in which of the buffers you want
to store the data, but this is not normally
necessary. The DOS selects the next available
buffer for you, and the only reason for choosing a
specific one is for machine code applications where
some code is to be stored in the buffer, and you need
to know at what address it starts.

Reading and Writing Random Files

Having 0 PENed a random file, another command
is sent via channel 15 to instruct the DOS to either
read the contents of a specified track and sector

374 The Commodore 64 Omnibus - Part 2

into the selected buffer, or to write the contents of
the buffer to a specified track and sector of the disk.

The two commands which do this are BLOCK
READ and BLOCK-WRITE (abbreviated as B-R
and B-W).

BLOCK-READ

The syntax of the BLOCK-READ command is:

PRINT# 1 5 , " B-R : " Chan ; Drv ; Tk ; Sec

Note that the parameters are separated by semi
colons (;) and not commas as described in some
versions of the 1541 disk drive manual. The drive
number,Drv, is 0 for a single drive unit like the
1541 and can be omitted.

The following program demonstrates the use of the
BLOCK-READ command to display the contents
of any track and sector.

5 REM BLOCK READ DEMO
10 OPEN 1 5 , 8 , 1 5
20 OPEN 5 , 8 , 5 , " # "
30 PRINT" { CLS } " : INPUT "WHICH

TRACK , SECTOR? " ; T , S
4 0 I F (T>18 AND S> 2 0) OR (T< 2 5 AND

S>18) OR (T< 3 1 AND S>17) OR (T< 3 6
AND S>17) THEN 3 0

5 0 PRINT# 1 5 , " B-R : " 5 ; 0 ; T ; S
60 FOR Z=O TO 2 5 5
7 0 GET# 5 , D$
80 IF ST=O THEN A$=A$ +D$: NEXT Z
9 0 PRINT " { CLS } TRACK " T " SECTOR"

S : PRINT
100 PRINT A$
110 CLOSE 5 : CLOSE 1 5 : END

Advanced Disk Operations 375

This program will work for any block, but to see
something meaningful, try using it to examine the
directory (track 18 sector 1) .

How the Program Works

Lines 10 and 20 open channel 15 for commands and
channel 5 to the buffer.

Line 30 sets the variables T and S to the chosen
track and sector and line 40 checks that such a
combination of track and sector exists on the disk.
Ifnot, another input is requested.

Line 50 sends the Block Read (B-R) command,
specifying the buffer associated with channel 5 ,
drive 0 and the track and sector numbers which
specify the data block to be read.

The loop in lines 60 to 80 continues to read data one
byte at at time from the buffer for as long as the
system status word, ST, is zero. When the end of
the data in the block is reached ST is set to 64 and
control jumps to line 90, which displays the
contents of track T, sector S.

BLOCK· WRITE

The BLOCK -WRITE command performs the
opposite action to the B-R command and allows
you to write data to any block on the disk. Its
syntax is:

PRINT# 1 5 , " B-W : " Chan ; Drv ; Tk ; Sec

Again the parameters are separated by semicolons,
and the drive number is zero for a single drive.

376 The Commodore 64 Omnibus - Part 2

The following program writes the letters of the
alphabet onto track 1 ; sector 1 of the disk - you
could check this by using the B-R program above.

10 OPEN 1 5 , 8 , 1 5
20 OPEN 5 , 8 , 5 , " # "
3 0 FOR 1 = 0 TO 2 5
4 0 PR1NT#5 , CHR$ (1+6 5)
50 NEXT 1
6 0 PR1NT#1 5 , " B-W : " 5 ; 0 ; 1 ; 1
7 0 CLOSE 1 5 : CLOSE 5

Notice that the data is written into the buffer via
channel 5, and when this operation is complete the
contents of the buffer are written to the block
specified in the B-W command.

In these examples, we have not specified which
buffer is to be used for B-R and B-W operations,
leaving the choice up to the DOS. This is perfectly
acceptable under normal circumstances, but in
very complex programs you may want to know
which buffer has been selected for a particular
operation. You can find out by issuing a GET#
command immediately after opening the channel
for data (in our case channel 5). The byte returned
is the number of the buffer selected by the DOS.
You can only interrogate the disk drive for buffer
information before any read or write operations are
carried out with that buffer.

You can probably imagine that writing data
haphazardly all over the disk in this way isn't very
useful - you can easily lose track of what data is
where and if you inadvertently overwrite another
file or the directory you can ruin the disk. For
random files to co-exist safely with program and
other files on a disk, care must be taken to check
the BAM for a free block before writing data to the
disk, and to update the BAM after writing the data.

Advanced Disk Operations 377

The command which allows you to do this is
BLOCK-ALLOCATE.

BLOCK-ALLOCATE

The syntax of BLOCK-ALLOCATE (abbreviated
as B-A) is:

PRINT#1 5 , " B-A : " Drv ; Tk ; Sec

If you precede an attempt to select a block for use in
a random file by a B-A command, the DOS will
check the BAM to see if that block is available. If it
isn't, an error is returned via channel 15, along
with the numbers of the next available track and
sector. The next program shows B-A in operation.

10 PRINT " {CLS } " : OPEN 1 5 , 8 , 1 5
20 T=18 : S= 1
30 PRINT# 1 5 , " B-A : " 0 � T � S
40 INPUT# 1 5 , A , B$, C , D
50 IF A<>6 5 THEN 8 0
6 0 PRINT " TRACK" T " SECTOR " S " IS

NOT AVAILABLE " : PRINT
7 0 PRINT " THE NEXT FREE BLOCK I S

AT TRACK " C : PRINT TAB (26)
" SECTOR " D : END

80 PRINT "TRACK " T " SECTOR" S " MAY
BE USED"

How the Program Works

The track and sector for allocation are set to 18 and
1 which is the start of the directory, and
consequently not available. Line 30 attempts to
allocate this block, and line 40 reads the results of
the attempt from channel 15. If, as in this example,
the DOS finds that the requested block i s
unavailable (Le. its entry in the BAM i s set to 1)
then an error code of 65 is returned and the
numbers of the next available track and sector are

378 The Commodore 64 Omnibus - Part 2

supplied. If the block i s available , the B -A
command updates the BAM and a write operation
can be performed. The results of the B-A attempt
are displayed by lines 60 to 80.

In practice, this test would be carried out before
any attempt to write data.

BLOCK-FREE

BLOCK FREE (B-F) is a corresponding command
which allows you to release a block for use. No data
is destroyed but the BAM entry for the specified
block is cleared allowing new data to overwrite
what is already there.

The syntax of the B-F command is:

PRINT# 1 5 , " B-F : "Drv ; Tk ; Sec

To make use of random files, you need to keep a
record of the blocks allocated to a random file. The
best way of doing this is by maintaining a
'directory' in a sequential file. Each random file
would have a corresponding sequential fi le
containing information about which blocks have
been used.

The following short program stores data in a
random file and keeps an index of the track and
sectors as they are used.

10 T=l : S= l
2 0 OPEN 1 5 , 8 , 1 5
3 0 OPEN 5 , 8 , 5 , " # "
4 0 OPEN 4 , 8 , 4 , " @ 0 : INDEX , S ,W"
50 INPUT " NUMBER OF ENTRIES " ; N
55 PRINT# 4 , N
6 0 FOR X = l TO N
70 PRINT " { CLS } ENTER DATA FOR

ENTRY NUMBER" ; X

Advanced Disk Operations

80 INPUT D$
90 PRINT# 5 , D$
1 0 0 PRINT# 1 5 , " B-A : " O i T i S
110 INPUT# 1 5 , A , B$, C , D

379

1 2 0 IF A=6 5 THEN T=C : S=D : GOTO 1 0 0
1 2 5 PRINT# 1 5 , " B-W : " 5 i O i T i S
1 3 0 PRINT# 4 , T" , " S
140 NEXT X
1 5 0 PRINT " BYE l l "
160 CLOSE 4 : CLOSE 5 : CLOSE 15
170 END

How the Program Works

Lines 20 to 40 open the three channels, channel 4
being used for the sequential file which scratches
any previous file called "INDEX", and line 50
inputs the number of entries to be made to the file.
This number is stored as the first character in the
sequential file "INDEX". The loop in lines 60 to
140 inputs file data from the keyboard, allocates a
block with the B-A command, writes the data to
the block and adds the track and sector number of
the block to the sequential file.

Reading data back from such random files involves
using the data in the sequential file to find the
track and sector at which any data item is located,
and using the B-R command to access it. This is
demonstrated in the next program:

2 0 0 OPEN 1 5 , 8 , 1 5
210 OPEN 5 , 8 , 5 , " # "
2 2 0 OPEN 4 , 8 , 4 , " INDEX , S , R"
2 3 0 INPUT#4 , N
2 4 0 INPUT "WHICH RECORD TO

RETRIEVE" i NR
2 5 0 I F NR>N THEN PRINT "NO SUCH

RECORD l " : GOTO 2 4 0
2 6 0 FOR X=l TO NR
270 INPUT# 4 , T , S

380 The Commodore 64 Omnibus - Part 2

280 NEXT X
290 PRINT# 1 5 , " B-R : " 5 ; 0 ; T ; S
3 0 0 INPUT#5 , A$
3 1 0 PRINT A$
3 3 0 CLOSE 4 : CLOSE 5 : CLOSE 1 5
3 4 0 END

If you run these two programs, and then examine
the directory of the disk, you'll see that there is no
directory entry for the random file, but that the
number of blocks free is reduced by the number of
entries you specified in the first program. After
you have experimented you can free the blocks
taken up by the random files using the VALIDATE
command.

The Buffer Pointer

One drawback of the technique in the programs
above is that it is inefficient - an entire block
would be used to store only one character. You can
increase the efficiency of the method by storing
more than one data item in a block. To make this
possible, the DOS keeps a count of the number of
characters written to the buffer during a random
file operation - it is kown as the buffer pointer.
Each time you create a random file data block, the
buffer pointer is stored on the disk with the data.

You can use the buffer pointer to divide blocks into
fields and so make more efficient use of the disk
space.

The buffer pointer can be set to any position within
a block with the BUFFER-POINTER command

.
(abbreviated as B-P), its syntax is:

PRINT# 1 5 , " B-P : " Chan ; Pos i t i on

Advanced Disk Operations 381

This program shows how you can use the B-P
command to subdivide a block into fields.

1 REM B-P WRITE
10 PRINT " { CLS } " : OPEN 1 5 , 8 , 1 5
20 OPEN 5 , 8 , 5 , " # "
3 0 OPEN 4 , 8 , 4 , " B-P INDEX , S , W"
40 FOR P=l TO 2 2 0 STEP 20
45 READ D$
50 PRINT# 1 5 , " B-P : " 5 i P
6 0 PRINT# 5 , D$ " , " P
7 0 NEXT P
80 T=l : S= l
9 0 PRINT# 1 5 , " B-A : " O i T i S
1 0 0 INPUT# 1 5 , A , B$, C , D
1 1 0 I F A=6 5 THEN T=C : S=D : GOTO 9 0
1 2 0 PRINT# 4 , T " , " S
1 3 0 PRINT# 1 5 , " B-W : " 5 i O i T i S
1 4 0 CLOSE4 : CLOSE5 : CLOSE1 5
1 5 0 END
160 DATA ZERO , ONE , TWO , THREE , FOUR ,

FIVE , S I X , SEVEN , EIGHT , NINE , TEN

How the Program Works

Three channels are opened to the disk and the loop
between lines 40 and 70 creates each field of the
record in the buffer, the buffer pointer being
incremented by 20 for each item in line 50. When
all eleven data items are in the buffer in positions
specified by line 50, a disk block is allocated in the
usual way, the track and sector recorded in the
indexing sequential file and the data written to the
disk by line 130.

The next program allows you to inspect the random
file just created, by using the buffer pointer to
select a single data item from the buffer.

1 REM B-P READ DEMO
10 PRINT" { CLS } "

382 The Commodore 64 Omnibus - Part 2

2 0 OPEN 1 5 , 8 , 1 5
3 0 OPEN 5 , 8 , 5 , " # "
40 OPEN 4 , 8 , 4 , " B-P INDEX , S , R"
50 INPUT" FIELD TO VIEW (0-10) " ; R
6 0 IF R<O OR R>1 0 THEN 3 0
7 0 BP=R* 2 0 + 1
80 INPUT# 4 , T , S
9 0 PRINT# 1 5 , I B-R : " 5 ; 0 ; T ; S
1 0 0 PRINT#1 5 , I B-P : " 5 ; BP
110 INPUT# 5 , A$, N
1 2 0 PRINT " { CLS } FIELD"R"CONTAINS "A$
130 PRINT "AND STARTS AT BYTE "N
140 CLOSE4 : CLOSE5 : CLOSE1 5
1 5 0 END

How the Program Works

The logic of the program is the reverse of that in
the B-P read example. The buffer pointer position
is calculated from the entered field number, the
track and sector of the block are read from the
sequential file by line 80, and the buffer filled with
the contents of that block by line 90. The buffer
pointer is set to the required data item by line 100
and the contents of the field read from the buffer by
line 1 10.

There are two further commands which are
variations of the BLOCK-READ and BLOCK
WRITE commands covered in this section. Called
USER 1 and USER 2 these commands allow you to
deal with the contents of a complete block
regardless of the buffer pointer.

USER 1 and USER 2 (abbreviated as U1 or UA and
U2 or UB) are two of a set of commands used in . machine code applications which are discussed
later in this chapter.

Advanced Disk Operations 383

The following program is an example of the use of
relative file handling techniques, combined with
sequential files.

1
2
3
4
5
6
7
8
9
10
2 0
40

50

6 0

7 0

80

1 0 0
110

1 2 0
1 3 0
1 3 5
1 4 0

1 5 0
199
2 0 0
2 1 0
2 2 0

HOM E BASE

REM * * * * * * * * * * * * *
REM * *
REM * HOME BASE *
REM * *
REM * * * * * * * * * * * * *
REM
REM REQUIRES 1 5 4 1 OISK ORIVE
REM
PRINT " { CLS } "
GOSUB 1 0 0 0 0
GOSUB 2 4 0
PRINT TAB (1 3) ; " { RVS} HOME BASE
{ ROF } { CO} { CO} { CO} { CO} "
PRINT TAB (9) " {RVS } 1 { ROF }
CREATE NEW FILE{CO} "
PRINT TAB (9) " { RVS } 2 { ROF}
ENTER RECORO{CO} "
PRINT TAB (9) " {RVS } 3 {ROF }
SEARCH FOR RECORO{CO} "
PRINT TAB (9) " {RVS } 4 {ROF }
EXIT { CO } { CO} { CO} {CO} { CO } "
PRINT L$
PRINT TAB (1 0) ; " { OKGRY } ENTER
CHOICE { RVS } l { ROF} TO
{ RVS } 4 { ROF} { GRN} " ;
GET A$: IF A$ = " " THEN 1 2 0
I F A$< " l " OR A$>" 4 " THEN 1 2 0
M$=BK$: GOSUB 3 0 0
ON ASC (A$) -4 8 GOSUB 1 0 0 0 , 4 0 0 0 ,
5 0 0 0 , 6 0 0 0
GOTO 2 0
REM REAO ERROR CHANNEL
OPEN 1 5 , 8 , 1 5
INPUT# 1 5 , A$, B$, C$, O$
CLOSE 1 5

384

2 3 0
2 3 9
2 4 0

2 5 0

2 6 0
27 0
299
300

3 1 0

3 2 0
3 3 0
3 4 9
3 5 0

360
9 9 3
9 9 4
9 9 5
9 9 6
997
9 9 8
999
1 0 0 0
1 0 1 0

1 0 2 0

1 0 3 0
1 0 4 0
1 0 5 0

1 0 6 0

1 0 8 0

The Commodore 64 Omnibus - Part 2

RETURN
REM CREATE SCREEN LAYOUT
PRINT " {GRN} { CLS } {ROF} CHR$
(169) { 1 4 SPACES } CHR$ (2 2 3)
{RVS } { 2 4 SPACES } "
PRINT " { 16 SPACES } { {RVS } { 2 4
SPACES} {ROF } " i
PRINTTAB (3 9) i CHR$ (2 2 3)
RETURN
REM DISPLAY M$ ON STATUS LINE
PRINT " { HOM} { 2 3 * CD} " i SPC ((
4 0-LEN (M$ » /2) i M$ i " { GRN} " : IF
NB=l THEN 3 3 0
FOR N=l TO NU : PRINT " { CU } " i :
NEXT N
PRINT BK$ " { CU} "
NU= O : RETURN
REM DRAW HORI Z LINE
PRINT " {HOM} { 2 1 * CD} " i L$ i
" {HOM} {CD} { CD} "
RETURN
REM
REM *********************
REM * *
REM * CREATE A NEW FILE *
REM * *
REM *********************
REM
GOSUB 2 4 0
PRINT TAB (1 0) i " {RVS} CREATE A
NEW FILE { ROF} { CD} {CD}
{ CD } { CD} "
INPUT " FILE NAME « 1 5 CHARS) " i
FT$
IF LEN (FT$ » 1 4 THEN 1 0 0 0
IF FT$ = " " THEN RETURN
PRINT : PRINT : INPUT " HOW MANY
FIELDS/RECORD « l l) " i NF
IF NF=O OR NF>10 THEN
PRINT " { CU} { CU} { CU} " : GOTO 1 0 5 0
FOR Z = l TO NF

Advanced Disk Operations

1 0 9 0 GOSUB 2 4 0 : GOSUB 3 5 0 : PRINT
TAB (1 0) ; " { RVS } CREATE A NEW
FILE { ROF } { CO } { CO } { CO} { CO } "

1 1 0 0 PRINT " ENTER NAME OF
FIELO " Z ; : INPUT N$ (Z) :
PRINT : PRINT

1 1 0 5 IF N$ (Z) = " " THEN RETURN
1 1 1 0 PRINT " ENTER LENGTH OF

FIELO" Z ; : INPUT FL (Z)
1 1 2 0 RL=RL+FL (Z)

385

1 1 3 0 IF RL> 2 5 4THEN RL=RL-FL (Z) : M$ =
" {REO} RECORO LENGTH EXCEEOEO" :
NU= 1 2 : GOSUB3 0 0 : GOT01 1 1 0

1 1 4 0 NEXT Z
1 1 5 0 GOSUB 2 4 0
1 1 6 0 PRINT " {HOM} { CO} { CR} { OKGRY}

" FT$ " {GRN} "
1 1 7 0 PRINT TAB (1 0) ; " { CO} { CO} {RVS }

CREATE A NEW FILE { ROF} { CO}
{ CO} { CO} "

1180 PRINT " # "TAB (6) ; "NAME " ;
TAB (2 5) ; " LENGTH {CO} "

1 1 9 0 FOR Z = l TO NF
1 2 0 0 PRINTTAB (2) i Z i TAB (6) ; N$ (Z) ;

TAB (2 5) ; FL (Z)
1 2 1 0 NEXT Z : GOSUB 3 5 0
1 2 2 0 M$= " { OKGRY } { ROF} PRESS

{ RVS } Y { ROF} TO CONTINUE
{RVS }N{ROF} TO REJECT " :
NU= 5 : GOSUB 3 0 0

1 2 3 0 GET YN$: IF YN$ = " " THEN 1 2 3 0
1 2 4 0 I F YN$ = "N" THEN RETURN
1 2 5 0 OPEN 2 , 8 , 2 , FT$+" , L , " +CHR$ (RL)
1 2 5 5 CLOSE 2
1 2 6 0 OPEN 4 , 8 , 4 , " @ 0 : INOEX , S , W"
1 2 7 0 PRINT#4 , FT$
1 2 7 5 FR= l
1 2 8 0 PRINT# 4 , FR
1 2 9 0 PRINT# 4 , NF
1 3 0 0 PRINT# 4 , RL
1 3 1 0 FOR Z = l TO NF

386

1 3 2 0
1 3 3 0
1 3 4 0
1 3 5 0
399 3
3 9 9 4
3 9 9 5
3 9 9 6
3 9 9 7
3 9 9 8
3 9 9 9
4 0 0 0
4 0 1 0
4 0 2 0
4 0 3 0

4 0 4 0

4 0 5 0
4 0 6 0

4070
4080
4090
4100

4110

4120

4130

4140
4 1 5 0
4 1 6 0
4 1 7 0

4180

4 2 2 0

The Commodore 64 Omnibus - Part 2

PRINT# 4 , N$ (Z) " , " FL (Z) " , "
NEXT Z
CLOSE 4
RETURN
REM
REM *
REM * *
REM * ENTER NEW RECORD *
REM * *
REM *
REM
IF LEN (FT$) <> O THEN 4 1 0 0
OPEN 4 , 8 , 4 , " INDEX , S , R"
GOSUB 2 0 0
I F B$ = " OK " THEN CLOSE 4 : GOTO
4 0 6 0
NU= 5 : M$= " {RED} " +B$: GOSUB 3 0 0
: FOR 0=0 TO 1 0 0 0 : NEXT 0
CLOSE 4 : RETURN
OPEN 4 , 8 , 4 , " INDEX , S , R" :
INPUT# 4 , FT$, FR , NF , RL
FOR Z=l TO NF
INPUT#4 , N$ (Z) , FL (Z) : NEXT Z
CLOSE 4
FOR Z=l TO NF : GOSUB 2 4 0 : GOSUB
3 5 0
PRINT " { HOM} { CD} { CR} { DKGRY } "
FT$ " {GRN} "
PRINT
TAB (l l) i " { CD} { CD } { RVS } ENTER A
RECORD { ROF} { CD} { CD } { CD } { CD } "
M$= "MAX FIELD LENGTH = " +STR$
(FL (Z » : NU=1 6 : GOSUB 3 0 0
PRINT N$ (Z) i
INPUT R$ (Z)
IF LEN (R$ (Z » <FL (Z) THEN 4 2 2 0
NB= l : M$ = " {RED}FIELD LENGTH
EXCEEDED" : GOSUB 3 0 0 : NB=0
FOR T=O TO 4 0 0 : NEXT T : GOTO
4 1 1 0
NEXT Z

Advanced Disk Operations 387

4 2 3 0 FOR Z=l TO NF : GOSUB 2 4 0 : GOSUB
3 5 0

4 2 4 0 PRINT " { HOM} { CD } { CR } { DKGRY}
" FT$ " { GRN} "

4 2 6 0 PRINT TAB (ll) ; " { CD } { CD } { RVS }
ENTER A RECORD { ROF } { CD } { CD }
{ CD } { CD } "

4 2 7 0 FOR Z = l TO NF
4 2 8 0 PRINT N$ (Z) " " R$ (Z)
4 2 9 0 NEXT Z
4 3 0 0 NB=l : M$= " { DKGRY} PRESS { RVS } Y

{ ROF} TO ACCEPT { RVS } N { ROF } TO
REJECT" : GOSUB 3 0 0 : NB=0

4 3 1 0 GET YN$: IF YN$= " " THEN 4 3 1 0
4 3 2 0 I F YN$ = " N " THEN 4 5 1 0
4 3 3 0 I F YN$<> " Y " THEN 4 3 1 0
4 3 4 0 OPEN 2 , 8 , 2 , FT$
4 3 5 0 OPEN 1 5 , 8 , 1 5 : PO=1
4 3 5 5 FOR Z=l TO NF
4 3 6 0 HI=INT (FR/256) : LO=FR-HI * 2 5 6
4 3 7 0 PO=PO+FL (Z- l)
4 38 0 PRINT# 1 5 , " P " CHR$ (2) CHR$ (LO)

CHR$ (HI) CHR$ (PO)
4 3 9 0 PRINT# 2 , R$ (Z)
4 4 0 0 NEXT Z : FR=FR+1
4 4 1 0 CLOSE 2 : CLOSE 1 5
4 4 2 0 OPEN 4 , 8 , 4 , " @ 0 : INDEX , S ,W"
4 4 3 0 PRINT # 4 , FT$
4 4 4 0 PRINT# 4 , FR
4 4 5 0 PRINT# 4 , NF
4 4 6 0 PRINT# 4 , RL
4 4 7 0 FOR Z = l TO NF
4 4 8 0 PRINT# 4 , N$ (Z) " , " FL (Z) " , "
4 4 9 0 NEXT Z
4 5 0 0 CLOSE 4
4 5 1 0 T$= " " : FOR Z=l TO NF : R$ (Z) = " " :

NEXT Z : RETURN
4 9 9 3 REM
49 9 4 REM *
4 9 9 5 REM * *
4 9 9 6 REM * SEARCH FOR RECORD *

388 The Commodore 64 Omnibus - Part 2

4997 REM * *
4 9 9 8 REM *********************
4 9 9 9 REM
5 0 0 0 SE$ = " " : Y=O : PO=O : IF LEN (FT$) <>O

THEN 5100
5010 OPEN 4 , 8 , 4 , " INOEX , S , R"
5 0 2 0 GOSUB 2 0 0
5 0 3 0 IF B$= "OK " THEN CLOSE 4 : GOTO

5 0 6 0
5 0 4 0 NU= 5 : M$= " {REO} " +B$: GOSUB 3 0 0

: FOR 0=0 TO 1 0 0 0 : NEXT 0
5 0 5 0 CLOSE 4 : RETURN
5 0 6 0 OPEN 4 , 8 , 4 , " INOEX , S , R" :

INPUT# 4 , FT$, FR , NF , RL
5 0 7 0 FOR Z=l TO NF
5080 INPUT#4 , N$ (Z) , FL (Z) : NEXT Z
5 0 9 0 CLOSE 4
5 1 0 0 GOSUB 2 4 0 : GOSUB 3 5 0
5 1 1 0 PRINT " {HOM} { CO } { CR} { OKGRY}

" FT$ " {GRN} "
5 1 2 0 PRINT TAB (1 0) ; " { CO} { CO} {RVS }

SEARCH FOR RECORO { ROF } { CO}
{ CO} { CO} { CO} "

5 1 3 0 FOR Z=l TO NF
5 1 4 0 PRINT " {RVS } " CHR$ (Z+ 6 4) " {ROF }

" ; N$ (Z)
5 1 5 0 NEXT Z
5160 M$= " { OKGRY } SELECT FIELO FOR

SEARCH {RVS }A{ROF} TO " +
" { RVS } " +CHR$ (NF+6 4) + " { ROF} "

5 1 7 0 NB= l : GOSUB 3 0 0 : NB=0
5180 GET A$: IF A$= " " THEN 5180
5185 IF A$< "A" OR A$>CHR$ (NF+6 4)

THEN 5180
5190 F=ASC (A$) - 6 4 : GOSUB 2 4 0 : GOSUB

3 5 0 : T$ = " "
5 2 0 0 PRINT " {HOM} { CO} { CR} { OKGRY }

" FT$ " { GRN} "
5 2 1 0 PRINT TAB (1 0) ; " { CO} { CO} {RVS }

SEARCH FOR RECORO { ROF } { CO}
{ CO} { CO} { CO} "

Advanced Disk Operations 389

5 2 2 0 M$=BK$: GOSUB 3 0 0 : M$= " { DKGRY}
ENTER CONTENTS OF FIELD FOR
SEARCH" : NU=16 : GOSUB 3 0 0

5 2 2 5 PRINT N$ (F) ; " " ;
5 2 3 0 INPUT SE$
5 2 6 0 M$=BK$: GOSUB 3 0 0 : M$ = " SEARCHING

FOR RECORD " : NB=I : GOSUB 3 0 0 :
NB=O

5 3 0 0 OPEN 2 , 8 , 2 , FT$
5 3 1 0 OPEN 1 5 , 8 , 1 5
5 3 1 5 FOR Q=OTOF-l : PO=PO+FL (Q) :

NEXT : PO=PO+l
5 3 2 0 FOR Z=1 TO FR- l
5 3 3 0 HI=INT (Z/256) : LO=Z-HI * 2 5 6
5 3 5 0 PRINT# 1 5 , " P " CHR$ (2) CHR$ (LO)

CHR$ (HI) CHR$ (PO)
5 360 INPUT# 2 , T$
5399 REM WILD CARD SEARCH
5 4 0 0 IF RIGHT$ (SE$, I) <> " * " THEN

5 4 1 0
5 4 0 5 IF LEFT$ (T$, LEN (SE$) -I) =LEFT$

(SE$, LEN (SE$) -I) THEN FO (Y) =Z :
Y=Y+ l : GOTO 5 4 1 5

5 4 1 0 I F T$ =SE$ THEN FO (Y) =Z : Y=Y+l
5 4 1 5 NEXT Z
5 4 2 0 M$=BK$: GOSUB 3 0 0 : M$=STR$ (Y) + "

RECORDS WERE FOUND" : NB=I : GOSUB
3 0 0 : NB=0

5 4 3 0 FOR T=O TO 5 0 0 : NEXT T
5 4 4 0 IF Y=O THEN GOTO 5790
5499 REM DI SPLAY FOUND RECORDS
5 5 0 0 FOR Z=O TO Y-l : PO=1
5 5 0 5 GOSUB 2 4 0 : GOSUB 3 5 0
5510 PRINT " {HOM} {CD} { CR} { DKGRY }

" FT$ " {GRN } "
5511 PRINTTAB (1 0) ; " { CD } {CD} { RVS }

SEARCH FOR RECORD {ROF} { CD}
{CD } { CD } { CD} "

5 5 1 5 F=FO (Z) : HI=INT (F/256) : LO=F
HI * 2 5 6

5 5 2 0 FOR Q=1 TO NF

390

5 5 3 0
5 5 4 0

5 5 5 0
5 5 6 0

5565
5 5 7 0
5 5 8 0
56 0 0

5610
56 2 0

5 6 3 0
56 4 0
57 0 0

5 7 1 0
57 2 0
57 3 0
5 7 4 0
5 7 5 0

57 55
57 6 0
5 7 7 0

5 7 7 5

57 8 0
5 7 9 9

The Commodore 64 Omnibus - Part 2

PO=PO+FL (Q- 1)
PRINT# 1 5 , " P " CHR$ (2) CHR$ (LO)
CHR$ (HI) CHR$ (PO)
INPUT# 2 , R$ (Q- 1)
PRINT BK$ " { CR} { CU} { RVS } " i
CHR$ (Q+ 6 4) " {ROF} "N$ (Q) i "
" i R$ (Q- 1)
NEXT Q
IF Y=l THEN 5 7 0 0
IF Z =Y-1 THEN Z=-l
M$=BK$: GOSUB 3 0 0 : NB=1 :
M$= " { DKGRY} SHOW NEXT
RECORD { RVS } Y { ROF} OR
{ RVS } N { ROF } ? " : GOSUB 3 0 0 : NB=0
GET YN$: IF YN$= " " THEN 5 6 1 0
I F YN$ = "N" THEN AR=Z : Z=Y
l : GOTO 5 7 0 0
I F YN$<> " Y " THEN 5 6 1 0
NEXT Z
M$=BK$: GOSUB300 : NB=1 : M$ =
" { DKGRY } { RVS }A{ROF}MEND
{ RVS } DEL { ROF} ETE OR { RVS }
RETURN{ ROF} ? " : GOSUB 3 0 0 : NB=0
GET YN$: IF YN$=" " THEN 5 7 1 0
I F YN$ = "A" THEN 5 8 0 0
IF YN$=CHR$ (1 3) THEN 5780
I F YN$<>CHR$ (2 0) THEN 5710
M$=BK$: GOSUB3 0 0 : M$ = " { DKGRY }

{ RVS } ARE YOU SURE ? { ROF } "
: NB=1 : GOSUB 3 0 0 : NB = 0
GET YN$: IF YN$ = " " THEN 5 7 5 5
IF YN$<> " Y " THEN 5 7 0 0
PO= l : FOR J=l TO NF : FOR K=l TO
FL (J) -l : DE$=DE$ + " " : NEXT K :
PO=PO+FL (J- 1)
PRINT# 1 5 , " P " CHR$ (2) CHR$ (LO)
CHR$ (HI) CHR$ (PO) : PRINT# 2 , DE$: D
E$= " " : NEXT J
Y=0 : PO=0 : CLOSE2 : CLOSE1 5 : RETURN
REM AMEND RECORD

Advanced Disk Operations 39 1

5800 PRINT " { HOM} { CD } { CO} { CO } { CO}
I BK$ " {CR} { CU } " TAB (1 4 } " { RVS} AME
NO RECORO{ ROF} "

5 8 0 5 M$ =BK$: GOSUB 3 0 0 : M$ = " { OKGRY }
{RVS }A{ROF}MEND WHICH FIELO? "
: NB= l : GOSUB 3 0 0 : NB=0

5810 GET YN$: IF YN$ = " " THEN 5810
5 8 2 0 IF YN$< "A" OR YN$> CHR$ (NF+6 4 }

THEN 5810
5830 GOSUB 2 4 0 : GOSUB 3 5 0 : PRINT "

{ HOM} { CO} { CR } { OKGRY } " FT$ " { GRN }
It

5 8 4 0 PRINT TAB (1 4 } : " { CO} { CD } { RVS }
AMEND RECORO { ROF } { CO} { CO } "

5 8 4 5 Q=ASC (YN$) -6 4
5850 PRINT N$ (Q) ; SPC (2) : R$ (Q- 1)
5860 M$=BK$: GOSUB 3 0 0 : M$ = " MAX FIELO

LENGTH = " +STR$ (FL (Q) } : NB=l :
GOSUB 3 0 0 : NB=0

5870 PRINT " {HOM} { 1 0 * CO} "N$ (Q } ;
SPC (2) ; : INPUT R$ (Q-1 }

5880 GOSUB 2 4 0 : GOSUB 3 5 0
589 0 PRINT " {HOM} { CO} { CR} { OKGRY }

59 0 0
" FT$ " {GRN} "
PRINT TAB (14 } ; " { CO} {CD} { RVS }
AMENO RECORO {ROF} { CO} { CO} "

5 9 1 0 FOR Y=l TO NF
59 2 0 PRINT N$ (Y } ; SPC (1 } ; R$ (Y-1 } :

NEXT Y
5 9 3 0 M$= " { RVS } { OKGRY} Y { ROF } TO

ACCEPT OR { RVS }N{ROF } TO
REJECT " : NB=l : GOSUB 3 0 0 : NB=0

59 4 0 GET YN$: IF YN$ = " " THEN 5 9 4 0
5 9 5 0 I F YN$ = "N " THEN RETURN
5960 IF YN$ <> " Y " THEN 5940
5 9 7 0 PO= l : FOR Y = O TO NF-1 : PO=PO+

FL (Y }
5980 PRINT# 1 5 , I P " CHR$ (2 } CHR$ (LO }

CHR$ (HI } CHR$ (PO }
59 9 0 PRINT# 2 , R$ (Y } : NEXT Y : CLOSE2 :

CLOSE1 5

392 The Commodore 64 Omnibus - Part 2

5 9 9 5 RETURN
6 0 0 0 PRINT " {CLS}BYE ! ! " : END
9 9 9 3 REM
9 9 9 4 REM * * * * * * * * * * * * * * * * * * *
9 9 9 5 REM * *
9996 REM * SET UP ROUTINES *
9997 REM * *
9 9 9 8 REM * * * * * * * * * * * * * * * * * * *
9 9 9 9 REM
1 0 0 0 0 POKE 53280 , 5 : POKE 5 3 2 8 1 , 1 5
1 0 0 1 0 FOR Z=O TO 3 9 : L$=L$+CHR$ (19 2) :

NEXT Z
1 0 0 2 0 FOR Z=O TO 3 8 : BK$=BK$+

CHR$ (32) : NEXT Z
1 0 1 0 0 RETURN

How to Use HOME BASE

After loading the program, remove the program
disk from the drive and insert the file disk. The
database can extend over an entire diskette, so it is
best to reserve a disk for each file you wish to keep.
If you want to create a new file, insert a blank,
formatted disk.

Main Menu

The main menu comprises four options:

1 CREATE NEW FILE

2 ENTER A RECORD

3 SEARCH FOR RECORD

4 EXIT

At the foot of the screen is the status line - this is
used throughout the program to request inputs
(dark grey text), display error messages (red text)
and give information about the current operation

Advanced Disk Operations 393

(green text). When the program is run the status
line will prompt for a choice from the main menu
you will not be able to enter or search for a record
until a file has been created on the disk.

1 Create New File

The program will prompt you to enter the name of
the file and the number of fields it is to contain.
For each field you must enter a name and the
maximum number of characters. The total number
of characters in a file may not exceed 254.

The file will be created and control will return to
the main menu - the file name will be displayed in
the top left hand corner of the screen. You can now
enter data into the file.

2 En ter a Record

Each field in a record is filled in turn - the status
line will disp lay the maximum number of
characters allowed in each field. If this number is
exceeded an error message will be displayed and
you will be asked to re-enter the data. After all the
fields have been filled in this way the entire record
is redisplayed, at which point you can reject it or
accept it. If you accept, the data is stored on the
disk, and in both cases the main menu is
redisplayed.

3 Search For a Record

The names of the fields will be displayed and you
will be asked for the name and contents of the field
to be used in the search. A 'wild card' facility is
incorporated, so that entering a number of
characters followed by an asterisk (*) will locate
every record in which the specified field contains
those characters. The disk will be searched for the
specified field contents and if more than one record

394 The Commodore 64 Omnibus - Part 2

is found, you may display them all by responding
'y' to the SHOW NEXT FIELD prompt. If you
press 'N', or only one record was found, you will be
given the option to amend or delete the record or
return to the main menu.

Amending a Record

The field to be amended is selected by reference
letter and the new data entered. The amended
record will be displayed for you to accept or reject.
Pressing 'Y' will save the amended record and the
main menu will be redisplayed.

Deleting a Record

If you opt to delete a record and press 'Y' in
response to the ARE YOU SURE? prompt, the
record will be deleted and the main menu
redisplayed.

How the Program Works

HOME BASE uses a single relative file to store
data, and a sequential file called INDEX which
conta.ins information about the names and sizes of
the fields in a record, length of a record and the
number of the next free record. The arrangement
of data in the INDEX file is as follows:

FT$
FR
NF
RL
N$(1)
FL(1)
N$(2)
FL(2)

etc

Name of relative file
N umber of the next free record
N umber of fields per record
Length of a record
Name of field 1
Length offield 1
Name of field 2
Length of field 2

etc

Advanced Disk Operations 395

INDEX is created at the start of the program when
a relative file is set up, and updated each time a
new record is added to the relative file.

Lines 40 - 150 display the main menu and input a
selection from it.

A number of subroutines in lines 200 - 360 perform
frequently used operations such as maintaining the
status line, reading the error channel, etc.

Lines 1000 - 1350 create a new relative file, named
FT$, containing NF fields. The name and length of
each field is entered, and if the format is accepted, a
relative file having records of length RL is created,
and the INDEX file set up.

Lines 4000 - 4510 handle the entry of a new record.
If no file is currently loaded, the disk is checked
and data from the INDEX file is loaded. If no
INDEX file is found on the disk, an error message
is generated and the main menu redisplayed. The
data for each field is entered and stored in array
R$() . If the new record is accepted, it is stored on
the disk at record FR, the INDEX file is updated
and the main menu redisplayed.

Lines 5000 - 6000 provide the search facility. The
disk is checked for the existence of an INDEX file if
no file is currently loaded, and data is read in from
INDEX. The field names contained in array N$()
are displayed and the field for the search, F, is
selected from them. The contents of the field for
the search, SE$, are input and the appropriate field
of each record on the disk is compared with SE$. If
the comparison is successful the record number of
that record is stored in array FO() .

396 The Commodore 64 Omnibus - Part 2

If the last character of SE$ is an asterisk (*) the
comparison only covers the number of characters in
SE$, providing a twild card' search.

At the end of the search, the number of records
displayed is Y. If no records were found a message
to this effect is displayed and the main menu is
redisplayed. If only one record was found, the
record is displayed and control passes to line 5700,
where amend and delete options are offered. If
more than one record was found, pressing ty

,
in

response to the tSHOW NEXT RECORD' prompt
will allow each record to be displayed in turn,
continuing to cycle until tN' is pressed, at which
point control passes to line 5700.

Lines 5750 - 5799 delete the displayed record, by
printing blank strings to the appropriate fields on
the disk.

Lines 5800 - 5995 allow amendment of a field in
the record and if the amendment is accepted,
rewrite the entire record to the disk and redisplay
the main menu.

Varia hIe Use

FT$ File name
NF N umber of fields/record
N$() Array of field names
FL() Array of field lengths
RL Record length
L$ Horizontal line
M$ Message for status line
BK$ Blank line
FR Next free record number

Advanced Disk Operations

R$(l) Contents of field I

Improvements to the Program

397

In order to make this program as generally
applicable as possible (and to allow room for the
other chapters in the book!) , a number of functions
are omitted which would make it much better for
specific jobs.

For example, the free format of the display could be
replaced by a fixed card format to suit your
application.

The restriction of 80 characters per field is due to
the BASIC I N P UT command and could be
overcome using GET and some form of checking
routine.

Additionally, some form of hardcopy option might
be useful.

When a record is deleted, it can not be re-used and
disk space is wasted. One way round this would be
to keep another sequential file of deleted record
numbers . When a new record is created this would
be checked and if there are any entries, the record
number of a deleted record would be allocated to
the new record.

The program is designed for just one relative file
per disk, but if you used yet another sequential file
as a directory there's no reason why you shouldn't
keep more than one relative file per disk.

With the information provided it would be a useful
and instructive exercise to modify and improve
HOME BASE to suit your requirements.

398 The Commodore 64 Omnibus - Part 2

MAC H I N E CODE AND TH E 1 541 DRIVE

The DOS recognises a group of commands designed
to allow you to create machine code programs to
run in the disk drive RAM, possibly modifying the
operation of the DOS.

To use these commands requires a detai led
knowledge of the D O S program and the
architecture of the disk drive - information which
is not freely available from the manufacturers.
However the commands · are briefly covered here
should you find need to use them.

BLOCK-EXECUTE (B-E)

This command allows you to load machine code
routines from the disk into disk drive RAM and
execute them. It is similar to the B-R command
except that after loading the code, the disk drive's
microprocessor begins to execute it. The program
must end in an RTS (ReTurn from Subroutine)
instruction. The format of the command is:

PRINT # 1 5 , " B-E : " Ch ; Dr ; T ; S

where a block of data is read from track T sector S
on drive Dr into the channel Ch buffer, and
execution commences at byte 0 of that buffer.

MEMORY WRITE (M-W)

M -W allows you to send data comprising machine
code programs from the 64, via channel 15, into
disk drive RAM. The format is:

PRINT# 1 5 , "M-W : " CHR$ (Lo } CHR$ (Hi } CHR$ (N }
CHR$ (A } CHR$ (B } • • • • etc

Advanced Disk Operations 399

where a program consisting of bytes A, B etc. up to
N characters is sent to RAM starting at address
(256*Hi + Lo). Up to 34 bytes may be sent at a time.

MEMORY READ (M-R)

The M -R command provides a means for reading
data from disk drive ROM or RAM, one byte at a
time, via the error channel into the 64. The format
IS:

PRINT#1 5 , "M-R : "CHR$ (Lo) CHR$ (Hi)

The contents of the location specified by 256*Hi +
Lo can be read from channel 15 using GET#.

MEMORY EXECUTE (M-E)

Allows you to execute machine code programs in
the disk drive memory from the address specified,
until an RTS is encountered. The format is:

PRINT#1 5 , "M-E : " CHR$ (Lo) CHR$ (Hi)

USER (U)

The USER command makes it possible to link to
machine code programs by using a jump table set
up in disk drive memory. The command is followed
by an ASCII character which forms an index to the
table. The characters 1 to 9 or A to J can be used.

The Ul and U2 commands perform the B-R and B
W operations mentioned earlier, but ignore the
buffer pointer to operat� on an entire data block.
The remaining eight point to the locations given in
the table opposite, which must be set up to contain
the start address of the machine code programs you
wish to execute.

400 The Commodore 64 Omnibus - Part 2

USER OPERATION

U 1 or UA B-R command

U 2 or UB B -W com mand

U 3 or UC Jump to $0500

U4 0r U D J u m p to $0503

U5 or U E J u mp to $0506

U6 or U F J u m p to $0509

U7 or U G J u m p to $050C

US or U H Jump to $050F

U9 or U I J u mp to $FFFA

U ; or UJ Power up Vector

The USER Command Jump Table

The fonnat of the USER command command is :

PRINT# 1 5 , " UN : " Ch ; Dr ; T ; S

USING OTH ER DISK DRIVES WITH TH E 64

, The 1540 Disk Drive

It is possible to use the 1540 disk drive (designed
for the VIC 20) with the 64 with one change. The
screen must be turned ofT during the loading of a
program with the command:

POKE 5 3 26 5 , 1 1

When the program is loaded, turn the screen back
on with the command:

Advanced Disk Operations 401

POKE 5 3 2 6 5 , 27

Twin 1541 Drives

Many disk based applications are greatly enhanced
by having two disk drive units. Although it is
possible to link 1541 drives together and change
their device number as described in the manual, it
seems that some errors in the ROMs cause drives
used in this way to �hang up' at random intervals
for no apparent reason. We have tried using two
drives in this way for making backup disks, and
were plagued with such problems, so be warned!

IEEE Drives

A major disadvantage of the 1541 drive is that data
transfers between it and the 64 use a serial data
bus. This means that data is transmitted one bit at
a time, rather than all 8 bits in a byte being
transmitted at once, as in a parallel system. For
this reason the 1 541 is very slow by disk drive
standards as most disk drives adopt the faster (and
more expensive) parallel technique.

Another problem with it is that only a relatively
small amount of data can be stored on a disk
because of the way in which it is formatted.

If you have an application which requires greater
storage capacity or more rapid data retrieval, you
can use the 64 with some of Commodore's larger
(and more expensive) drives.

To do so will involve considerable expense, not only
for a dual drive unit like the 8050, but also for an
in terface adaptor to provide the 64 wi th the
necessary IEEE (parallel) interface.

402 The Commodore 64 Omnibus - Part 2

Copying Tape Software to Disk

A major headache in upgrading from tape to disk is
that your collection of programs is still on tape.
Where once you would accept a long delay in
loading, you soon become spoiled by the speed of
disk drives, and need to transfer your software to
disk. In a few cases this is simply a matter of
loading the program into the 64, and saving it onto
disk. However most commercial software i s
protected aginst copying - unfortunately this
means that it is also protected against legitimate
copying!

One of the most popular ways of protecting 64 tapes
is to save a program in several blocks, and have a
short loader program as the first program on the
tape. The loader is often written in machine code,
to protect against the casual pirate, but is usually
quite simple - using kernal routines - to load the
program from the tape. The most straightforward
way to transfer such a program to disk is to find out
how many parts the program is saved in and write
a short BASIC loader to do the job of the machine
code program on the tape. You can then load each
block of program from the tape and save it to disk
in the normal way, and use your loader to load the
blocks back from the disk when required.

There are other ways of protecting software, and it
can be quite satisfying to (crack' this sort of
problem - provided, of course, that you don't sell
the results of your efforts!

CH APT E R 26

TH E M PS801 PRI NTER

A printer is a useful addition to any microcomputer
system, providing program listings and hard copy
of text and graphics generated by the computer.

There are several different types of printer and
many variations of each type are available for the
Commodore 64.

The MPS801 printer (formerly the 1525)is the most
popular choice for -the home user since it is both
cheap and versatile - both character and graphic
information can be obtained.

How the Printer Works

The MPS801 is a dot matrix printer which uses a
set of small pins arranged in a matrix to strike the
ribbon and make small dots on the paper. Each dot
corresponds to one pin.

The printer receives data from the 64 on the serial
bus and its microprocessor interprets the data -
sort ing pr inti n g characters from con tro 1
characters. For each printing character the
processor causes the hammer to strike the
appropriate pins to create the dot pattern for that
character, moves the print head along the carriage
and prints the next character. At the end of a line,
the print head returns to the lefthand side and the
paper is scrolled ready for the next line of data.

404 The Commodore 64 Omnibus - Part 2

Connecting the Printer

Before connecting the MPS801 to the 64, turn off
the computer and printer. Plug one end of the
serial interface cable into the 64 and the other into
the rear of the printer. If you have a 1541 disk
drive connect the disk drive to the 64 and the
printer to the spare socket on the drive. In cases
where more than one peripheral is connected to the
bus, problems may arise in addressing either
device. This normally requires you to switch off all
peripherals, then switch them on again before they
can be used. This is due to a fault in the operating
system, about which little can be done.

Testing

The MPS801 is provided with a test facili ty - insert
some paper and move the three position switch at
the rear of the printer to tT'. The printer will print
the complete 64 character set and continue to do so
until you switch off or move the switch away from
the tT' position.

U sing the Printer

Like other peripherals, communication between
the printer and the 64 is achieved by opening a
channel to the device . The channel is opened using
the BASIC OPEN command:

OPEN LFn , Dn , SA

where:

LFn is the logical file number (any number from 0
to 255) which is used to reference the channel.

The MPS801 Printer 405

Dn is the device number which is either 4 or 5
depending upon the position of the three position
switch at the rear of the printer.

SA is the secondary address, which acts like the
CBM and SHIFT keys on the 64 by toggling
between upper and lower case mode, and upper
case and graphics mode printouts.

To select upper case and graphics mode the
secondary address is set to O . If no secondary
address is specified in the OPEN command, it
defaults to o. A secondary address of 7 selects
upper and lower case printouts.

Once the channel is opened, characters are
transmitted to the printer using the PRINT#
command as in the following example:

1 0 OPEN 4 , 4
2 0 FOR Z = l TO 2 6
3 0 PRINT Z , CHR$ (Z +6 4)
4 0 PRINT# 4 , Z , CHR$ (Z+6 4)
5 0 NEXT Z
6 0 CLOSE 4
7 0 END

Notice that what is displayed on the screen is
mimicked by the printer, and that data can be
formatted on the printer in the same way as it can
on the screen. A comma moves the print head into
the next 'column' before printing and a carriage
return is issued at the end of each P RINT#
command. The carriage return can be suppressed
by adding a semicolon at the end of the PRINT#
command. So, if you change line 20 in the previous
program to:

2 0 FOR Z = 3 3 TO 1 1 2 : PRINT CHR$ (Z) i
: NEXT Z

406 The Commodore 64 Omnibus - Part 2

and delete lines 30, 40 and 50, the full 80 column
capability of the printer will be demonstrated.

As with PRINTing to the display, the TAB and
SPC commands work on the printer.

Another way of obtaining copy on the printer is to
use the CMD command.

The CMD command transfers the output from the
screen to the specified channel. Its syntax is:

CMD LFn

where the logical file number must be the same as
the one specified in the OPEN command.

After issuing the C M D command, all data
normally output to the 64's screen is directed to the
printer. This is the way to obtain program listings:

OPEN 4 , 4

CMD 4

LIST

After a listing has been obtained, the output from
the 64 is still directed to the printer, and to return
to normal you must type:

PRINT# LFn

CLOSE LFn

This will clear any data remaining in the printer
buffer and close the channel, returning output to
the TV screen.

The MPS80 1 Printer 407

It is possible to use the OPEN, PRINT#, CLOSE
and CMD commands to output data to the printer
under program control as this program shows:

10 REM PRINT ING UNDER PROG
CONTROL

2 0 PRINT " { CLS } "
30 INPUT" NAME " i N$
40 OPEN 4 , 4
5 0 PRINT# 4 , " BIG BROTHER I S

WATCHING YOU " N$ " ! ! ! "
6 0 CLOSE 4
7 0 END

PRINTING MODES

The MPS801 operates in various printing modes
selected by control characters in the data sent to
the printer. The table below shows the print modes
and the control characters used to select them.

The characters in the above table are sent to the
printer in PRINT# commands and interpreted by
the printer as control characters. The mode so
selected will continue to be the printing mode until
a further control character is detected by the
printer.

Cursor Up and Cursor Down

The characters 'cursor up' (CHR$(145» and 'cursor
down' (CHR$(17» select which of the two 128
character sets is to be used for printing. The two
fonts are the same as those selected on the 64 by
holding down the SHIFT key and pressing the
CBM key. The following program illustrates the
difference:

10 REM CRSR UP/CRSR DOWN
20 FOR Z =6 5 TO 9 0
3 0 A$=A$+CHR$ (Z)

408 The Commodore 64 Omnibus - Part 2

CODE FUNCTION

1 45 Cu rsor u p mode

1 7 C u rsor down mod e

8 G raph ics mode

1 6 Tab pr int head

1 8 Reverse on

1 46 Reverse off

1 4 Dou ble width mode

1 0 Li ne feed

1 3 Carriage ret u rn

27, 1 6 Specify dot add ress

26 Repeat g raph i c d ata

Printer Control Codes

4 0 NEXT Z
5 0 OPEN 4 , 4 : PRINT# 4 , A$
6 0 CLOSE 4
7 0 OPEN 4 , 4 , 7
80 PRINT# 4 ,A$
90 CLOSE 4
1 0 0 END

NOTE: A secondary address of 7 must be
specified in the OPEN command for
cursor down mode to work.

Graphics Mode

Graphics mode (CHR$(8» allows the printing of
user defined characters.

The MPS801 Printer 409

Characters are designed on a 6 by 7 grid like this:

1

2

4

8

1 6

32

64

User Defined Character Grid

Notice that the grid is not the same as the one used
for defining characters on the 64!

Characters are created by placing dots on the grid
where a dot should appear on the paper as in the
diagram below:

2

4

8

1 6

32

64

1 8 34 1 04 1 04 34 1 8

(+ 1 28)

A User Defined Character

4 1 0 The Commodore 64 Omnibus - Part 2

To obtain the DATA statement defining the
character take one column of the grid at a time and
add together the values of the rows in that column
containing a dot. Add 128 to the result and repeat
the operation for each of the columns.

The data for the character is sent to the printer as a
string, following a CHR$(8). The next program
will print the character on the grid opposite:

1 0 REM USER DEFINED CHAR PROG
2 0 FOR Z = O TO 5
3 0 READ D
4 0 A$=A$+CHR$ (D)
5 0 NEXT Z
6 0 OPEN 4 , 4
7 0 PRINT#4 , CHR$ (8) A$
8 0 CLOSE 4
9 0 END
1 0 0 DATA 1 46 , 16 2 , 2 3 2 , 2 3 2 , 16 2 , 1 4 6

You can use the graphics facility to draw patterns
on the printer as demonstrated by this program:

1 0 OPEN 4 , 4
2 0 FOR N=O TO 3 0
3 0 FOR R=O TO 6
4 0 D$=CHR$ « 2 tR) +1 2 8)
5 0 PRINT# 4 , CHR$ (8) D$
6 0 NEXT R
7 0 FOR R=6 TO 0 STEP - 1
80 D$=CHR$ « 2 tR) +1 2 8)
9 0 PRINT# 4 , CHR$ (8) D$;
1 0 0 NEXT R
1 1 0 NEXT N
1 2 0 CLOSE 4

Tab Print Head

You can move the printer head under program
control to any position using CHR$(16) . A two

The MPS80 1 Printer 4 1 1

digit number following the CHR$(16) specifies the
posi tion between 0 and 79. The next program
shows this control character in use.

1 0 REM PRINT HEAD DEMO
2 0 OPEN 4 , 4
3 0 FOR I = 1 0 TO 7 0 STEP 5
4 0 P$=STR$ (I)
50 H$=MID$ (P$, 2 , 1)
6 0 L$=RIGHT$ (P$, l)
7 0 PRINTj 4 , CHR$ (16) HL " POS " P$
80 NEXT
9 0 CLOSE 4

Reverse On I Reverse Off

Reverse text can be printed by preceding the text
by CHR$ (1 8) . Turn off reverse text with
CHR$(146).

10 OPEN 4 , 4
2 0 A$= " REVERSED TEXT "
3 0 FOR I = l TO LEN (A$ }
40 R=l-R
50 IF R=O THEN R$=CHR$ (1 4 6 } : GOTO

7 0
6 0 R$=CHR$ (18 }
7 0 PRINTj 4 , R$; MID$ (A$, I , 1 } ;
80 NEXT I
9 0 CLOSE 4
1 0 0 END

Double Width Characters

You can highlight important information by
printing the text using double width characters.
Double width characters have the same dot pattern
as standard characters but being twice as wide,
only half as many will fit on a line. To print double
width characters, precede the text with CHR$(14).

4 12

10
2 0
30

4 0

5 0

The Commodore 64 Omnibus - Part 2

REM DOUBLE WIDTH CHARACTERS
OPEN 4 , 4
PRINT # 4 , " 8 0 COLUMNS OF TEXT
THI S S I Z E "
PRINT# 4 , CHR$ (1 4) "OR 4 0 COLUMNS
OF THI S S I Z E "
CLOSE 4 : END

Line Feeds and Carriage Returns

You can control the printer to some extent by
sending line feed characters (CHR$(10» and
Carriage return characters (CHR$(13». These will
allow you to create blank lines in your printouts:

10 OPEN 4 , 4
20 PRINT#4 , " LINE 1 "
30 FOR Z = O TO 9
4 0 PRINT# 4 , CHR$ (1 0)
50 NEXT Z
6 0 PRINT# 4 , " LINE 1 2 "

Specify Dot Address

The span of the print head can be divided up into
480 columns each one dot wide . CHR$(2 7)
CHR$(16) allows you to select one of these positions
to commence printing data. Since there are 480
possible positions the dot address is specified in two
bytes which follow the CHR$(27)CHR$(16) like
this:

PRINT# 4 , CHR$ (27) CHR$ (16) CHR$ (1)
CHR$ (44)

specifies dot address 1*256 + 44 = 300 and moves
the print head to that position.

The MPS801 Printer 413

Repeat Graphic Data

CHR$(26) allows you to repeat a byte of data in
graphics mode a specified number of times. For
example, if you wanted to draw a thick line across
the parer, you would need to repeat a single
vertica line many times.

The following program shows how you might do
this, using each pin of the print head to create a
vertical line character like this: I

1 0 OPEN 4 , 4
20 PRINT# 4 , CHR$ (8) CHR$ (26) CHR$

(1 0 0) CHR$ (2 5 5)
3 0 CLOSE 4

The single character CHR$(255) is repeated at each
dot address across the paper, for 100 times -
specified by CHR$(100) - in this example. You
could repeat for any number of times between 0 and
255, but to cover the entire width of the paper
would require two commands.

You can use CHR$(26) to underline headings as the
next program shows:

10 OPEN 4 , 4 : PRINT# 4 , CHR$ (1 5)
20 PRINT# 4 , TAB (3 0) " A CENTRED

HEADING "
3 0 PRINT# 4 , TAB (29) CHR$ (8) CHR$

(26) CHR$ (1 1 4) CHR$ (1 2 9)
4 0 CLOSE 4 : END

With a different choice of character you could make
the underlining more bold.

Screen Dump

The printer manual contains a program to output
the contents of a standard screen to the printer, but

4 14 The Commodore 64 Omnibus - Part 2

it will not print reverse video characters. The
following program rectifies that omission and
performs the same operation in rather less space.

6 0 0 0 0 OPEN 4 , 4 : PRINT # 4 , CHR$ (1 5)
6 0 0 1 0 FOR A=1 0 2 4 TO 2 0 2 3 STEP 4 0
6 0 0 20 FOR X = O TO 3 9
6 0 0 4 0 O=PEEK (X+A)
6 0 0 50 IF 0>1 2 7 THEN 0=0-128 :

R$=CHR$ (18) : O$ =CHR$ (1 4 6)
6 0 0 6 0 P=0- ((0< 3 2 OR D>9 5) * 6 4) - ((0> 6 3

ANO 0<9 6) * 3 2)
6 0 0 7 0 P$=P$+R$+CHR$ (P) +O$
6 0 0 80 R$= " " : O$= " "
6 0 0 9 0 NEXT X
6 0 1 0 0 PRINT# 4 , P $
6 0 1 1 0 P $ = " " : NEXT A
6 0 1 2 0 CLOSE 4 : END

In order to obtain hardcopy of screens containing
upper and lower case characters, line 60000 must
be changed to :

6 0 0 0 0 OPEN 4 , 4 , 7 : PRINT# 4 , CHR$ (1 4 5)

U sing the Printer with Machine Code

There are occasions when you might need to control
the printer from within a machine code program -
for example in a word processing package where
you want to dump the contents of an area of
memory on to the printer.

This can be achieved quite easily with the use of
several of the kernal routines. A full listing of
these is given in Appendix 1 1 and an explanation of

. them in Chapter 18.

The followingFrogram will output the contents of a
small block 0 memory to the printer. The last
character in the block is CHR$(13) - a carriage

The MPSB01 Printer 415

return which causes the printer buffer to be
emptied - ensuring that all the data is printed.

1 0 1 * * * * * * * * * * * * * * * *
2 0 1 * PRINTER DEMO *
30 1 * * * * * * * * * * * * * * * *
4 0 1
50 ORG $CO O O start address
6 0
7 0 LOA # 0
8 0 JSR SETNAM 0 = no filename
9 0 LOA # 4 LFn = 4

1 0 0 TAX Device No. = 4
1 1 0 LOY # 2 5 5 No Secondary Add
1 2 0 JSR SETLFS Set up Logical File
1 3 0 JSR OPEN Open file
1 4 0 LOX # 4 LFn = 4
1 5 0 JSR CHKOUT Open channel for

output
1 6 0 LOX # 0 Initialise counter
1 7 0 OP LOA TAB , X Get character from

table
180 JSR CHROUT Output to printer
1 9 0 INX Increment counter
2 0 0 CPX # 3 4 Last item in table ?
2 1 0 BNE OP No, then get next

character
2 2 0 JSR CLALL All done so close all

channels
2 3 0 RTS Back to BASIC
2 4 0 TAB BYT 8 0 , 8 2 , 7 3 , 78 , 8 4 , 69 ,

68 , 3 2 , 70 , 8 2 , 7 9 , 7 7 , 3 2 , 7 7 ,
6 5 , 67 , 7 2 , 7 3 , 78 , 6 9

2 5 0 BYT 3 2 , 67 , 79 , 68 , 69 , 3 2 ,
8 0 , 8 2 , 79 , 7 1 , 8 2 , 6 5 , 77 , 1 3

2 7 0 SETNAM = 6 5 4 6 9
2 8 0 SETLFS = 6 5 4 6 6
2 9 0 OPEN = 6 5 4 7 2
3 0 0 CHKOUT = 6 5 4 8 1
3 1 0 CHROUT = 6 5 4 9 0

4 1 6 The Commodore 64 Omnibus - Part 2

3 2 0 CLALL = 6 55 1 1

The program will output the data in the table to the
printer - displaying the message «PRINTED
FROM MACHINE CODE PROGRAM'. The data in
the table could contain control characters to change
the output from the printer.

The program could be easily modified to dump the
contents of any area of memory to the printer by
increasing the size of the loop labelled OP.

The following is a BASIC program to load the
machine code. The code is relocatable - it can be
placed anywhere in memory. To change the start
address you must change the value ofS in line 10.

1
1 0
2 0
3 0
4 0
5 0
2 0 0 0 0

2 0 0 1 0

2 0 0 2 0

2 0 0 3 0

2 0 0 4 0

REM LOADER FOR PRINTER M/C
5=49 1 5 2
FOR Z=5 TO 5+71
READ D : POKE Z , D
NEXT Z
END
DATA 1 69 , 0 , 3 2 , 189 , 2 5 5 , 16 9 , 4 ,
1 7 0 , 16 0 , 2 5 5 , 3 2 , 186 , 2 5 5 , 3 2 , 1 9 2 ,
2 5 5
DATA 1 6 2 , 4 , 3 2 , 2 0 1 , 2 5 5 , 16 2 , 0 ,
189 , 38 , 19 2 , 3 2 , 2 1 0 , 2 5 5 , 2 3 2 , 2 2 4 ,
3 4
DATA 2 08 , 24 5 , 3 2 , 2 3 1 , 2 5 5 , 9 6 , 8 0 ,
8 2 , 7 3 , 78 , 8 4 , 69 , 68 , 3 2 , 7 0 , 8 2
DATA 7 9 , 7 7 , 3 2 , 7 7 , 6 5 , 6 7 , 7 2 , 7 3 ,
7 8 , 6 9 , 3 2 , 67 , 7 9 , 68 , 69 , 3 2
DATA 8 0 , 8 2 , 79 , 7 1 , 8 2 , 6 5 , 7 7 , 1 3

TH E COM M ODORE 64 O M N I BUS

APP E N DICES

APPE N DIX 1

ABBREVIATIO N S

LISTING MEANING KEYS TO PRESS
{BLK} BLACK CTRL and 1

{WHT} WH ITE CTRL and 2

{RED} R E D CTRL a nd 3

{CYN } CYAN CTRL a nd 4

{PUR} PURPLE CTRL a nd 5

{GRN} GREEN CTRL a nd 6

{BLU} BLUE CTRL a nd 7

{YEL} YELLOW CTRL a nd 8

{ORG} ORANGE C B M and 1

{ BRN} BROWN CBM and 2

{LTRED} LIGHT RED C B M and 3

{DKGRY} DARK GREY CBM a nd 4

{GRY} GREY CBM and 5

{LTGRN} LIG H T GREEN CBM a nd 6

{LTBLU} LIGHT BLUE CBM a nd 7

{LTGRY} LIGHT G REY CBM and 8

{RVS} REVERSE VIDEO ON CTRL and 9

{ROF} REVERSE VIDEO OFF CTRL and 0

{CLS} CLEAR SCREEN SHIFT and CLR I HOME

{HOM} C U RSOR HOME CLR / HOME

{CU} CURSOR UP SHIFT and i CRSR ..

{CD} CURSOR DOWN i CRSR ..

{CL} C U RSOR LEFT S H I FT a nd CRSR �

{CR} CURSOR RIGHT CRSR �

ABS (N)

AND

ASC (C$)

ATN (N)

CHR$ (N)

APPEN D IX 2

BASIC COM MAN DS

Returns the absolute value of
a number (removing the
minus sign).
See Chapter S

Logical operator. Returns the
value TRUE if both operands
are true (1) .

A = B AND C A is TRUE if
B and C are both TRUE.

Can also operate on binary
values of numbers.
Chapter 9

Function. Returns the ASCII
code of a character, or of the
first character of a string.
Chapter 7

Function. Gives the angle in
radians whose arctangent is
N.
Chapter S

Converts ASCII codes to
characters in string form.
Chapter 7

CLOSE (N)

CLR

CMD (N)

CONT

COS (N)

DATA

DEF FNA(N)

BASIC Commands 42 1

Closes a channel , N, to a
peripheral device (disk ,
printer, etc)
Chapter 15

Clears variables, arrays, etc,
from memory, and makes the
memory available to BASIC
programs.
Chapter 16

Transfers ou tpu t to the
specified file number. Any
output normally printed on
the screen will be directed to
the device specified, in the
same format.
Chapter 15

Restarts program after a
break. Only possible if no
alterations have been made
to the program.
Chapter 5

Gives cosine of angle, which
must be given in radians.
Chapter 8

Marks a list of string or
numeric data written into a
program. The items must be
separated by commas.
Chapter 6

Defines a user - definable
function.
Chapter 8

422

DIM A(L,M)

END

EXP (N)

FNA (N)

FOR

FRE (0)

GET N

The Commodore 64 Omnibus

Dimensions arrays. Arrays
of one dimension with up to
10 elements may be used
without DIM.
Chapter 4

Ends program. Program may
be restarted using CONT.
Chapter 5

Function returning expo
nential of N (eN). Acts as
natural antilog function.
Chapter S

Calls function defined by
DEF FN.
Chapter S

Begins loop. For example:

FOR N = A TO B STEP C

All lines as far as NEXT
command are repeated with
value of N increased each
time from A to B in steps of C .
STEP may be omitted, in
which ca s e v ari ab l e i s
increased by 1 .
Chapter 5

Returns th e amount o f
memory at present unused by
BASIC.
Chapter 10

Used for single character
input. Assigns key value to
variable. The variable may

GET # (N)

GOSUB

GOTO

IF (condition)
THEN (action)

INPUT N
INPUT «<data";N

INPUT #(N)

BASIC Commands 423

be a string variable, in which
case any key may be pressed,
or a number variable , f.or
which number keys only may
be pressed.
Chapter 5

Reads a single character from
the specified file or device .
Similar to GET, above.
Chapter 15

Program branches to a sub
routine at the specified line,
returning to instruction after
GOSUB when RETURN is
encountered.
Chapter 5

Program branches to the
specified line.
Chapter 5

If the condition is true the
action after THEN is carried
out, otherwise the program
continues at the next line.
Chapter 5 and Chapter 9

Prompts the operator for an
input and assigns it to a
variable. The variable may
be a number or string: the
input data must correspond.
Chapter 4

Retrieves data from the
specified file number. Data is
in the form of strings up to 80
characters i n l e n gth ,

424 The Commodore 64 Omnibus

INT (N)

LEFT$(C$,N)

LEN(C$)

LET

LIST

LOAD A$, D, A

delimited by CHR$(13) , (,) ,
(;) or (:) .
Chapter 15

Returns integer component of
real number. For example:

INT (3 . 7 5}

returns 3.
Chapter S

Returns the first N char
acters of the string.
Chapter 7

Gives the number of char
acters in the string.
Chapter 7

Optional. May be used when
assigning values to variables:

LET P = 5 and

P = 5

have the same effect.

Lists the specified lines of the
program on to the screen.
Chapter 4

Reads proi:;--ram file A$ from
dev i c e number , D (i f
unspecified, default = 1 , the
tape unit) . Secondary address
A specifies start address of
program.
Chapter 15

LOG (N)

MID$ (C$,X,N)

NEW

NEXT N

NOT

ON N GOSUB

ON N GOTO

OR

BASIC Commands

Returns the base 10 log
arithm of a number.
Chapter S

425

Returns N characters o f
string beginning at the Xth
character.
Chapter 7

Clears a program and i ts
variables from memory.
Chapter 4

Marks end of loop begun by
. FOR. The variable need not
be specified.
Chapter 5

Logical operator. Reverses
truth of expression (e.g. NOT
TRUE returns FALSE). Can
also be applied to binary
values of numbers.
Chapter 9

Program branches to Nth
subroutine in list. If N is
larger than number of items
in list no branch occurs.
Chapter 5

Program branches to Nth
destination in list . If N
larger than number of items
in list no branch occurs.
Chapter 5

Logical operator. Returns
value TRUE if either or both
operands are true. Thus:

426 The Commodore 64 Omnibus

PEEK (LOC)

POKE LOC,N

POS (0)

PRINT

PRINT # N

READ

A = B OR C

A is true if B or C is true.
Can also act on binary values
of numbers.
Chapter 9

Gives the contents of memory
location LOC.
Chapter 15

Puts value of N into memory
location LOC. N must have
value 0 - 255.
Chapter 15

Gives the present horizontal
posi tion of the cursor on the
display. The number in
brackets has no significance.
Chapter 4

Puts da ta , numbers o r
characters on the screen .
May be written as (1'.
Chapter 3

Writes data to the specified
file.
Chapter 15

Copies i tems from DATA
statements into variables.
Chapter 6

REM

RESTORE

RETURN

RIGHT$ (C$,N)

RND (N)

RUN

BASIC Commands 427

Allows r emarks to b e
inserted i n programs as an
aid to clarity. Remarks are
ignored when program is run.
Chapter 4

Returns READ pointer to
first DATA item.
Chapter 6

Marks end of subroutine.
Program returns to the
instruction after the GOSUB
instruction which called the
subroutine.
Chapter 5

Returns the N rightmost
characters of string C$.
Chapter 7

If N > 0, returns random
number.

If N < 0, reseeds random
number generator.
Chapter 8

Begins execution of BASIC
program. All variables are
cleared. A line number may
be given, otherwise execution
begi ns a t the l owes t
numbered line.
Chapter 4

428 The Commodore 64 Omnibus

SAVE A$, D, A

SGN (N)

SIN

SPC (N)

SQR (N)

STATUS

STOP

STR$ (N)

Stores the program currently
in memory onto tape or disk. ,
with the name A$. Device
number D specifies tape(1) or
disk(8).
Chapter 15

Returns 1 , 0 or -1 according
to whe th e r number i s
positive, zero or negative.
Chapter 8

Function. Returns the sine of
a number in radians.
Chapter 8

Pr ints N spaces on the
screen. N must be 0-255.
Chapter 4

Returns the square root of
the argument.
Chapter 8

Returns status of the last
Input / Output operation .
Abbreviated to ST.
Chapter 8

Stops execution of program.
A message 'BREAK IN xxx'
is printed. Program may be
restarted using CONT.
Chapter 4

Converts numbers to strings
of numeric characters.
Chapter 7

SYS (N)

TAB (N)

TAN (N)

THEN

TIME

TIME$

TO

USR (N)

BASIC Commands 429

Ca l l s a mach ine c ode
subroutine at the specified
address.
Chapter 16, 18

�oves the cursor N places
from the left edge of the
screen in a PRINT statement.
Chapter 4

Gives the tangent of an
angle , which must be in
radians.
Chapter 8

See IF.
Chapter 5

Abbreviated to TI. Reads the
system clock.
Chapter 5

Abbreviated to TI$. Returns
the time since power up or
reset in Hours, Minutes and
Seconds.
Chapter 5

See FOR.
Chapter 5

Calls machine code routine at
address previously specified.
The value in brackets i s
placed in the floating point
accumulator. Returns the
contents of the floating point
accumulator after subroutine
is run.
Chapter 16

430 The Commodore 64 Omnibus

VAL (C$) Converts string of number
characters to number.
Chapter 7

VERIFY C ompares a s p e c i fi e d
program fi I e w i t h t h e
program curren t ly i n
me�ory to check for correct
savIng.

WAIT LOC,X,Y

Chapter 15

Program pauses until the
con t e n ts of a memory
location change in a specified
way.
Chapter 16

APPE N DI X 3

BASIC TO K E N S & ABB R EVIATI ONS

COMMAND ABBREVIATION DEC TOK E N HEX TOK E N

ABS aB 1 82 B6

AND aN 1 75 AF

ASC as 1 98 C6

ATN aT 1 93 C1

C H R$ eH 1 99 C7

C LOSE clO 1 60 AO

CLR eL 1 56 9C

CMD eM 1 57 9D

CONT cO 1 54 9A

COS 1 90 B E

DATA dA 1 3 1 83

DEF d E 1 50 96

D IM d l 1 34 86

E N D e N 1 28 80

EXP eX 1 89 BD

FN 1 65 A5

FOR fO 1 29 8 1

FRE fR 1 84 B8

G ET g E 1 6 1 A1

GET#

GOS U B gaS 1 4 1 8D

GOTO gO 1 37 89

I F 1 39 8B

432 The Commodore 64 Omnibus

I N PUT 1 33 85
I NPUT# i N 1 32 84
I NT 1 8 1 B 5
LEFT$ leF 200 (8
LEN 1 95 (3
LET I E 1 36 88
LIST I I 1 55 9B
LOAD 10 1 47 93
LOG 1 88 B(
M I D$ m l 202 (A
N EW 1 62 A2
N EXT n E 1 30 82
NOT nO 1 68 A8
ON 1 45 9 1
OPEN oP 1 59 9F
OR 1 76 BO
PEEK pE 1 94 (1
POKE pO 1 5 1 97
POS 1 85 B9
PRI NT ? 1 53 99
PRI NT# p R 1 52 98
READ rE 1 3 5 87
REM 1 43 8F
RESTORE reS 1 40 8(
RETURN reT 1 42 8E
R IGHT$ rl 20 1 (9
RND rN 1 87 B B
R U N r U 1 38 8A
SAVE sA 1 48 94
SGN sG 1 80 B4
S IN s l 1 9 1 BF

BASIC Tokens & Abbreviations 433

SPC sP 1 66 A6

SQR sQ 1 86 BA
STATUS ST

STE P stE 1 69 A9

STOP sT 1 44 90
STR$ stR 1 96 C4

SYS sY 1 58 9E

TAB tA 1 63 A3
TAN 1 92 CO
TH E N t H 1 67 A7

TIM E TI

TI M E$ TI$

TO 1 64 A4

USR uS 1 83 B7
VAL vA 1 97 C5

VER I FY vE 1 49 95

WAIT wA 1 46 92

+ 1 70 AA

1 7 1 AB
* 1 72 AC

/ 1 73 AD

= 1 78 B2

NOTE : --- ind icates either no abbreviat ion
or a non-token ised keyword

APPE N DIX 4

SU M MARY O F DOS COM MAN DS

COM MAN D FORMAT

N EW N : DISK NAM E, I D

COpy c: N EW F I LE = 0: OLD F I LE

RENAM E R: N EW NAM E = OLD NAM E

SCRATCH S: F I LE NAM E

I N ITIALISE I

VALI DATE V

B LOCK-READ "B-R: "Channel ; Drive; Track; B l ock

B LOCK-WRITE "B-W : " Channel ; Drive; Track; B lock

B LOCK ALLOCATE "B-A: " Drive; Track; Block

BLOCK F R E E "B-F : " Drive; Track; Bl ock

B U FFER POI NTER "B-P: " Channel ; Posit ion

POSITION "P" CH R$(Chan)CH R$(Low)CHR$(H i)CH R$
(Pos)

BLOCK-EXECUTE "B- E : "Channel ; Drive; Track; B l ock

M EMORY-READ "M-R : " CH R$(Low)CH R$(H i gh)

M E MORY-WRITE " M-W: "CHR$(Low)CHR$(H igh)CH R$(no.
of Chars)

U S E R " U n : "

APPE N D IX 5

BASIC ERROR M ESSAG E S

If the CBM 64 encounters a command which it is
unable to execute, or a number it cannot handle, an
error message will be displayed.

If the error occurred while running a program, the
program will stop, and a message of the form

***** ERROR IN XXXX

will be displayed, where ***** represents the type
of error, and XXX X is the program line at which
the error has occurred. The program is retained in
the computer, as are the values assigned to all
variables at the time of the error.

In immediate mode, the error message takes the
form

***** ERROR

The following descriptions explain the error
messages, and the possible reasons for them:

BAD DATA

The data received from a file is not of the type
expected. For example, the file contains string
data but the program is trying to input numeric
data.

436 The Commodore 64 Omnibus

BAD SUBSCRIPT

An array element outside the dimensions of that
array has been accessed, or the wrong number of
dimensions has been used, for example:

Z (9 , 9 , 9) = A . . • • when Z is a two-dimensional
array.

BREAK

Displayed when program is hal ted with the
RUN/STOP key.

CAN'T CONTINUE

You may not continue the RUNning of a program,
using the command CO NT, if the program has
been edited in any way.

DEVICE NOT PRESENT

Displayed when the specified device i s not
connected to the computer, and an attempt has
been made to access files on that device.

DIVISION BY ZERO

It is impossible to divide by zero.

EXTRA IGNORED

An attempt has been made to enter too many items
in response to an INPUT statement. The extra
data is not considered.

BASIC Error Messages 437

FILE NOT FOUND

With tape systems, this means that an end of file
marker has been encountered. In the case of disk
units the file does not exist on this disk.

FILE NOT OPEN

A file which has not previously been OPENed has
been specified in a file handling command .

FORMULA TOO COMPLEX

A series of string handling functions are too
complex to be carried out in one step. They must be
split into smaller steps.

ILLEGAL DIRECT

The following BASIC commands may not be used
in Immediate mode:

DEF FN
GET

GET #
INPUT

INPUT #

ILLEGAL QUANTITY

A parameter passed to a mathematical or string
function was outside the allowed range for that
parameter.

438 The Commodore 64 Omnibus

LOAD

The computer has been unable to LOAD the
program from tape and has aborted the attempt.

NEXT WITHOUT FOR

The vari able in a NEXT statement has no
corresponding FO R statement or FO R • . . NEXT
loops have been incorrectly nested.

NOT INPUT FILE

An attempt has been made to read data from a file
which has previously been specified as a write only
file.

NOT OUTPUT FILE

An attempt has been made to write data to a file
which has previously been specified as a read only
file.

OUT OF DATA

This error occurs when a READ command is
executed, but there is either no DATA, or all the
OAT A has previously been read. The program
either tried to read too much data, or there was
insufficient data in the OAT A statement.

OUT OF MEMORY

Either the program is too large, or you have used
too many variables, too many FOR . . . NEXT loops,
too many GOSUBs, or you have allocated too much
space for arrays with the DIM command.

BASIC Error Messages 439

OVERFLOW

The result of a calculation, or a directly entered ·
number, was larger than 1 .70141 * E38. If an
underflow occurs, the result is given as zero, and no
error message is displayed.

REDIM'D ARRAY

After an array was DIMensioned, a statement
DIMensioning the same array was encountered.

REDO FROM START

A string function has been entered when the
program was executing an INPUT statement. The
message will be repeated until a number is entered.

RETURN WITHOUT GOSUB

An attempt has been made to execute a RETURN
statement which was not preceded by a GOSUB
statement.

STRING TOO LONG

A string has been concatenated - made up from
several smaller strings joined together - and its
length has exceeded 255 characters.

SYNTAX

This can be caused by :

Use of a non-existent (or mispelled)
BASIC command
Missing brackets
Incorrect punctuation
Missing parameters
Illegal characters

440 The Commodore 64 Omnibus

TYPE MISMATCH

An attempt has been made to assign a numeric
value to a string variable , or vice-versa . A
numeric argument was passed to a function
requiring a string argument, or vice-versa. For
example:

PR INT Ase (A) instead of
PRINT ASe ("A")

A=Z $ instead of A=Z
or A$ = 2 instead of A$ = " 2 "

UNDEF'D FUNCTION

An attempt to reference an undefined user defined
function has been made.

UNDEF'D STATEMENT

The program attempted to GOTO, GOSUB,
THEN or RUN a non-existent statement.

VERIFY

The program on tape is not the same as the
program currently in memory.

APPE N D I X 6

DOS E RROR M ESSAG ES

2 0 READ ERROR

The DOS has been unable to read a block of data -
either an illegal track and sector have been
requested or the disk has been corrupted or has
been protected against copying.

2 1 READ ERROR

The sync byte of the requested track cannot be read
- either an unformatted disk or one formatted
under another DOS is present, the disk isn't
inserted in the drive correctly, or the disk drive
unit requires servicing to align the head.

22 READ ERROR

An incorrectly written block has been encountered
- an illegal track and sector have been specified.

23 READ ERROR

A checksum error has occured - one or more of the
bytes in a block has been read incorrectly, causing
the checksum to fail .

24 READ ERROR

The DOS has decoded the data incorrectly -
possibly owing to poor electrical connections wi thin
the drive or between the drive and the 64.

442 The Commodore 64 Omnibus

25 WRITE ERROR

The data block written to disk has been checked
against that in DOS memory and been found to be
incorrectly written.

26 WRITE PROTECT ON

The DOS has detected the presence of a write
protect tab over the wri te protect notch.

27 READ ERROR

A checksum error in the header for a data block has
been detected and the block has not been
transferred to DOS memory - possibly due to poor
earthing connections.

28 WRITE ERROR

A time-out error has occurred as the DOS tried to
locate the sync byte for a data block - caused by
bad disk format or hardware failure.

29 DISK ID MISMATCH

The DOS has detected a non initialised disk.

30 SYNTAX ERROR

The command sent to DOS via Channel 15 I S
illegal.

31 SYNTAX ERROR

The command sent to DOS is invalid.

DOS Error Messages 443

32 SYNTAX ERROR

The command sent to DOS contains more than 58
characters.

33 SYNTAX ERROR

The file name in a command is invalid.

34 SYNTAX ERROR

Either no file name was sent or the syntax of the
command was incorrect causing the DOS to
misinterpret the command.

39 SYNTAX ERROR

An unrecognisable command has been sent to DOS.

50 RECORD NOT PRESENT

The file pointer has been positioned at a point after
the last record of a relative file on the disk. This
doesn't constitute an error if data is to be written
(Le. if a new record is being created) .

5 1 OVERFLOW IN RECORD

An attempt has been made to write too much data
to a record in a relative file. Remember that the
carriage return terminator counts as one character.

52 FILE TOO LARGE

The file pointer has been positioned to a point
where a disk overflow will occur if data is written.

444 The Commodore 64 Omnibus

60 WRITE FILE 0 PEN

An attempt has been made to open a file for reading
before it has been closed after a write operation.

61 FILE NOT OPEN

An attempt has been made to access a file that has
not been opened.

62 FILE NOT FOUND

An attempt has been made to access a non-existent
file.

63 FILE EXISTS

An attempt has been made to save a file under a
name which is already in the directory.

64 FILE TYPE MISMATCH

The file type in a DOS command differs from the
type given in the directory for that file.

65 NO BLOCK

An attempt has been made to allocate a block
which is unavailable according to the BAM. The
parameters returned with this message define the
track and sector numbers of the next free higher
numbered block.

66 ILLEGAL TRACK AND SECTOR

An attempt has been made to access an illegal
track and sector.

DOS Error Messages 445

67 ILLEGAL SYSTEM TRACK OR SECTOR

An attempt has been made to access an illegal ·
system track or sector.

70 NO CHANNEL

The requested channel is not available, or all
channels are in use.

7 1 DIRECTORY ERROR

A discrepancy exists between the BAM count and
the directory - possibly caused by overwriting the
BAM. Re-initialise the disk to force DOS to re
create the BAM.

72 DISK FULL

Either no blocks are available or the maximum of
1 44 directory entries has been reached.

73 DOS MISMATCH

An attempt has been made to write to a disk
formatted under a non-compatible DOS.

74 DRIVE NOT READY

No disk is present in the drive.

APPE N D IX 7

SPE EDING U P PROG RAM S

There are several things you can do to increase the
run n i n g speed of your B ASIC programs .
Unfortunately, this is usually at the expense of
clarity, and you may find it useful to keep a 'slow',
but easy-to-follow version of your program should
you wish to amend it at a later date.

1 Remove all unnecessary spaces, REMs and
indentation from the program. A small speed
increase will result, because BASIC will not
have to skip over redundant spaces to find
executable commands.

2 Always use variables instead of constants.
The CBM 64 can handle variables much more
rapidly than numbers. This is especially
important in FO R . . . NEXT loops.

3 Use as many statements per line (separated
by ' :') as possible.

4 Re-use the same variables whenever
possible.

5 Use the zero elements of arrays when
possible.

6 Assign often - used variables early on in the
program. The 64 stores all variables in a
table . The first declared variables are the first
in the table and are found more quickly.

Speeding Up Programs 447

7 Put all subroutines near the start of the
program. The computer searches through the
whole program for a subroutine each time a
G O S U B comm and i s e x e c u t e d , and
subroutines having low line numbers will be
found and executed more quickly than those
at the end of the program.

S Omit the variable after NEXT in FOR . . .
NEXT loops.

9 In programs where the keyboard is not often
used, the routines which scan the keyboard
can be disabled within a program with a line :

1 0 0 POKE 5 6 3 3 4 , PEEK (5 6 3 3 4) AND
2 5 4 : POKE 1 , PEEK (1) AND 2 5 1

and enabled each time you want to use
INPUT or GET by

2 0 0 POKE 1 , PEEK (1) OR 4 : POKE
5 6 3 3 4 , PEEK (563 3 4) OR 1

Remember to include an enable statement
before the program ends, to allow you to
regain control of the computer!

1 0 Programs involving l arge amounts of
calculation but not requiring the screen
display may be speeded up by turning off the
screen, with a line such as :

1 0 0 POKE 5 3 2 6 5 , PEEK (5 3 2 6 5) AND 239

The screen can be turned back on to display
the results of the calculations with a
statement:

2 0 0 POKE 5 3 26 5 , PEEK (5 3 26 5) OR 16

APPE N DIX 8

COLO U R CODES

COLOUR CODE

B LACK 0

WH ITE 1

RED 2

CYAN 3

PU RPLE 4

G R E E N 5

BLUE 6

YE LLOW 7

ORANG E 8

B ROWN 9

LI G HT R E D 1 0

L IG HT G R EY 1 1

M E DI U M G R EY 1 2

L IGHT G R E E N 1 3

LI G HT B L U E 1 4

DAR K G R EY 1 5
NOTE Only colours 0 to 7 can be used in multi -colour

character mode

APP E N DIX 9

M U SICAL N OTATIO N

This appendix will not teach you all about music,
but it contains the basic infonnation you need to
translate sheet music into 64 programs.

Music is written by positioning symbols which
represent the length of notes on a framework
(called a stave) representing the pitch.

G ------------------------- E F

c D

A B

F G
D E

B C
G A ------------------------- E F
C D

A B
F G

The lengths of notes are indicated by the note
shape:

A Semibreve j is twice as long as

a Minim which is twice as
long as

a Crotchet which is twice as

) long as
a Quaver which is twice as

long as
a Semi quaver

450 The Commodore 64 Omnibus

Tails on notes may go up V or down) . The
feathers on quavers and shorter notes may be
joined where they appear in groups:

A dot after a note means that it is made half as long
again as a normal note:

J . = J_J
The mark - is a tie which means the notes
are joined together.

J_J = J
Volume is indicated by markings below the stave.

ff Very loud

f Loud

mf Moderately loud

mp Moderately soft

p Soft

pp Very soft

<:::::::: Get louder

� Get softer

Speed is indicated by markings which may be
above or below the stave. Examples are:

Presto
Allegro
Allegro moderato
Moderato
Andante
Largo

Musical Notation

which means Fast
Quite fast
Moderately fast
Medium pace
Slow
Very slow

45 1

Unfortunately, there are many other Italian words
and phrases which may be used. The best thing to
do is to adjust your program until the speed sounds
right, and not worry too much about what is
written on the music.

Two other markings which may appear next to
notes are # and b. # (sharp) means that the note
should be raised by one semi tone and b (flat)
means that the note is lowered one semitone.

All other markings which may appear on sheet
music (and there are many of them) can be ignored.

Pictures at an Exhibition

Here is the beginning of Pictures at an Exhibition,
one of the examples used in Chapter 7. The notes

'p � j J j tJ r I cJ r r r j J I
-

I - I
shown in this music correspond to the notes
represented by the first two items of every group of
six in the DATA statements in the program.

452 The Commodore 64 Omnibus

Note the <flat' symbols (b) on the lines of the stave
corresponding to the notes B and E. These mean
that all B's and E's throughout the music are
sharpened.

APPE N D I X 1 0

N U M B ERING SYST E M S

Computers store and operate upon numbers in a
different way from humans - they use a numbering
system known as Binary Notation.

Binary notation is a means of representing
quantities with groups of Is and Os. We are more
used to a system called Decimal Notation, in which
quantities can be represented by combinations of
up to ten symbols (the numbers 0 to 9).

Computers use the binary system because they are
able to recognise and differentiate between only
two states - ON and OFF. These two states can
conveniently be represented by 1 (ON) and 0 (OFF) .

A single 1 or 0 is called a BInary digiT, or BIT, and
computers store data in the form of groups of eight
of these bits, known as BYTES.

In the computer memory, one memory location is
able to store one Byte of data (eight bits) . A
collection of 1024 of these bytes is called a
KILOBYTE, or k for short. We can get an idea of
the data storage capacity of a computer from the
number of k of memory it has (48k, for example, is
48 * 1024 * 8 bits).

We have described a byte as a collection of eight
bits, like this :

1 1 1 1 1 1 1 1

454 Numbering Systems

This is an 8-bit binary number, which represents
255 in decimal notation. To see how this is so, we
must first examine the decimal number and see
what it means.

H T U
2 5 5

means:

2 * 1 0 0 + 5* 1 0 + 5 * 1

In other words, each digit is worth 10 times the one
to its right.

Binary notation uses this same fplace value'
principle, except each bit in a binary number is
worth double that to its right. We can assign
values to the eight bits in the same way as the
fhundreds, tens and units' assigned to the digits of a
decimal number.

128 6 4 3 2 16 8 4 2 1
1 1 1 1 1 I I I

By adding up, we can see why this number
represents 255:

1 * 1 2 8
1 * 6 4
1 * 3 2
1 * 16
1 * 8
1 * 4
1 * 2
1 * 1 +

2 5 5

y ou'U notice that 255 is the biggest number we can
represent with an 8-bit binary number. Hence this

The Commodore 64 Omnibus 455

is the largest number we can store in a single
memory location.

As a further example , let's take the decimal
number 170. To find its binary representation, we
continuously divide by two, and the remainder
becomes a bit in the binary number.

170/2 = 8 5 r ema i nder 0
8 5/2 = 4 2 1
4 2/2 = 21 0
21/2 = 1 0 1
1 0/2 = 5 0

5/2 = 2 1
2/2 = 1 0
1/2 = 0 1

giving us the binary number

1 0 1 0 1 0 1 0 (reading upwards)

ADDITION OF BINARY NUMBERS

Binary numbers can be added together in the same
way as decimal numbers. An example will make
this clear.

To perform the sum:

1 0 5 +
--.li
1 2 4

we add up the digits i n each column to form that
digi t of the answer. If the result of this addition is
greater than 9, we generate a carry into the next
column. This principle also applies to binary
numbers. Let's perform the same calculation with
the binary forms of 105 and 19:

456 Numbering Systems

0 1 1 0 1 0 0 1 +
0 0 0 1 0 0 1 1
0 1 1 1 1 1 0 0

In the case of binary addition we generate a carry
when adding 1 to 1 (in columns 1 and 2 in our
example).

NEGATIVE BINARY NUMBERS

You might have wondered how the computer can
recognise negative numbers, since it can only tell
the difference between on and off. This is achieved
by a method known as 'two's complement' notation,
which uses one bit of the binary number (the most
significant bit, often labelled bit 7) as a sign bit.

To subtract two numbers in binary, we form the
two's complement of the number to be subtracted,
then add it to the other number.

As an example we'll subtract 50 from 100 :

1 0 0 -
5 0

5 0

0 1 1 0 0 1 0 0
0 0 1 1 0 0 1 0

0 0 1 1 0 0 1 0

(the answer we want).

To perform the sum in binary, first we find the
two's complement of 50, by changing all the Os to Is
and all the Is to Os, then adding 1 .

50 in binary is:
Change Is to Os:
Adding 1 gives
Its two's complement

0 0 1 1 0 0 1 0
1 1 0 0 1 1 0 1

1 1 0 0 1 1 1 0

Now add this to the binary for 100:

The Commodore 64 Omnibus

01 1 0 0 1 0 0
1 1 0 0 1 1 1 0

1 0 0 1 1 0 0 1 0

457

The result is binary 50 - the method worked.

Notice that a carry was generated, indicating that
the answer is positive. A consequence of using bit 7
as a sign bit is that the range of numbers we can
represent with an 8-bit number is restricted to

-128 to + 127

HEXADECIMAL

Manipulating numbers in binary is a lot easier for
a computer than it is for a human, and one way in
which binary numbers can be made more digestible
is by representing them in hexadecimal notation,
or hex.

Hex is a system of counting in base 16, using the
symbols 0 to 9 and A to F as follows

DECIMAL 0 1 . . . 9 1 0 11 • • • 1 5 16 17

HEX 0 1 • • • 9 A B . . . F 1 0 11

Thus FF (hex) represents 255 (decimal) and
1 1 1 1 1 1 1 1(binary).

You will frequently encounter references to hex,
usually as memory addresses, because it is so
convenient. (Which of these is easiest to recognise ?
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 or 65535 or #FFFF).

APPE N DIX 1 1

KERNAL ROUTI N ES

ACPTR $FFA5 65445

Inputs a byte from the serial bus in to the
accumulator. Before use call TALK and TKSA.

CHKIN $FFC6 65478

Selects a previously opened logical file to be an
in pu t channel.

CHKOUT $FFC9 65481

Selects a previously opened logical file to be an
output channel.

CHRIN $FFCF 65487

Gets a character from a previously opened input
channel into the accumulator. If no channel is
opened, the keyboard is assumed to be the input
device.

CHROUT $FFD2 65490

Sends the character in the accumulator to a
previously opened channel. Channel must have
been opened by OPEN and CHKOUT routines.

ClOUT $FFA8 65488

Sends the character in the accumulator to a serial
bus device. The LISTEN and SECOND routines

Kernal Routines 459

must have been called to prepare the device for the
data.

CINT $FF81 65409

Initialises VIC-IT chip and screen editor at the start
of a program.

CLALL $FFE7 6551 1

Closes all open files and resets all 110 chanels.

CLOSE $FFC3 65475

Closes the logical file whose number is held in the
accumulator.

CLRCHN $FFCC 65484

Resets all input/output channels, called by CLALL.

GETIN $FFEA 65508

Either loads one character from the keyboard
buffer into the accumulator (accumulator contains
o if buffer is empty), or gets a character from a
serial device.

IOBASE $FFF3 65523

Loads the address of the start of memory mapped
input/output into the X (low byte) and Y (high byte)
registers.

IOINIT $FF84 65412

Initialises all input/output devices and routines.

460 The Commodore 64 Omnibus

LISTEN $FFBI 65457

Commands the serial bus device specified by
number in the accumulator to listen (be ready to
accept data).

LOAD $FFD5 65493

Loads data from a device into memory. If
acumulator= O then memory is overwritten by new
data; a 1 specifies a verify operation, the result of
which is returned in ST. SETLFS and SETNAM
routines must be used before this routine.

MEMBOT $FF9C 65436

If carry bit is set, returns address of lowest byte of
RAM in X and Y registers. If carry bit is cleared
before calling, the contents of X and Y specify
lowest RAM address.

MEMTOP $FF99 65433

If carry bit is set, returns address of the highest
byte of RAM in X and Y. If carry bit is cleared
before calling, pointer to highest byte of RAM is set
to contents of X and Y registers.

OPEN $FFCO 65472

Opens the logical file set up by SETLFS and
SETN AM rou tines.

PLOT $FFFO 65520

If carry flag is set when called, PLOT loads current
cursor position into X and Y registers. If carry flag
is cleared before calling, cursor position is specified
by contents of X and Y registers.

Kernal Routines 461

RAMTAS $FF87 65415

Performs RAM test, sets top and bottom of memory
pointers, sets up cassette buffer and initialises
screen.

RDTIM $FFDE 65502

Reads the high, middle and low bytes of the system
clock into accumulator , X and Y registers
respecti vely.

READST $FFB7 65463

Returns system status word in the accumulator.

RESTOR $FF8A 65418

Restores default values of all system vectors.

SAVE $FFD8 65496

Saves the contents of memory to a device which has
previously been setup by SETLFS and SETNAM
routines. When called the accumulator must
contain an offset to a two byte pointer (stored in
page zero) to the start of memory to be saved. The X
and Y registers contain the address of the last byte
to be saved.

SCNKEY $FF9F 65439

Scans keyboard for key presses. ASCII value of a
key is stored in keyboard buffer.

SCREEN $FFED 65517

Returns number of screen columns and rows in X
and Y registers.

462 The Commodore 64 Omnibus

SECOND $FF93 65427

Sets secondary address for an input/output device
in a LISTEN operation.

SETLFS $FFBA 65466

Sets up a logical file, whose number is in the
accumulator, device number is in the X register
and command is in the Y register.

SETMSG $FF90 65424

Controls the output of error and control messages.
If Bit 7 of the accumulator is set, an error message
will be output; if Bit 6 is set a control message will
be output.

SETNAM $FFBD 65469

Sets up a fi le name whose length i s in the
Accumulator. The X and Y registers must contain
the start address of the file name in low-high byte
order.

SETTIM $FFDB 65499

Sets jiffy clock to the time specified In the
accumulator, X and Y registers.

SETTMO $FFA2 65442

Sets timeout flag when an IEEE card is connected.

STOP $FFEI 65505

Tests for STOP key being pressed after calling
UDTIM routine. If STOP key was pressed the zero
flag will be set.

Kernal Routines 463

TALK $FFB4 65460

Commands the serial device whose number is in
the accumulator to talk.

TKSA $FF96 65430

Sends a secondary address to a serial device after
the TALK routine.

UDTIM $FFEA 65514

Updates the system clock when interrupt routines
have been modified.

UNLSN $FFAE 65454

Commands all serial devices to stop receiving data.

UNTALK $FFAB 65451

Commands all serial devices to stop sending data.

VECTOR $FF8D 65421

If carry bit is set when this routine is called, the
current contents of the system vector jump
addresses are stored in a table whose start address
is defined by the X and Y registers. If carry is
cleared before calling, the contents of the table
pointed to by the X and Y registers are transferred
to the system vectors.

APPE N D IX 1 2

TH E 651 0 I N STRUCTION S ET

ADe

Adds the contents of a memory location, or a
number, to the accumulator, including the carry
bit. Deposits the result in the accumulator.

AND

Performs the logical AND operation between the
accumulator and data. Deposits the result in the
accumulator.

ASL

Shifts the contents of the accumulator or memory
left by one position. Bit 7 moves into the carry flag
and Bit 0 is set to zero.

Bee

If the carry flag is clear program branches to
current address plus a signed displacement (+ 127
to -128).

Bes

If the carry flag is set program branches to current
address plus a signed displacement (+ 127 to -128) .

BEQ

If the zero flag is set program branches to current
address plus a signed displacement (+ 127 to -128) .

The 65 1 0 Instruction Set 465

BIT

Performs the logical AND operation between the ·
accumulator and memory. If the comparison
succeeds the zero flag is set and Bits 6 and 7 of the
memory location are copied into the V and N flags.

BMI

If the N flag is set (the result of the last operation
was negative) the program branches to the current
address plus a signed displacement (+ 127 to - 128).

BNE

If the zero flag is clear the program branches to
current address plus a signed displacement (+ 127
to -128).

BPL

If the N flag is clear the program branches to
current address plus a signed displacement (+ 127
to -128).

BRK

Saves the program counter and status register on
the stack and copies the contents of $FFFE and
$FFFF into PCLow and PCHigh.

Bve

If the overflow flag is clear the program branches to
current address plus a signed displacement (+ 127
to -128).

466 The Commodore 64 Omnibus

BVS

If the overflow flag is set the program branches to
current address plus a signed displacement (+ 127
to -128).

CLC

Clears the carry flag.

CLD

Clears the decimal flag.

CLI

Clears the interrupt mask to enable interrupts.

CLV

Clears the overflow flag.

CMP

Compares the accumulator contents with memory.
Sets the Z flag if they are equal or clears it if not.
The C flag is set if the con ten ts of the memory
location are greater than those ofthe accumulator.

CPX

Compares the X register with memory data .

Cpy

Compares the Y register with memory data .

DEC

Decrements the specified memory location.

The 651 0 Instruction Set 467

DEX

Decrements the X register.

DEY

Decrememts the Y register.

EOR

Performs the Exclusive OR operation between
memory and the accumulator, storing the result in
the accumulator.

INC

Increments the specified memory location.

INX

Increments the X register.

INY

Increments the Y register.

JMP

Program execution continues at the specified
memory location.

JSR

Program execution continues at the subroutine
commencing at the sepcified address.

LDA

Loads the accumulator with data.

468 The Commodore 64 Omnibus

LDX

Loads the X register with data.

LDY

Loads the Y register with data.

LSR

Shifts the contents of the accumulator or memory
location right one position. Bit 7 is set to zero and
Bi t 0 transferred to the carry flag.

NOP

Performs no operation for two clock cycles.

ORA

Performs the logical OR operation between the
accumulator and data.

PHA

Pushes the contents of the accumulator on to the
stack.

PHP

Pushes the processor status register onto the stack.

PLA

Pulls the first item of data from the stack and loads
it into the accumulator.

The 65 10 Instruction Set 469

PLP

Pulls the first item of data from the stack and loads
it into the processor status register.

ROL

Rotates the contents of the specified memory
location one position to the left. The carry flag is
transferred into Bit 0 and Bit 7 is moved into the
carry flag.

ROR

Rotates the contents of the specified memory
location one position to the right. The carry flag is
transferred into Bit 7 and Bit 0 is moved into the
carry flag.

RTI

Retrieves the status register and program counter
from the stack and returns from an interrupt
routine.

RTS

Restores and increments the program counter after
a subroutine call and returns from the subroutine.

SBC

Subtracts data from the accumulator with a borrow
and stores the result in the accumulator.

SEC

Sets the carry flag.

470 The Commodore 64 Omnibus

SED

Sets decimal mode.

SEI

Sets the interrupt disable mask.

STA

Stores the accumulator contents at a specified
memory location.

STX

Stores the X register contents at a specified
memory location.

STY

Stores the Y register contents at a specified
memory location.

TAX

Transfers the accumulator contents to the X
register.

TAY

Transfers the accumulator contents to the Y
register.

TSX

Transfers the stack pointer contents to the X
register.

The 651 0 Instruction Set 471

TXA

Transfers the X re gis ter c ontents t o the
accumulator.

TXS

Transfers the X register contents to the stack
pointer.

TYA

Transfers the Y re gister c on ten ts to the
accumulator.

ADDRESS 7 6 5 4 3 2 1 0 REGISTER FUNCTION

VOICE 1
54272 F 7 F 6 F 5 F 4 F 3 F 2 F 1 F O LOW FREQ

54273 F 1 5 F 1 4 F 1 3 F 1 2 F 1 1 F l O F 9 F 8 HIGH FREQ

54274 PW 7 PW 6 PW 5 PW 4 PW 3 PW 2 PW l PW O PULSE WIDTH LOW '"
54275 - - - - PW1 1 PW1 0 PW 9 PW 8 PULSE WIDTH HIGH

54276 NOI PUL SAW TRI TEST RING SYNC GATE CONTROL REGISTER

54277 ATK 3 ATK 2 ATK 1 ATK O DEC 3 DEC 2 DEC 1 DEC O ATTACK / DECAY

-

C »
"'tJ � "'tJ

54278 SUS 3 SUS 2 SUS 1 SUS O REL 3 RE L 2 REL 1 REL O SUSTAIN / RELEASE

VOICE 2
m m
G'\ Z
- 0

54279 F 7 F 6 F 5 F 4 F 3 F 2 F 1 F O LOW FREQ

54280 F 1 5 F 1 4 F 1 3 F 1 2 F 1 1 F l O F 9 F 8 HIGH FREQ

54281 PW 7 PW 6 PW 5 PW 4 PW 3 PW 2 PW l PW O PULSE WIDTH LOW

54282 - - - - PWl l PW 1 0 PW 9 PW 8 PULSE WIDTH HIGH

54283 NOI PUL SAW TRI TEST RING SYNC GATE CONTROL REGISTER

'" X -Ia. m w �
'"

54284 ATK3 ATK2 ATKl ATKO DEC 3 DEC 2 DEC 1 DEC O ATTACK / DECAY

54285 SUS 3 SUS 2 SUS l SUS O REL3 REL 2 REL 1 REL O SUSTAIN / RELEASE

ADDRESS 7 6 5 4

54286 F 7 F 6 F 5 F 4

54287 F 1 5 F 1 4 F 1 3 F 1 2

54288 PW 7 PW 6 PW 5 PW 4

54289 - - - -

54290 NOI PUL SAW TRI

54291 ATK 3 ATK 2 ATK 1 ATK O

54292 SUS 3 SUS 2 S U S 1 S U S O

54293 - - - -

54294 FC 1 0 FC 9 FC 8 FC 7

54295 RES 3 RES 2 RES 1 RES O

54296 3 0FF H P B P LP

54297 PX 7 PX 6 PX 5 PX 4

54298 PY 7 PY 6 PY 5 PY 4

54299 OSC 7 OSC 6 OSC 5 OSC 4

54300 ENV 7 E N V 6 ENV 5 E N V 4

3 2 1

F 3 F 2 F 1

F 1 1 F l O F 9

PW 3 PW 2 PW l

PWl l PW1 0 PW 9

TEST RING SYNC

DEC 3 DEC 2 DEC 1

RE L 3 RE L 2 REL 1

- FC 2 FC 1

FC 6 FC 5 FC 4

FILTX FILT 3 F ILT 2

VOL 3 VOL 2 VOL l

PX 3 PX 2 PX 1

PY 3 PY 2 PY 1

OSC 3 OSC 2 OSC 1

ENV 3 ENV 2 E N V 1

0

F O

F 8

PW O

PW 8

GATE

DEC O

RE L O

FC O

FC 3

FILT 1

VOL O

PX O

PY O

OSC O

E N V O

REGISTER FU NCTION

VOICE 3
LOW FREQ

HIGH F REQ

PULSE WIDTH LOW

PULSE WIDTH H IGH

CONTROL REGISTER

ATTAC K / D ECAY

S USTAIN / RE LEASE

FILTER
LOW FILT E R

HIGH FILTER

RESONANCE / F ILTE R

MODE / VOLUME

MISCELLANEOUS
POT X

POT Y

OSCIL 3 / RANDOM

VOICE 3 ENVELOPE

6
E
iii'
i)
�

01:1.
�

APPE N D I X 1 4

VIC-I I R E G I STE RS

ADDRESS FU NCTION

53248 SPRITE 0 X POSITION

53249 SPRITE 0 Y POSITION

53250 SPRITE 1 X POSITION

5325 1 SPRITE 1 Y POSITION

53252 SPRITE 2 X POSITION

53253 SPRITE 2 Y POSITION

53254 SPRITE 3 X POSITION

53255 SPRITE 3 Y POSITION

53256 SPRITE 4 X POSITION

53257 SPRITE 4 Y POSITION

53258 SPRITE 5 X POSITION

53259 SPRITE 5 Y POSITION

53260 SPRITE 6 X POSITION

5326 1 SPRITE 6 Y POSITION

53262 SPRITE 7 X POSITION

53263 SPRITE 7 Y POSITION

53264 SPRITE X POSITION MSB

53265 CONTROL REGISTER

53266 RASTER REG ISTER

53267 LIGHT PEN X POSITION

53268 LIGHT PEN Y POSITION

53269 SPRITE E N ABLE

VIC-II Registers 475

53270 CONTROL REGISTER

5327 1 SPRITE Y EXPAND

53272 VIDEO M E MORY POI NTERS

53273 INTERRUPT REGISTER

53274 ENABLE INTE RRUPT

53275 SPRITE T O DATA PRIORITY

53276 SPRITE M U LTI COLOUR

53277 SPRITE X EXPAND

53278 SPRITE - SPRITE COLLISION

53279 SPRITE - DATA COLLISION

53280 BORD E R COLOUR

5328 1 BACKGRO U N D COLOUR 0

53282 BACKGRO U N D COLOUR 1

53283 BACKGRO U N D COLO U R 2

53284 BACKGRO U N D COLOUR 3

53285 SPRITE M U LTICOLOUR 0

53286 SPRITE M U LTICOLOUR 1

53287 SPRITE 0 COLOUR

53288 SPRITE 1 COLOUR

53289 SPRITE 2 COLOUR

53290 SPRITE 3 COLOUR

5329 1 SPRITE 4 COLOUR

53292 SPRITE 5 COLOU R

53293 SPRITE 6 COLOUR

53294 SPRITE 7 COLOUR

25
rows

APPE N DIX 1 5

SCR E E N M E M O RY MAPS

...c:. 40 co l u m ns · ..

1 024 1 025 - - - - - - - - - - - - - - - 1 062 1 063

1 064 1 065 - - - - - - - - - - - - - - - 1 1 02 1 1 03

I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I

2 1 44 2 1 45 - - - - - - - - - - - - - - - 2 1 82 2 1 83

2 1 84 2 1 85 - - - - - - - - - - - - - - - 2022 2023

The C ha racter Screen Memory

Each block represents 1 memory l ocation

55296 55297 - - - - - - - - - - - - - - - 55334 55335

55336 5 5337 - - - - - - - - - - - - - - - 55374 55375

I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

562 1 6 562 1 7 - - - - - - - - - - - - - - - 56 54 56255

56256 56257 - - - - - - - - - - - - - - - 56294 56295

The Col o u r M emory

2 5
rows

The Commodore 64 Omnibus 477

--c:. 40 col u mns . �

Block Block - - - - - - - - - - - - - - - Block Block
0 1 38 39

Block Block - - - - - - - - - - - - - - - Block Block
40 41 78 79

Block Block Block Block
920 92 1

- - - - - - - - - - - - - - -
958 959

Block Block Block Block
960 961

- - - - - - - - - - - - - - -
998 999

The B i t M a pped Screen Memory

Each b l ock corresponds to e i g ht
memory locations la id out l i ke this :

The address of any byte is :
Screen start + 8*Block No + Byte No

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte S

Byte 6

Byte 7

POKE SET 1

0 @
1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

9 I

1 0 J

1 1 K

1 2 L

1 3 M

1 4 N

1 5 0

1 6 P

1 7 Q
18 R

19 S

20 T

APPE N D IX 1 6

CHARACTE R CODES

SCREEN DISPLAY CODES

SET 2 POKE SET 1 SET 2 POKE

@ 2 1 U u 42

a 22 V v 43

b 23 W w 44

c 24 X x 45

d 25 Y Y 46

e 26 Z z 47

f 27 [[48

9 28 £ £ 49

h 29 1 1 50

i 30 i i 51

J 3 1 � � 52

k 32 SPACE SPACE 53

I 33 ! ! 54

m 34
" " 55

n 3 # # 56

0 36 $ $ 57

P 37 % % 58

q 38 & & 59

r 39 60
s 40 ((61

t 4 1)) 62

SET 1 SET 2
,. :

+ +

- -

/ /

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

< <

= =

> >

The Commodore 64 Omnibus 479

POKE SET 1 SET 2 POKE SET 1 SEl 2 POKE SET 1 SET 2

63 ? ? 85 [Lj U 1 07 [E [E
64 El El 86 � V 1 08 C. C.
65 [i] A 87 D W 1 09 [B [B
66 IT] B 88 [I] X 1 1 0 EiJ EiJ
67 El C 89 [] Y 1 1 1 0 0
68 EJ 0 90 [I] Z 1 1 2 � �
69 U E 9 1 EI3 EI3 1 1 3 � �
70 D F 92 iJ iJ 1 1 4 m m
7 1 D G 93 [JJ [JJ 1 1 5 8J 8J
72 0 H 94 [IT] � 1 1 6 D D
73 � I 95 � � 1 1 7 IJ IJ
74 � J 96 SPACE SPACE 1 1 8 [] []
75 � K 97 IJ IJ 1 1 9 D D
76 0 L 98 � � 1 20 U U
77 lSl M 99 D D 1 2 1 � �
78 [2'1 N 1 00 D D 1 22 0 [Z]
79 0 0 1 0 1 0 0 1 23 � �
80 0 P 1 02 R R 1 24 � �
8 1 II] Q 1 03 D D 1 25 � �
82 D R 1 04 � � 1 26 � �
83 [!J 5 1 05 � � 1 27 � �
84 D T 1 06 [] [J

The codes from 128 to 255 give the same characters
in inverse video.

480 Character Codes

ASCI I A N D C H R$ CODES

CODE CHARACTER CODE CHARACTER CODE CHARACTER

0 28 RED 56 8

1 29 CRSR RIGHT 57 9

2 30 GREEN 58

3 3 1 BLUE 59 ,
4 32 SPACE 60 <

5 WHITE 33 ! 61 =

6 34 " 62 >

7 35 # 63 ?

8 Dis SH IFT C = 36 $ 64 @
9 En SH IFT C = 37 % 65 A

1 0 3 8 & 66 B

1 1 39 67 C

1 2 40 (68 D

1 3 RETURN 41) 69 E

14 LOWER CASE 42 * 70 F

1 5 43 + 71 G

16 44 72 H

1 7 CRSR DOWN 45 - 73 I

18 RVS O N 46 74 J

19 HOME 47 I 75 K

20 DEL 48 0 76 L

21 49 1 77 M

22 50 2 78 N

23 5 1 3 79 0
24 52 4 80 P

25 53 5 81 Q
26 54 6 82 R

27 55 7 83 S

The Commodore 64 Omnibus 481

CODE CHARACTER CODE CHARACTER CODE CHARACTE R

84 T 1 1 3 II 1 42 U P P E R CAS E

85 U 1 1 4 D 1 43

86 V 1 1 5 [!] 1 44 B LACK

87 W 1 1 6 D 1 45 CRSR U P

88 X 1 1 7 eLi 1 46 RVS O F F

89 Y 1 1 8 � 1 47 CLR

90 Z 1 1 9 C 1 48 INST

9 1 [1 20 [I] 1 49

92 £ 1 2 1 [] 1 50

93 1 1 22 [l] 1 5 1

94 i 1 23 EEl 1 52

95 (- 1 24 � 1 53

96 El 1 25 IT] 1 54

97 [iJ 1 26 1T 1 55

98 rn 1 27 � 1 56 P U RPLE

99 El 1 28 1 57 CRSR LEFT

1 00 U 1 29 1 58 YE LLOW

1 0 1 Ll 1 30 1 59 CYAN

1 02 D 1 3 1 1 60 S PACE

1 03 0 1 32 1 61 IJ
1 04 0 1 33 F l 1 62 �
1 05 � 1 34 F3 1 63 D
1 06 � 1 35 F 5 1 64 D
1 07 � 1 36 F7 1 65 0
1 08 0 1 37 F2 1 66 R
1 09 LSl 1 38 F4 1 67 D
1 1 0 [Zl 1 39 F6 1 68 �
1 1 1 0 1 40 F8 1 69 �
1 1 2 0 1 41 S H I FT RETURN 1 70 []

482 Character Codes

CODE CHARACTER CODE CHARACTER CODE CHARACTE R

1 7 1 []3 1 78 Er3 1 85 �
1 72 C. 1 79 � 1 86 0
1 73 [g 1 80 D 1 87 �
1 74 @ 1 81 [] 1 88 �
1 75 D 1 82 [J 1 89 �
1 76 [B 1 83 D 1 90 �
1 77 � 1 84 U 1 9 1 �

Characters 192 to 223 are the same as 96 to 127.

Characters 224 to 254 are the same as 160 to 190.

Character 255 is the same as 126.

Addresses

o

1 024

2048

40960

49 1 52

53248

55296

56320

57344

65535

APPE N DIX 1 7

M E M ORY MAP

Contents

Sto rage for operat ing syste m

Sta n d a rd screen memory

Ra ndom Access Memory -
BASIC pr0J;a ms and

varia l es,
B i t M a p ped Screen,

User Defi ned C ha racters,
etc.

BASIC i nterpreter i n ROM

U n used RAM

VIC and S I D
ch i p reg isters C h a racter

Screen co l o u r
Defi n it ions i n

ROM
memory

I n p ut/Output
ch i p reg isters

Ope rati ng system i n ROM

APP E N DIX 1 8

G RAPH ICS LOADE R PROG RAMS

This Appendix contains BASIC listings of loader
programs for all the machine code graphics
package programs described in Chapters 19 and 20.
Refer to these chapters for details of how the
programs are used.

How to Use the Loader Programs

The machine code has been split into 5 programs to
make it easier for you to enter it in small stages.
Because the routines are divided you do not have to
type them all in at once - which will reduce the
chances of error.

To obtain the machine code for the complete
graphics package follow these instructions:

1 Type in the BIT-MAP routine loader, SAVE
and RUN it.

2 Save the machine code by following the
instructions at the end of the BIT-MAP routine.

3 Type in the PLOT routine loader, SAVE and
RUN it.

4 Save the machine code by following the
instructions at the end of the PLOT routine.

5 Type in the FILL routine loader, SAVE and
RUN it.

Graphics Loader Programs 485

6 Save the machine code by following the
instructions at the end of the FILL routine.

7 Type in the DRAW routine loader , SAVE and
RUN it.

8 Save the machine code by following the
instructions at the end of the DRAW routine.

9 Type in the MIX MODE routine loader , SAVE
and RUN it.

10 Save the machine code by following the
instructions at the end of the MIX MODE
routine.

1 1 When all five machine code routines have been
saved, you can combine them into a single
program by loading each one like this:

LOAD " PROG " , 8 , 1

for a program on disk, or:

LOAD " PROG " , l , l

for a program on tape. You must type NEW
after loading each program - this will not delete
the machine code, it just resets the pointers to
the BASIC RAM area.

12 When all five routines have been loaded in this
way, you can save them as one program like
this:

POKE 4 4 , 19 2 : POKE 4 3 , 0

POKE 4 6 , 19 7 i POKE 4 5 , 1 10

486 The Commodore 64 Omnibus

SAVE " GRAPHICS MC " , 8 : REM OR , 1 FOR
TAPE

13 To load the graphics package subsequently, use
the command:

LOAD "GRAPHICS MC " , 8 , 1

to load from disk, or:

LOAD "GRAPHICS MC " , I , 1

to load from tape, and type NEW after loading.
This will cause the loss of any BASIC program
in the 64, so be careful!

1 0
2 0
3 0
4 0
5 0
6 0
1 0 0 0 0

1 0 0 1 0

1 0 0 2 0

1 0 0 3 0

1 0 0 4 0

1 0 0 5 0

BIT-MAP ROUTI N E

REM B I T MAP LOADER
FOR X= 4 9 1 5 2 TO 4 9 3 3 1
READ D : POKE X , D
NEXT X
PRINT " BIT MAP CODE LOADED"
END
DATA 1 6 9 , 1 , 1 4 1 , 1 7 7 , 2 , 2 0 8 , 5 ,
1 6 9 , 0 , 1 4 1 , 1 7 7 , 2 , 1 6 9 , 9 6 , 1 3 3 ,
2 5 2 , 1 6 9
DATA 0 , 1 3 3 , 2 5 1 , 1 6 2 , 6 4 , 3 2 , 1 5 4 ,
1 9 2 , 1 6 9 , 9 2 , 1 3 3 , 2 5 2 , 1 6 9 , 0 , 1 3 3 ,
2 5 1 , 1 7 3
DATA 1 7 4 , 2 , 1 0 , 1 0 , 1 0 , 1 0 , 1 3 , 1 7 5 ,
2 , 1 6 2 , 8 , 3 2 , 1 5 4 , 1 9 2 , 1 7 3 , 1 7 7 , 2
DATA 2 0 8 , 1 6 , 1 6 9 , 2 1 6 , 1 3 3 , 2 5 2 ,
1 6 9 , 0 , 1 3 3 , 2 5 1 , 1 6 2 , 8 , 1 7 3 , 1 7 6 ,
2 , 3 2 , 1 5 4
DATA 1 9 2 , 1 7 3 , 2 , 2 2 1 , 9 , 3 , 1 4 1 , 2 ,
2 2 1 , 1 7 3 , 0 , 2 2 1 , 4 1 , 2 5 2 , 9 , 2 , 1 4 1
DATA 0 , 2 2 1 , 1 7 3 , 1 7 , 2 0 8 , 9 , 3 2 ,
1 4 1 , 1 7 , 2 0 8 , 1 6 9 , 1 2 0 , 1 4 1 , 2 4 , 2 0 8 ,
1 7 3 , 1 7 7

Graphics Loader Programs 487

1 0 0 6 0 DATA 2 , 2 0 8 , 8 , 17 3 , 2 2 , 2 0 8 , 9 , 16 ,
1 41 , 2 2 , 2 0 8 , 9 6 , 17 3 , 2 , 2 2 1 , 9 , 3

1 0 0 7 0 DATA 1 4 1 , 2 , 2 2 1 , 17 3 , 0 , 2 2 1 , 4 1 ,
2 5 2 , 9 , 3 , 1 4 1 , 0 , 2 2 1 , 17 3 , 1 7 ,
2 0 8 , 4 1

1 0 0 8 0 DATA 2 2 3 , 1 4 1 , 17 , 2 0 8 , 1 7 3 , 2 2 ,
2 08 , 4 1 , 2 3 9 , 1 4 1 , 2 2 , 2 0 8 , 169 , 2 1 ,
1 4 1 , 2 4 , 2 0 8

1 0 0 9 0 DATA 9 6 , 16 0 , 1 2 7 , 1 4 5 , 2 5 1 , 1 36 ,
1 6 , 2 51 , 7 2 , 2 4 , 1 6 5 , 2 51 , 1 0 5 , 1 2 8 ,
1 3 3 , 2 5 1 , 16 9

1 0 1 0 0 DATA 0 , 1 0 1 , 2 5 2 , 1 3 3 , 2 5 2 , 1 0 4 ,
2 0 2 , 2 0 8 , 2 31 , 9 6

Saving the Bit-Map Routine machine code

After runnning the loader program type in the
following commands to save the machine code:

POKE 4 4 , 19 2 : POKE 4 3 , 0

POKE 46 , 1 9 2 : POKE 4 5 , 1 8 0

SAVE " BIT MAP " : REM ADD , 8 FOR DISK
DRIVE

10
2 0
3 0
40
50
6 0
1 1 0 0 0

1 1 0 1 0

PLOT ROUTIN E

REM PLOT LOADER
FOR X= 4 9 3 36 TO 4 9 5 9 3
READ D : POKE X , D
NEXT X
PRINT " PLOT CODE LOADED"
END
DATA 1 7 3 , 169 , 2 , 7 4 , 7 4 , 7 4 , 1 4 1 ,
186 , 19 3 , 17 3 , 168 , 2 , 7 4 , 17 3 , 1 6 7 ,
2 , 1 0 6
DATA 7 4 , 1 7 4 , 17 7 , 2 , 2 40 , 1 , 7 4 ,
1 4 1 , 187 , 19 3 , 1 7 3 , 1 69 , 2 , 4 1 , 7 ,
1 4 1 , 1 8 8

488 The Commodore 64 Omnibus

1 1 0 2 0 DATA 1 9 3 , 1 7 3 , 1 86 , 19 3 , 1 3 3 , 2 5 3 ,
1 69 , 0 , 1 3 3 , 2 5 4 , 16 2 , 6 , 3 2 , 1 7 5 ,
1 9 3 , 2 0 2 , 2 0 8

1 1 0 3 0 DATA 2 5 0 , 16 5 , 2 5 4 , 1 3 3 , 2 5 2 , 16 5 ,
2 5 3 , 1 3 3 , 2 5 1 , 3 2 , 17 5 , 19 3 , 3 2 , 1 7 5 ,
1 9 3 , 2 4 , 16 5

1 1 0 4 0 DATA 2 5 3 , 1 0 1 , 2 5 1 , 13 3 , 2 5 1 , 1 6 5 ,
2 5 4 , 1 0 1 , 2 5 2 , 1 3 3 , 2 5 2 , 16 9 , 0 , 1 3 3 ,
2 5 4 , 1 7 3 , 18 7

1 1 0 5 0 DATA 1 9 3 , 1 3 3 , 2 5 3 , 3 2 , 17 5 , 19 3 ,
3 2 , 17 5 , 19 3 , 3 2 , 17 5 , 19 3 , 2 4 , 1 6 5 ,
2 5 3 , 1 0 1 , 2 5 1

1 1 0 6 0 DATA 1 3 3 , 2 5 1 , 16 5 , 2 5 4 , 1 0 1 , 2 5 2 ,
1 3 3 , 2 5 2 , 2 4 , 17 3 , 188 , 19 3 , 1 0 1 ,
2 5 1 , 1 3 3 , 2 5 1 , 1 6 9

1 1 0 7 0 DATA 0 , 1 0 1 , 2 5 2 , 1 3 3 , 2 5 2 , 2 4 , 169 ,
0 , 10 1 , 2 5 1 , 1 3 3 , 2 5 1 , 16 9 , 9 6 , 1 0 1 ,
2 5 2 , 1 3 3

1 1 0 8 0 DATA 2 5 2 , 17 3 , 1 7 7 , 2 , 2 4 0 , 48 , 1 7 3 ,
1 67 , 2 , 4 1 , 7 , 1 4 1 , 189 , 19 3 , 56 ,
1 69 , 7

11 0 9 0 DATA 2 3 7 , 189 , 1 9 3 , 1 4 1 , 189 , 19 3 ,
2 4 , 16 9 , 1 , 1 7 4 , 189 , 1 9 3 , 2 4 0 , 4 , 1 0 ,
2 0 2 , 2 0 8

1 1 1 0 0 DATA 2 5 2 , 1 6 0 , 0 , 17 4 , 17 3 , 2 , 2 4 0 ,
5 , 17 , 2 5 1 , 1 4 5 , 2 51 , 9 6 , 7 3 , 2 5 5 ,
49 , 2 5 1

1 1 1 1 0 DATA 1 4 5 , 2 5 1 , 9 6 , 1 7 3 , 16 7 , 2 , 4 1 ,
3 , 1 4 1 , 189 , 19 3 , 56 , 1 69 , 3 , 2 3 7 ,
189 , 19 3

1 1 1 2 0 DATA 1 0 , 1 4 1 , 189 , 1 9 3 , 16 0 , 0 , 17 3 ,
17 3 , 2 , 4 1 , 3 , 17 4 , 189 , 19 3 , 2 4 0 ,
4 , 1 0

1 1 1 3 0 DATA 2 0 2 , 2 08 , 2 5 2 , 1 4 1 , 19 0 , 19 3 ,
169 , 2 5 2 , 17 4 , 189 , 1 9 3 , 2 4 0 , 5 , 56 ,
4 2 , 2 0 2 , 2 0 8

1 1 1 4 0 DATA 2 5 2 , 49 , 2 5 1 , 1 3 , 19 0 , 19 3 ,
1 4 5 , 2 5 1 , 96 , 16 9 , 0 , 6 , 2 5 4 , 6 , 2 5 3 ,
1 0 1 , 2 5 4

1 1 1 5 0 DATA 1 3 3 , 2 5 4 , 96

Graphics Loader Programs 489

Saving the Plot Routine machine code

After runnning the loader program, type in the
following commands to save the machine code:

POKE 4 4 , 19 2 : POKE 4 3 , 18 4

POKE 4 6 , 19 3 : POKE 4 5 , 188

SAVE " PLOT " : REM ADD , 8 FOR DISK
DRIVE

10
20
3 0
40
50
6 0
1 3 0 0 0

1 3 0 1 0

1 3 0 2 0

1 3 0 3 0

F ILL ROUTIN E

REM FILL LOADER
FOR X= 5 0 4 0 2 TO 5 0 466
READ D : POKE X , D
NEXT X
PRINT "FILL CODE LOADED"
END
DATA 1 7 3 , 169 , 2 , 1 4 1 , 3 5 , 19 7 , 3 2 ,
1 8 4 , 19 2 , 2 4 , 17 3 , 169 , 2 , 1 0 5 , 1 ,
1 4 1 , 16 9
DATA 2 , 17 3 , 17 2 , 2 , 2 0 5 , 169 , 2 ,
17 6 , 2 36 , 17 3 , 3 5 , 1 9 7 , 1 4 1 , 1 6 9 , 2 ,
2 4 , 17 3
DATA 16 7 , 2 , 1 0 5 , 1 , 1 4 1 , 1 67 , 2 ,
1 7 3 , 168 , 2 , 10 5 , 0 , 1 41 , 168 , 2 ,
56 , 17 3
DATA 1 7 1 , 2 , 2 3 7 , 168 , 2 , 17 3 , 17 0 ,
2 , 2 37 , 16 7 , 2 , 17 6 , 19 8 , 9 6

Saving the Fill Routine Machine Code

After runnning the loader program, type in the
following commands to save the machine code:

POKE 4 4 , 19 6 : POKE 4 3 , 2 26

490 The Commodore 64 Omnibus

POKE 4 6 , 1 9 7 : POKE 4 5 , 3 5

SAVE " F I LL " : REM ADD , 8 FOR D I SK
DR I VE

1 0
2 0
3 0

4 0

5 0
6 0

1 2 0 0 0

1 2 0 1 0

1 2 0 2 0

1 2 0 3 0

1 2 0 4 0

1 2 0 5 0

1 2 0 6 0

1 2 0 7 0

1 2 0 8 0

DRAW ROUTI N E

REM DRAW LOADER

FOR X = 4 9 6 0 8 TO 5 0 3 7 2
READ D : POKE X , D

NEXT X

PR I NT " DRAW CODE LOADED "

END

DATA 1 7 3 , 1 7 0 , 2 , 1 4 1 , 1 9 7 , 1 9 6 ,

1 7 3 , 1 7 1 , 2 , 1 4 1 , 1 9 8 , 1 9 6 , 1 7 3 , 1 6 9 ,

2 , 1 4 1 , 1 9 9

DATA 1 9 6 , 1 6 9 , 0 , 1 4 1 , 2 2 4 , 1 9 6 , 5 6 ,

1 7 3 , 1 7 2 , 2 , 2 3 7 , 1 6 9 , 2 , 1 7 6 , 1 5 ,

1 7 3 , 2 2 4
DATA 1 9 6 , 7 3 , 1 , 1 4 1 , 2 2 4 , 1 9 6 , 5 6 ,

1 7 3 , 1 6 9 , 2 , 2 3 7 , 1 7 2 , 2 , 1 4 1 , 2 0 2 ,

1 9 6 , 5 6
DATA 1 7 3 , 1 7 0 , 2 , 2 3 7 , 1 6 7 , 2 , 1 4 1 ,

2 0 0 , 1 9 6 , 1 7 3 , 1 7 1 , 2 , 2 3 7 , 1 6 8 , 2 ,

1 7 6 , 2 4
DATA 1 7 3 , 2 2 4 , 1 9 6 , 7 3 , 1 , 1 4 1 , 2 2 4 ,

1 9 6 , 5 6 , 1 7 3 , 1 6 7 , 2 , 2 3 7 , 1 7 0 , 2 ,

1 4 1 , 2 0 0
DATA 1 9 6 , 1 7 3 , 1 6 8 , 2 , 2 3 7 , 1 7 1 , 2 ,

1 4 1 , 2 0 1 , 1 9 6 , 2 0 8 , 1 0 , 1 7 3 , 2 0 0 ,

1 9 6 , 2 0 8 , 5
DATA 1 6 9 , 1 , 1 4 1 , 2 2 4 , 1 9 6 , 1 7 3 ,

2 0 2 , 1 9 6 , 2 0 8 , 5 , 1 6 9 , 1 , 1 4 1 , 2 2 4 ,
1 9 6 , 1 7 3 , 2 0 1

DATA 1 9 6 , 2 0 8 , 1 1 , 1 7 3 , 2 0 0 , 1 9 6 ,

2 0 5 , 2 0 2 , 1 9 6 , 1 7 6 , 3 , 7 6 , 1 0 , 1 9 5 ,

5 6 , 1 7 3 , 1 7 0
DATA 2 , 2 3 7 , 1 6 7 , 2 , 1 7 3 , 1 7 1 , 2 ,

2 3 7 , 1 6 8 , 2 , 1 7 6 , 3 , 3 2 , 1 6 0 , 1 9 6 ,

1 7 3 , 2 0 2

Graphics Loader Programs

1 2 0 9 0 DATA 1 9 6 , 1 4 1 , 2 0 5 , 1 9 6 , 1 6 9 , 0 ,
1 4 1 , 2 0 6 , 1 9 6 , 1 7 3 , 2 0 0 , 1 9 6 , 1 4 1 ,
2 0 3 , 1 9 6 , 1 7 3 , 2 0 1

49 1

1 2 1 0 0 DATA 1 9 6 , 1 4 1 , 2 0 4 , 1 9 6 , 3 2 , 5 1 ,

1 9 6 , 1 7 3 , 1 6 7 , 2 , 1 4 1 , 2 0 8 , 1 9 6 , 1 7 3 ,

1 6 8 , 2 , 1 4 1
1 2 1 1 0 DATA 2 0 9 , 1 9 6 , 3 2 , 2 0 0 , 1 9 5 , 1 4 1 ,

2 1 2 , 1 9 6 , 1 7 3 , 2 2 3 , 1 9 6 , 1 4 1 , 2 1 3 ,

1 9 6 , 1 7 4 , 2 2 4 , 1 9 6
1 2 1 2 0 DATA 2 4 0 , 2 1 , 2 4 , 1 7 3 , 2 1 2 , 1 9 6 ,

1 0 9 , 1 6 9 , 2 , 1 4 1 , 2 1 2 , 1 9 6 , 1 7 3 , 2 1 3 ,

1 9 6 , 1 0 5 , 0

1 2 1 3 0 DATA 1 4 1 , 2 1 3 , 1 9 6 , 7 6 , 1 8 8 , 1 9 4 ,
1 7 3 , 1 6 9 , 2 , 2 3 7 , 2 12 , 1 9 6 , 1 4 1 , 2 1 2 ,

1 9 6 , 1 6 9 , 0
1 2 1 4 0 DATA 2 3 7 , 2 1 3 , 1 9 6 , 1 4 1 , 2 1 3 , 1 9 6 ,

1 7 3 , 1 6 8 , 2 , 1 4 1 , 2 0 9 , 1 9 6 , 1 7 3 , 1 6 7 ,

2 , 1 4 1 , 2 0 8
1 2 1 5 0 DATA 1 9 6 , 3 2 , 2 0 0 , 1 9 5 , 1 7 4 , 2 2 4 ,

1 9 6 , 2 0 8 , 1 0 , 2 4 , 1 0 9 , 2 1 2 , 1 9 6 , 1 4 1 ,

1 6 9 , 2 , 7 6
1 2 1 6 0 DATA 2 2 8 , 1 9 4 , 5 6 , 1 7 3 , 2 1 2 , 1 9 6 ,

2 3 7 , 2 2 2 , 1 9 6 , 1 4 1 , 1 6 9 , 2 , 3 2 , 1 8 4 ,

1 9 2 , 2 4 , 1 7 3

1 2 1 7 0 DATA 1 6 7 , 2 , 1 0 5 , 1 , 1 4 1 , 1 6 7 , 2 ,

1 7 3 , 1 6 8 , 2 , 1 0 5 , 0 , 1 4 1 , 1 6 8 , 2 , 5 6 ,

1 7 3
1 2 1 8 0 DATA 1 7 0 , 2 , 2 3 7 , 1 6 7 , 2 , 1 7 3 , 1 7 1 ,

2 , 2 3 7 , 1 6 8 , 2 , 1 7 6 , 1 8 1 , 7 6 , 1 8 1 ,

1 9 5 , 5 6

1 2 1 9 0 DATA 1 7 3 , 1 7 2 , 2 , 2 0 5 , 1 6 9 , 2 , 1 7 6 ,

3 , 3 2 , 1 6 0 , 1 9 6 , 1 7 3 , 2 0 0 , 1 9 6 , 1 4 1 ,
2 0 5 , 1 9 6

1 2 2 0 0 DATA 1 7 3 , 2 0 1 , 1 9 6 , 1 4 1 , 2 0 6 , 1 9 6 ,
1 7 3 , 2 0 2 , 1 9 6 , 1 4 1 , 2 0 3 , 1 9 6 , 1 6 9 , 0 ,
1 4 1 , 2 0 4 , 1 9 6

1 2 2 1 0 DATA 3 2 , 5 1 , 1 9 6 , 1 7 3 , 1 6 9 , 2 , 1 4 1 ,
2 0 8 , 1 9 6 , 1 6 9 , 0 , 1 4 1 , 2 0 9 , 1 9 6 , 3 2 ,
2 0 0 , 1 9 5

492 The Commodore 64 Omnibus

1 2 2 2 0 DATA 1 4 1 , 2 1 2 , 1 9 6 , 1 7 4 , 2 2 4 , 1 9 6 ,
2 4 0 , 1 8 , 2 4 , 1 0 9 , 1 6 7 , 2 , 1 4 1 , 2 1 2 ,

1 9 6 , 1 6 9 , 0
1 2 2 3 0 DATA 1 0 9 , 1 6 8 , 2 , 1 4 1 , 2 1 3 , 1 9 6 , 7 6 ,

1 0 5 , 1 9 5 , 1 7 3 , 1 6 7 , 2 , 2 3 7 , 2 1 2 , 1 9 6 ,
1 4 1 , 2 1 2

1 2 2 4 0 DATA 1 9 6 , 1 7 3 , 1 6 8 , 2 , 2 3 3 , 0 , 1 4 1 ,

2 1 3 , 1 9 6 , 1 7 3 , 1 6 9 , 2 , 1 4 1 , 2 0 8 , 1 9 6 ,

1 6 9 , 0

1 2 2 5 0 DATA 1 4 1 , 2 0 9 , 1 9 6 , 3 2 , 2 0 0 , 1 9 5 ,

1 7 4 , 2 2 4 , 1 9 6 , 2 0 8 , 1 9 , 2 4 , 1 0 9 , 2 1 2 ,

1 9 6 , 1 4 1 , 1 6 7

1 2 2 6 0 DATA 2 , 1 7 3 , 2 1 3 , 1 9 6 , 1 0 9 , 2 2 3 ,

1 9 6 , 1 4 1 , 1 6 8 , 2 , 7 6 , 1 6 2 , 1 9 5 , 5 6 ,

1 7 3 , 2 1 2 , 1 9 6

1 2 2 7 0 DATA 2 3 7 , 2 2 2 , 1 9 6 , 1 4 1 , 1 6 7 , 2 ,

1 7 3 , 2 1 3 , 1 9 6 , 2 3 7 , 2 2 3 , 1 9 6 , 1 4 1 ,

1 6 8 , 2 , 3 2 , 1 8 4

1 2 2 8 0 DATA 1 9 2 , 2 4 , 1 7 3 , 1 6 9 , 2 , 1 0 5 , 1 ,

1 4 1 , 1 6 9 , 2 , 2 0 5 , 1 7 2 , 2 , 1 4 4 , 1 8 2 ,

2 4 0 , 1 8 0
1 2 2 9 0 DATA 1 7 3 , 1 9 8 , 1 9 6 , 1 4 1 , 1 6 8 , 2 ,

1 7 3 , 1 9 7 , 1 9 6 , 1 4 1 , 1 6 7 , 2 , 1 7 3 , 1 9 9 ,

1 9 6 , 1 4 1 , 1 6 9
1 2 3 0 0 DATA 2 , 9 6 , 1 7 3 , 2 1 4 , 1 9 6 , 1 4 1 , 2 1 7 ,

1 9 6 , 1 7 3 , 2 1 5 , 1 9 6 , 1 4 1 , 2 1 8 , 1 9 6 ,

1 7 3 , 2 1 6 , 1 9 6

1 2 3 1 0 DATA 1 4 1 , 2 1 9 , 1 9 6 , 1 6 9 , 0 , 1 4 1 ,

2 2 0 , 1 9 6 , 1 4 1 , 2 2 1 , 1 9 6 , 1 4 1 , 2 2 2 ,

1 9 6 , 1 4 1 , 2 2 3 , 1 9 6

1 2 3 2 0 DATA 1 4 1 , 2 1 0 , 1 9 6 , 1 4 1 , 2 1 1 , 1 9 6 ,

1 6 0 , 2 4 , 7 8 , 2 1 9 , 1 9 6 , 1 1 0 , 2 1 8 , 1 9 6 ,

1 1 0 , 2 1 7 , 1 9 6
1 2 3 3 0 DATA 1 4 4 , 3 7 , 2 4 , 1 7 3 , 2 0 8 , 1 9 6 ,

1 0 9 , 2 2 0 , 1 9 6 , 1 4 1 , 2 2 0 , 1 9 6 , 1 7 3 ,

2 0 9 , 1 9 5 , 1 0 9 , 2 2 1

1 2 3 4 0 DATA 1 9 6 , 1 4 1 , 2 2 1 , 1 9 6 , 1 7 3 , 2 1 0 ,

1 9 6 , 1 0 9 , 2 2 2 , 1 9 6 , 1 4 1 , 2 2 2 , 1 9 6 ,
1 7 3 , 2 1 1 , 1 9 6 , 1 0 9

Graphics Loader Programs 493

1 2 3 5 0 DATA 2 2 3 , 1 9 6 , 1 4 1 , 2 2 3 , 1 9 6 , 1 4 ,
2 0 8 , 1 9 6 , 4 6 , 2 0 9 , 1 9 6 , 4 6 , 2 1 0 , 1 9 6 ,
4 6 , 2 1 1 , 1 9 6

1 2 3 6 0 DATA 1 3 6 , 2 0 8 , 1 9 3 , 1 7 3 , 2 2 2 , 1 9 6 ,

9 6 , 1 6 9 , 0 , 1 4 1 , 2 1 6 , 1 9 6 , 1 4 1 , 2 1 5 ,
1 9 6 , 1 4 1 , 2 1 4

1 2 3 7 0 DATA 1 9 6 , 1 4 1 , 2 0 7 , 1 9 6 , 1 6 0 , 2 4 ,

5 6 , 1 7 3 , 2 0 6 , 1 9 6 , 2 3 7 , 2 0 3 , 1 9 6 ,
1 4 1 , 2 0 6 , 1 9 6 , 1 7 3

1 2 3 8 0 DATA 2 0 7 , 1 9 6 , 2 3 7 , 2 0 4 , 1 9 6 , 1 4 1 ,

2 0 7 , 1 9 6 , 8 , 4 6 , 2 1 4 , 1 9 6 , 4 6 , 2 1 5 ,

1 9 6 , 4 6 , 2 1 6

1 2 3 9 0 DATA 1 9 6 , 1 4 , 2 0 5 , 1 9 6 , 4 6 , 2 0 6 ,
1 9 6 , 4 6 , 2 0 7 , 1 9 6 , 4 0 , 1 4 4 , 2 1 , 1 7 3 ,

2 0 6 , 1 9 6 , 2 3 7
1 2 4 0 0 DATA 2 0 3 , 1 9 6 , 1 4 1 , 2 0 6 , 1 9 6 , 1 7 3 ,

2 0 7 , 1 9 6 , 2 3 7 , 2 0 4 , 1 9 6 , 1 4 1 , 2 0 7 ,

1 9 6 , 1 8 4 , 8 0 , 1 8
1 2 4 1 0 DATA 1 7 3 , 2 0 6 , 1 9 6 , 1 0 9 , 2 0 3 , 1 9 6 ,

1 4 1 , 2 0 6 , 1 9 6 , 1 7 3 , 2 0 7 , 1 9 6 , 1 0 9 ,

2 0 4 , 1 9 6 , 1 4 1 , 2 0 7

1 2 4 2 0 DATA 1 9 6 , 1 3 6 , 2 0 8 , 1 9 2 , 4 6 , 2 1 4 ,

1 9 6 , 4 6 , 2 1 5 , 1 9 6 , 4 6 , 2 1 6 , 1 9 6 , 9 6 ,

1 7 3 , 1 7 0 , 2
1 2 4 3 0 DATA 1 7 2 , 1 6 7 , 2 , 1 4 1 , 1 6 7 , 2 , 1 4 0 ,

1 7 0 , 2 , 1 7 3 , 1 7 1 , 2 , 1 7 2 , 1 6 8 , 2 , 1 4 1 ,

1 6 8
1 2 4 4 0 DATA 2 , 1 4 0 , 1 7 1 , 2 , 1 7 3 , 1 7 2 , 2 ,

1 7 2 , 1 6 9 , 2 , 1 4 1 , 1 6 9 , 2 , 1 4 0 , 1 7 2 ,
2 , 9 6

Saving the DRA W routine machine code

After runnning the loader program, type in the
following commands to save the machine code:

POKE 4 4 , 1 9 3 : POKE 4 3 , 2 0 0

POKE 4 6 , 1 9 6 : POKE 4 5 , 1 9 7

494 The Commodore 64 Omnibus

SAVE " DRAW " : REM ADD , 8 FOR D I S K
DRIVE

1 0

2 0

3 0
4 0

5 0
6 0

1 4 0 0 0

1 4 0 1 0

1 4 0 2 0

1 4 0 3 0

1 4 0 4 0

M IXED M O D E LOADER

REM M I X MODE LOADER

FOR X= 5 0 4 6 8 TO 5 0 5 4 1
READ D : POKE X , D
NEXT X

PR I NT " MI X MODE CODE LOADED "

END

DATA 1 2 0 , 1 6 9 , 6 7 , 1 4 1 , 2 0 , 3 , 1 6 9 ,

1 9 7 , 1 4 1 , 2 1 , 3 , 1 6 9 , 1 , 1 4 1 , 2 6 , 2 0 8 ,

1 6 9
DATA 0 , 1 4 1 , 1 8 , 2 0 8 , 1 7 3 , 1 7 , 2 0 8 ,

4 1 , 1 2 7 , 1 4 1 , 1 7 , 2 0 8 , 8 8 , 9 6 , 1 7 3 ,

2 5 , 2 0 8
DATA 4 1 , 1 , 2 4 0 , 3 3 , 1 4 1 , 2 5 , 2 0 8 ,

1 7 3 , 1 8 , 2 0 8 , 2 0 8 , 1 1 , 3 2 , 6 9 , 1 9 2 ,
1 6 9 , 2 0 0

DATA 1 4 1 , 1 8 , 2 0 8 , 7 6 , 1 0 1 , 1 9 7 , 3 2 ,

1 1 4 , 1 9 2 , 1 6 9 , 0 , 1 4 1 , 1 8 , 2 0 8 , 1 0 4 ,

1 6 8 , 1 0 4

DATA 1 7 0 , 1 0 4 , 6 4 , 7 6 , 4 9 , 2 3 4

Saving the MIXED MODE routine machine
code

After runnning the loader program, type in the
following commands to save the machine code:

POKE 4 4 , 1 9 7 : POKE 4 3 , 3 6

POKE 4 6 , 1 9 7 : POKE 4 5 , 1 1 0

SAVE " M I X MODE " : REM ADD , 8 FOR D I S K

DR I VE

Graphics Loader Programs 495

SAVING TH E GRAPH ICS PACKAG E

After creating the machine code for each of the five
routines comprising the graphics package and
saving them individually, you can load them all
into the 64 using the commands:

LOAD " PROG " , 8 , 1

to load from disk, or

LOAD " PROG " , 1 , 1

to load from tape. You must type NEW after
loading each program. With all the routines in the
machine you can save them together as one
program by typing:

POKE 4 4 , 1 9 2 : POKE 4 3 , 0

POKE 4 6 , 1 9 7 : POKE 4 5 , 1 1 0

SAVE " GRAP H I C S MC " , 8

DATAMAKER

This program will convert the contents of any area
of memory into a series of DATA statements which
are appended to the DATAMAKER program. To
use the program enter the line number at which
you want the DATA to start, and the start and end
address of the area of memory you want to convert
into DATA statements. When the program has
finished, delete lines 5 to 500 and save the DATA
statements for use in your program.

5 REM DATAMAKER

1 0 I NPUT " F IRST DATA L I NE
NUMBER " ; LN

496

20

30
100
110
120
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0
2 0 0
2 1 0
3 0 0
3 1 0

3 2 0
3 3 0
3 4 0
3 5 0
5 0 0

The Commodore 64 Omnibus

INPUT " START ADDRESS OF
CODE " i S
INPUT " END ADDRESS OF CODE " i E
F=S+16 : IF F>E THEN F=E
PRINT " { CLS } " LN " DATA" i
FOR I=S TO F
C = PEEK (I)
C$ = MID$ (STR$ (C) , 2)
CK = CK+C
PRINT C$ i
IF I<F THEN PRINT" , " i
NEXT
PRINT
S=F
IF S<E THEN PRINT " LN= " LN+ I 0 " :
S= " S+ 1 " : E= " E " : GOTOI 0 0 "
I F S=E THEN PRINT " LIST "
POKE 198 , 3
POKE 6 3 1 , 19
POKE 6 3 2 , 1 3 : POKE 6 3 3 , 1 3
END

I N DEX
1 525 Pri nter 403 B lock-Execute 398
1 540 Disk Drive 400 B lock-Free 378
1 54 1 Disk Drive 348 B l ock-Read 374
1 6 Sprites 307 B lock-Write 375
65 1 0 microprocessor 235 Boolean a lgebra 82

Abbrevi ati ons 4 1 9
Branching 37

ABS 74
- i n mach ine code 245

Absol ute
Buffer Poi nter 380

Add ressi ng 239, 249
Byte 89

Accumulator 235 Cassette un it 4
Add i ng com mands 220 Channels 1 88
Add ressi ng Modes 239, 249 Character sets 1 28
AND 83 CHR$ 62
Ani mation 1 74 CH RGET Routi ne 2 1 9
Arithmetic 1 1 Clock 38

- in Machi ne Code 24 1 CLOSE 1 88
Arrays 27 ClR 92
Array E lement 232 CLRlHOME key 1 0
Array Header 23 1 Col l i s ion detection 1 67
Array Variables 230 CMD 1 90
Assembler 237 Colour 1 2
Assembly Language 204 Colour memory 1 20
ASC 62 Com pari sons in
ASC I I code machi ne code 248
Attack 95 CONT 49
ATN 75 COpy 359
Auto Load i ng 362 Copyi ng Tapes 402

BAM 354
COS 75

BASIC 1
CTRL key 1 2

BASIC Commands 420
Cursor 8

BAS IC Storage 2 1 2,227
Cu rsor keys 9

B E E P rout ine 22 1
Cu rsor Down Mode 407

B i nary numbers 230
Cu rsor Up Mode 407

B it 1 27, 230 DATA 54
Bit-Mapped Decay 95

Graphics 1 46, 262 DEF FN 79
Block-Al locate 377 DEL key 1 0

498 The Commodore 64 Omnibus

DIM 29 G raphics Programs 294, 437
Di rectory 353,360

Headache program 297
Disk Drives 400
Disk Status 358, 362

Hexadecimal n u m bers 234

Display Memory 263, 265
H i erarchy of operati ons 1 2

DOS 349
H igh level l anguage 234

DOS Support Program 359
Homebase Program 383

Dot Add ress 4 1 2
Housekeepi ng 357

Dot Matri x 403 I E E E Disk Drives 401
Doubl e Width Mode 41 1 I F 43
DRAW routi ne 28 1 I mmediate mode 8
Drawi ng Li nes 280 I mmed i ate Add ressi ng 239

Edit i ng 1 0 I ndex 497

END 48 I ndex Registers 235

Envelope 95 I ndexed Add ressing 250

Error messages 22 1 Ind i rect Add ressing 250

Error status 36 1 I nitia l i se 358

Executi ng programs 2 1 9 I NPUT 29

EXP 77 INPUT# 1 88
I NST key 1 0

F i les
Instruction set 237, 464

1 87 INT 74
Fi l l Program 292 Integer variables 25
F i l ter 1 03 I nteger Variables 226
Floati ng Poi nt I nterpreter 2 1 1
Variables 227 I nterrupts 255,30 1 ,3 1 4
Fl oppy Di sks 349 I nterrupt Enabl e Reg 303
FN 79 Interrupt Status Reg 303
FOR 34
Formatti ng d isks 352 J R's hat program 299

FRE 91 J u m ps 37

Functions 73 - in machi ne code 252

GET 52 Kernal 2 1 1 ,260

GET# 1 88 Keyboard 8

GOSUB 46 Keywords, BAS IC 420

GOTO 37 Languages 1
G raphics 1 1 9 LEFT$ 60

- Sym bols 1 5 LEN 59
- Bit mapped 1 46 LET 424

G raphics Mode Printing 408 Li nk Pointer 2 1 5
LIST 1 9

Index 499

LOAD

Loadi ng programs
Loadi ng Programs
LOG

Logi ca l Operations
Loops
Lower case

1 84
1 84

355,362
76

256
34
1 4

Mach i ne code 204, 234, 398
Memory Execute 399
M emory maps 239, 246
Memory Read 399
Memory use 89, 246
M emory Write 398
Menu 3 1 5
M i ce 3 1 6
M i croprocessor 204, 234
MID$ 61
M i xed Mode Display 3 1 2
Modulation 1 09
Monitor 7
M PS80 1 pri nter 403
Multi colour G raphics 266
M usic 93, 332

NEW 2 1
New d i sks 352
NEXT 34
N M I 255
NOT M
Notes 333, 427
Numberi ng systems 230

ON ... GOSUB 49
ON . . . GOTO 49
OPEN 1 87
O perati ng System 204
OR M

PEEK 90
Pl otti ng Poi nts 273
Pictures program 340
Pixel 1 27, 1 58, 272

POKE

POS

PRINT

PRINT#

Processor status

1 3, 90
57

8, 55
1 88

register 236
Prog�m 1 8
Program Counter 236

Quitti ng DOS 5. 1 363

RAM 90
Random num bers 77
Random F i les 373
Raster Register 302
Raster Scan 30 1
READ 53
Rea l vari ab les 25
Register 9 1
Relative addressi ng 25 1
Relative Fi les 367
Release 95
REM 32
Renam e 359
Renu mber Program 2 1 7
Reserved words 24,2 1 4,420
RESTORE 55
RESTORE key 1 1 , 1 4
RETU RN 47
Reverse video 1 5
Reverse Mode Pri nti ng 4 1 2
RIGHT$ 60
RND 77
ROM 90
RUN 1 9
RU N/STOP key 1 1
Runni ng Machine Code 258

SAVE 1 85

1 85,355,362
Savi ng

Programs
Scratch 359
Screen Dump Program 4 1 3

500 The Commodore 64 Omnibus

Screen memory Track 349

3 3 1 1 20, 1 33,239, 263, 265 Tunes
Sector
Sequ ential F i les
SGN

Shifts
S I D Chip
S ID regi sters
S ide Sectors
S imple variables
SIN

Sketchpad Program
SPC

Sprites
SQR

Stack
Stack Poi nter
STATUS

Status Register
STEP

STOP

Stoppi ng programs

349
364

75
257

33 1
96, 235

368

225

75

3 1 7

56

1 58

73

253

237, 253

1 90

235

35

49

Stor ing Machine Code 259

Stri ng Variables 227

Stri ng variables 26

STR$ 63

Structured programm i ng 207

Su brouti nes 46

- i n machi ne code 252
Susta i n 95
Syntax errors 221
SYS 204

TAB 57

Tab Pri nt Head 4 1 0

TAN 75
Televis ion 4
THEN 43

TIME 39
TIME$ 39
TO 34
Token 2 1 4

U pper case 1 4
User 399

User defi ned functions 79

User defined characters 1 29
User Friendly 3 1 5
USR 205

VAL 63

Val idate 358

Variables 22

Variable d i splay prog 228

Variable d u m p
program

Variable Storage
VERIFY

230

225

1 85

V IC-I I Ch ip 1 30, 263, 30 1

WAIT

X register

206

235

Y register 235

Zero Page Add ressi ng 240

S U P E R BASIC

S U P E R B A S I C i s a n exte n s i o n t o t h e sta n d a rd
B ASIC 2 . 0 of the Com modore 64, p rovi d i n g 3 6
extra BASIC co mmands wh i ch g ive yo u fu l l control
over th e Gra p h i cs, Spr ites a nd Sou n d capa b i l ities of
yo u r 64, and add many of the featu res fo u n d i n
more modern vers ions of BASIC.

SUPER BASIC COMMAND SUM MARY

AT
A UTO
D E E K
D E L
DO KE
H I M EM
O LD
PACK
PA USE
POP
R E N U M
RESET
B LOCK
CH I R E S
CM U LTI
DRAW
FRAM E
H I RES
I N K
PA PER
P LOT
S ETCO L
TEXT
F I LTER
GATE
M USIC
Q U I ET
S HAPE
SO U N D

Moves cu rsor for PRI NT@ & INPUT@ operations
Automatical l y generates l i ne numbers
1 6 bit PEEK
Deletes blocks of program l i nes
1 6 bit POKE
Sets the l i m i t of memory for BASIC programs
Restores accidental ly N EWed programs
Removes all REMs and surpl us spaces
Provides a ti med delay i n j i ffies
Removes one add ress from the RETU RN stack
Renumbers programs i nc lud i ng a l l branches
Resets the 64

F i l l s blocks on h i-res screen with specifi ed colour
Cl ears h i-res screen and sets h i -res mode
Clears h i -res screen & sets m ulti col our mode
Draws l i nes on h i -res screen in both modes
Changes frame (border) colour
Returns to previ ously set hi -res mode
Changes foreground (i nk) colour
Changes background (paper) col our
Plots or unp lots a poi nt on either h i-res d i splay
Sets h i-res colours
Returns to the text d i splay

Sets u p the fi l teri ng on SID chip
Controls gate ing of SID voices
Pl ays m usical notes from 8 octaves on any voice
Inh i bits sou nd output and resets S I D
Attack, Decay, Susta i n & Release for each voice
Sets frequency & waveform for each voice

VO LU M E
SPRCO L
SPRITE
SPRMOV
SPROFF
SPRSET
SPRSIZ

Sets vol ume for S ID c h i p

Set u p sprite colour reg isters
Enables sprites
Positi ons sprites on screen
Disables sprites
Defi nes sprites
Defi nes sprite si zes

Also i ncl uded i n the S U P E R BAS IC package is a
co mpreh ensive booklet d escri b i n g how the new
co mmands a re used a nd some exa m p l e prog ra ms.
I f you wo u ld l i ke to ord e r a copy of S U P E R BASIC
p lease cut out or copy the fo rm below and se nd it
with you r re mitta nce to the add ress g iven ;
, - , : Century Software :
I I

: To : M a i l O rd er Dept., I

: Ti ptree Book Services Ltd,
I Cti u rch Road, Ti ptree
: Co lch ester, Essex CO S OSR
I

: Pl ease send me cop ies of SUPER BASIC by
: Peter Lu pto n a nCf'Frazer Robi nson, at £9.95 each .

ISBN 0 7 1 26 0666 1
I enclose my cheque/posta l ord er for £ __

(ch eques should be made paya b l e to Tiptree
Book Services Ltd).
Pl ease debit my Access/Ba rcl ayca rd acco u nt
(d elete as a p p ropr iate) .

���b�; I I I I I I I I I I I I I I I I I
Name

Add ress ----------------______________ _

S ig ned
(Home add ress pl ease if payi n g by cred it ca rd)
Pl ease a l low 28 days for de l ivery.

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	999

