f)h Np,
0 , ‘oY
Sfc

commodore 6
ight &

L

JOHN J. ANDERSON

I

Commodore 64
Sight & Sound

&

John J. Anderson

\\\ Creative Computing Press

Morris Plains, New Jersey

Acknowlegements

| would like to extend the most sincere thanks to the following people for

their gracious help with this book: Peter Kelley, for his fine illustrations and

’ﬂ, untailing friendship; Neil Harris, of Commodore, for technical assistance and
occasional morale boosting; Robert Alonso, for his expert programming
assistance and reliable good humor; Andrew Simon, for having the insight to
create the tool we've all been waiting for; Paul Farrell, for his faith and
ever-energizing hysteria; and most of all to Laura Conboy for the enthusiasm
to see this project through.

— John J. Anderson

&

u : <

The Author and the Publisher have made every effort to verify the accuracy of the
information contained in this book. However, neither the Author nor the Publisher
assumes any responsibility for the use of this information, nor for any infringements of
patents or other rights of third parties that may arise from the use of the information in

\ this book. Neither the Author nor the Publisher assumes any liability for any damages
that may result from the information contained hersin.

Commodore and Simon's Basic are registered trademarks of Commodore Business
Machines, Inc. Apple and Apple Macintosh are registered trademarks of Apple
Computer, Inc.

Commodore 64 Sight & Sound

Copyright© 1984 Creative Computing Press

All rights reserved, No portion of this book may be reproduced—mechanically,
electronically, or by any other means, including photocopying—without express written
permission from the publisher.

Library of Congress Cataloging in Publication Data

Anderson, John J,
Commodore 64 sight & sound.
1. Commodore 64 (Computer) — Programming. 2. Basic (Computer program
language) 3. Computer graphics. 4. Computer sound processing.
. Title. Il. Title: Commodore 64 sight & sound.
QA76.8.C64A63 1984 001.64'2 84-12178
ISBN 0-916688-58-5

Creative Computing Press
39 East Hanover Avenue
Morris Plains, New Jersey 07950 USA

&
Q Manufactured in the United States of America
86 85 B4 987654321
Edited by Laura Conboy
Cover design by Susan Gendzwil

Cartoon illustrations by Peter Kelley
Macintosh-generated diagrams by John Anderson

For Lauren, without whom | would most assuredly turn into a
quivering lump of guacamole.

{7

Contents Moion ix

Chapter1 SelingUp 1
v POWENNG UD ... oi ittt s 1
Gettingthe Picture 3
Tuning It In
Seeking Resolution

Chapter 2 What a Difference aDriveMakes 9
ShHING INTODIIVE oo e 10
Formatting a Disk
Saving Your Program to Disk
Verifying Your Program
Loading Your Program From Disk
Obtaining a Directory
Deleting a File
Y/ Write-Protecting a Disk
Q MENU: Or, the EAsy WOY oiiiiitiiiiraeerrasiirssananan s 16
Drivingthe Wedgeo 19

Chapter 3 The Key to the Commodore Keyboard 21
The Caps MOot 21
The QUOTE MIOBE ...ttt it iieenanestninn e nsasatonnnas 22

Other Things to Know About the Keyboard

Chapter 4 BasicGraphicsandSound...................coovvnenres 25
BOSIC BOSICS ... ettt it et ara e s e 25
Deferred & Direct Commands
Printing From Basic
Coloing TRINGS IN ... e 32
Changing Colors With POKE
Looping in Color
IF/THEN
FOR/NEXT
’é Color Graphics From Print Statements
=z The REVERSE Mode
Making Loops Fruitful
Easy Animated Graphicso 45
Shift-lnverse Heart
Inverse Bracket
Saving Low-Res Screens
SoUNd FIOM BOSIC ..ottt iiai it iar s saaanar s aenaanenanas 52

SIMON'S BASIC COMMANTS - - - -+ oo s e eeeeenarreenarrannanareens 57
) COLOUR
VAL
DISPLAY
AUTO

o
&
&
oy
& RENUMBER
§
\'\\
§
&

5 hapter 5 Getting Into SIMOm’s BASICHoevveernenaiiene, 57
§

PAUSE
ON ERROR:GOTO
ouT
Simon Meets Low-Res Graphics.coioiiirr i 66
SCRV and SCRiD
* BCKGNDS

Vi

FLASH and OFF
BFLASH

FILL

MOVE

L SCROLL
Hi-Res Graphics 74

R

REC
O A Closer Lock at Plot Types
8 Multi-Res—The Best of Both Worldscoiiiiiiinnnnns 80
MULTI
Plot Types in Multi-Res
LOW COL
HI COL
PLOT
TEST
CIRCLE
ARC
ANGLE
PAINT
BLOCK
DRAW
ROT
Displaying Text in Hi-Res and Multi-Rescocoviiiinan.... 160
CHAR
TEXT
NRM
CSET

Chapter 6 MOBhing Up inSimonw'sBasicccvoun.. 105
Sprites Are MObS 105
DESIGN

@
CMOB
MOB SET
Mobs INn MOHON ..o e e 113
MMOB
RLOCMOB
MOB OFF
DETECT and CHECK

‘ Chapter 7 Sound FromSimon’sBasic 125
Simon's Sound CommMANds i e e 125
VOL
WAVE
Noise Waveform
Sqguare Waveform
Sawtooth Waveform
Triangular Waveform
ENVELOPE
MUSIC
PLAY

AppendiX ... e e 135

viil

&

Well you finally went and did it. You waited and waited, biding your time until a
machine with foads of capability appeared at a reasonable price. You weighed
your options carefully. You narrowed your choice down to three machines.
Then two. You wavered. You reconsidered. And then you went out and bought
yourself a Commodore 64 microcomputer.

Take a moment to pat yourself on the back. You've made an excellent
decision. The Commodore 64 is just about the most computer you can
buy for the money. Its graphics capability is unparalleled for versatility and
sophistication, its sound capability rivals that of dedicated sound synthesizers,
and its 64K of RAM (Random Access Memory) is ' more than ample for nearly
any application you can imagine. It's difficult to believe that all of this power,
all of this amazing technology, could be sitting right in front of you in such a
compact, inexpensive package.

And there’s more—much more. Lots of software is available for your
machine, and you’ll find that many of these packages are of very high quality
and even constitute a new generation of personal computer software.
Familiarize yourself with what's available so that you can make educated
decisions on what packages you should purchase. At the end of this book,
there is a short appendix summarizing a few of the more popular graphics and
sound programs available for your machine as well as a listing of the hardware
peripherals that you can use to make sound and graphics easier and fun.

But don’t stop there. Go heyond the lmits of the software and hardware
and learn a bit about how your machine works. You may have already taken a
stab at this only to quickly discover that your machine is lacking in
documentation. Maybe you tried to program graphics and sound from Basic
but just got frustrated at its complexity. Don't give up. Many intelligent people
iust like you have come up against the same wall. The Commodore 64 is
capable of sophisticated sprite graphics and sound effects, but when using
plain old Basic, programming this power becomes a nightmare.

Introduction

R e N AR N S I A N N R N NN NS N NS PN S SN NN NS U NSNS NS NN SAE NSNS NS Na NN E N A AN

Here is an example of a simple animation with one sound effect written
in C-64 Basic:

REM PROGRAM @
REM A TYPICAL BASIC SPRITE ANIMATION
REM PLEASE *DON'T* TYPE THIS ONE IN!

oo

22 POKESE, 481 POKESE, 48:CLR:V=53248: POKEY
422, R POKEV+17, 16:.J=1 :U=54272 1 W=128

25 DEFFNA (L) = (LAND1S) +192: POKEU+4, 16: POK
EU+S, 2: POKEU+6, @

3@ POKEV, 101 POKEV+1, 204 : POKEV+39, ¢z R=V+1
6: POKEV+37, 7 : POKEV438, 4 : POKEU+24, 15

48 POKE2@4Q, 194 : FOKEV+ES, 1: POKEV+29, 1:P0
KEV+Z1, 11 POKEV+E8, 1

45 FORM=0TOSSSSTEPE: POKEVY, M: POKES242, FNA
(M/2) : GOSURIR:NEXT : POKEY, & 1 POKER, 1

5@ FORM=@TOSESTEPZ: POKEV, M: POKEZD4E, FNA ¢
M/2) : GOSUBIA : NEXT : POKEY, B: POKER, @

E@ J=1—J:POKEV+2E7, J: BOTD4S

0 Q=M/32: IFG=INT (@) THENPOKEU+1, 5% : BOMEL
4-dpy W1

91 IFQ~INT(Q) =. STHENPOKEL+1, 850 DOKEU+4,
W1

92 IFABS (Q~INT () —. 5) =, S5 THENPOKEU-+4, W
102 RETURN

The problem with the other Commodore 64 sight and sound books out on
the market is that they seriously try to explain programs like the one shown
here, leaving the reader feeling confused, intimidated, and unable to make
heads or tails out of the material presented. Book after book, the user gets no
closer to graphics and sound mastery—the only cumulative effect is the
sinking feeling that these complicated concepts will never be understood. It's
depressing to think about how many adults and children have been turned off
to the C-64 and probably to computers in general as a result of this needless
frustration.

This book is designed to break through the walils that C-64 users so
often come up against when trying to understand sound and graphics. The
major tool we'll be using to break through these walls is Simon’s Basic, a new
Commodore version of Basic that makes programming much easier. It was
designed in England by Andrew Simon, who was appalled by how difficult plain
old Basic was to learn and use. He realized that for a language to work, it had
to have an easily understood vocabulary——one that allows you to express what
you need to say in a simple and clear way.

So, Mr. Simon went ahead and designed a new and powerful Basic,
giving it his name. And by the time he was finished he was 16 years old.

The result of Simon’s efforts is a package which is one of the best aids
you can buy to help you learn how to program graphics and sound on the
Commodore 64. It comes as a cartridge and fits into the slot on the back of
your machine. For a reasonable price, Simon’'s Basic supplies you with a
powerful new Basic that includes special graphics characters and sound

X

Introduction

commands. Using Simon’s Basic, you can finally get your hands onto the real
power of your machine.

If you don’t have Simon’s Basic, you are really limiting yourself as to
what you will be able to do with your machine. Not only is the documentation
accompanying the machine exiremely lacking, but the Basic itself, on ROM
(Read Only Memory) inside the C-64, works against the novice. As you can
see from our sample program, graphics and sound commands from plain old
Basic require extensive machine language POKESs to get anything done.
Because they look so much alike and divulge no clue as to the operation they
provide, these commands are impossible to understand without extensive
study.

So it isn’t you, the user, who is inferior for not understanding graphics
and sound from plain old Basic. It is the language and documentation that are
inferior. Be aware, however, that the documentation accompanying Simon’s
Basic is as shaky as anything we've seen from Commodore. But the language
itself is a vast improvement. Using this book, you will quickly understand how
Simon’s Basic works. You will master its graphics and sound commands. You
will write your own programs to create color, sound effects, and music. And all
you will need to accomplish these wonderful goals is Simon’s Basic and this
book.

Let's get going. First we’ll go over some other topics like setting up your
system, making sure the picture you are getting is the very best one possible,
and learning how to use the disk drive. We'll also look at the keyboard of your
C-64 and unlock its secrets.

Once you've come that far, you will be ready to start programming
graphics and sound. We'll begin from plain. old Basic, doing some simple
graphics and learning some simple commands. We’'ll also look at some
examples of sound programming from Basic.

Then we shall embark on our exploration of Simon’s Basic. We will work
through commands for low-res and hi-res graphics and for sound control.
Examples of each command are provided, and a group of programs is
presented in each chapter to serve as a springboard for your own original
work.

So boot up, and let’s get started!

xi

Commodore 64
Sight & Sound

TN
;g":;lERlNG UP

SETTING UP

Setting up your C-64 is very simple. You've got a power supply box and line, a
TV or monitor cable, and a cassette or disk drive cable to plug in. The jacks
on the ends of these plugs are designed so that they cannot plug into the
wrong place. The illustration included in this section shows a typical set-up
with a TV and a disk drive system.

If you're using a cassette drive instead of a disk drive, the jack plugs
into the socket on the top lefthand side of the back of the computer. It will
only plug in where it belongs, and you cannot plug it in upside down—the jack
won't let you.

If you have a dedicated monitor rather than a TV, you will require a
monitor cable. It plugs in next to the disk drive cable on the back of the C-64.
The other side goes to separate audio and video plugs on the monitor. Make
sure your monitor cable is designed for the C-84—other cables may work but
will provide an inferior picture. For information on wiring your own monitor
cable, see the upcoming section on Getting the Picture.

Your disk drive has a built-in power supply. You will attach the drive to
its own power cable. You will also attach the drive to the other side of the disk
drive data cable which attaches to the C-64.

The far side of the TV cable attaches to the plug on a silver switch box
(you may already be familiar with this piece of hardware). The terminals on the
switch box are then attached directly to the VHF (that's VHF, not UHF) input
on the back of the set. Attach the antenna input of the TV to the side of the
awitch box. Then you can select the TV or computer signal by sliding the
switch on the switch box back and forth.

That's about all there is to setting up. Now you’re ready 10 start
switching things on.

Always turn on the power to the disk drive before you turn on power fo
the computer; otherwise the computer may not know that it has a disk drive
connected to it. Make sure that the TV is on and tuned to channel 2 or 3. If
you have a TV channel 2 in your area, tumn to channel 3. If there is a channel
3 in your area, tune to channel 2. Then set the toggle switch (located on the
back of your C-64 between the TV output and the ROM cartridge slot) either
left or right—left for channel 2, and right for channel 3.

Chapter 1

—
/ ////)
/:

If you have Simon’s Basic, plug it in the ROM slot (before you turn on
the computer) with the label side up. Mever plug a ROM cart in or out of the
computer while the computer is on.

All set? Okay, turn on the computer. Use the TV tuner to bring in the
picture. (Tips on getting the best picture come in the next section.) If you are
getting no picture at all, make sure that you are cabled properly, that the
switch box is set to “‘computer,” and that the channel toggle on the back of
the 64 is set correctly. :

If you are getting a picture but not a very good one, try adjacent
channels on the TV. You may be set up for whichever channel you are not
currently on.

When you turn the computer on (“power up”), the red light on the disk
drive should come on for a second or so, then go off again. If this does not
happen, make sure your disk drive is on. If it is not, turn the computer off
(“power down™), turn the drive on, then turn the computer back on. Now the
red light should blink at you.

Sefting Up

GETTING THE
PICTURE

The green power light on the disk drive is very hard to see at times. Use
a little extra care to make sure you turn the disk drive off at the end of a
session with the computer. The drive gets very hot when left on for long
periods, and this can impair performance.

When the C-64 comes on, the red light on its top panel will blink on. If
this doesn’t happen, check that the power supply is plugged into the wall and
that it is also correctly plugged into the Commodore 64, If it is, you may have
a problem that requires service on your C-64 or power supply (or you're having
a blackout).

That should do it. You're getting a picture on the screen, and all the
components of your system are ready to go.

And remember, the side of your C-64 that has the keys on it always
faces up.

Before we go on, take a good look at the video output on your C-64
system. Does it look okay? You will need to look at many program listings, and
clearly see strange shapes (like special graphics characters), so a good screen
output is an absolute necessity. If you can’t clearly see what you are doing
with the C-64, you simply won't be able to enjoy this book.

If you've set up and tested your C-64 as indicated in the previous
section, and the picture looks terrific, don’t read another word here. Skip right
on ahead to the chapter on using the disk drive.

If you're still reading, then you are not happy with the picture you are
getting. Don’t despair. There are a few good ideas to try which can improve
your reception.

At under $500 for a C-64 and disk drive, the Commodore is a hard
system to beat. It offers sprite graphics, built-in Basic, exceedingly good
three-voice sound synthesis, and some incredible peripherals: graphics tablets,
light pens, piano keyboards, and drum synthesizers. Add to this the C-64's
advanced gaming capabilities, and you've got the perfect home computer,
right?

Well, maybe. The fact is that the reputation of the 64 has been literally
clouded by reservations concerning the quality of its video. Some potential
C-64 customers have claimed that the pictures they have seen on screens at
their local computer store were singularly unimpressive. Others wonder
whether early models caused interference on their screen.

Scout’s honor and for the record, the Commodore 64—even the early
machines— can output an acceptable color video signal. In fact, this book was
written using one of the first machines to come off the assembly line. Due 10 a
little care in set-up, its video quality is just fine.

Before you pass judgment on the reception of a unit in a department
store, computer store, or even your own home, you should understand some
of the obstacles to good video, and the requisite steps to overcome such
problems. Commodore 64 video is definitely among the more persnickety
signals you are bound to come across, and without a doubt it requires some
special treatment. You must realize that you can’t get the same picture
possible on a NEC monitor using the 20-year old Philco in your den. It is true,
however, that this is a fact a salesperson is loath to admit just prior to a sale.

By the same token, only very rarely is a video signal well-tuned in a

Chapter 4

Tuning It in

retail store. Think of how lousy the pictures look on the ordinary TVsin a
typical department store, then think of the additional skilis required to set up
the C-64. You can always do better on this score at home. There are limits
however as to how well you can do with an ordinary TV.

The most dramatic way to improve the output of a Commodore 64 is
through the purchase of a dedicated video monitor. Here’s why.

When you hook a computer to your home TV set, you route the signal
through a special modulator. Then the video and audio signals are sent
through this modulator and into the antenna input and tuner of the set, just as
if it were this week’s segment of your favorite TV show. While this is certainly
a convenient means of accessing a pre-existing CRT, it has distinct limitations.
The signal is necessarily weakened in passing through the tuner section of the
set. If only the video and audio signals could bypass all of that and go directly
into the circuitry designed to get the picture on the screen and the sound into
the speaker, then the quality of the signal would be dramatically improved.

That is exactly what inexpensive home monitors are designed to do.
Typically such monitors cost about $250 and have built-in audio amplifiers with
speakers to handle sound.

The difference between the video quality of the 64 on a regutar TV and
one of these monitors is very striking. The monitor video looks twice as sharp,
and can take much greater color saturation without “bleeding,” which is the
extremely unfortunate smearing of borders between clashing colors. Bleeding
seems to be the foremost complaint of Commodore 64 owners.

If you've been thinking about getting a monitor, you should be aware of
another potential boon to be associated with it: no longer will any other
member of the family be denied the TV while you are playing with the
computsr.

Whether you have a monitor or not, there are further steps you can take
to make sure the signal coming out of the 64 results in the best possible
picture. One of the first points one realizes about tuning in the video is that the
color must be set quite differently from the levels we have come to think of as
“normal” as a result of the time we've logged with Apples and Ataris. In fact,
many monitors have “detents” (preset notches) for default settings which
always seemed about right for those machines. Not so with the 64.

The most important change is to back off on the color level. In almost
every case, this will immediately improve reception. The Commodore chroma
level (level of color saturation) is designed for less saturation than other
machines as well as less than broadcast TV.

Next, /increase the brightness and decrease the contrast of the picture.
This, combined with lessened color intensity, will improve video quality
substantially.

While colors on the 64 will be a bit less vibrant at these settings, they
can still be very colorful. If they are looking washed out, go ahead and boost
color saturation. The thing to lock for is an overall balance between lesser
than usual color and contrast, and greater than usual brightness.

Even these steps are not enough to thwart all cases of color bleeding,
or some other peculiar problems of Commodore video. To understand more
about these problems, we have to take a closer look at video technology (or
raster technology) in general.

Seeking
Resolution

Sefting Up

IllIII--IlIl--l---ll----I-lIIIII-IllI!lI-lll-l---l.I-I-l-ll-ll---llI-I-l---'-.II---Il--lllIIII

In the design of any machine there are trade-offs. In the design of color
computers, high-end designers may commit to what is called RGB (Red Green
Blue) technology, using special, expensive monitors to create impressive
resolution and clarity. On some of these systems nearly photographic results
can be achieved, and color bleeding occurs only when desired, by making
borders ragged or blended. Modulation to a conventional color TV is
automatically ruled out on these systems.

When surrendering to the restrictions of raster technology so that a
signal can be pumped to a raster monitor or conventional television, its
limitations are passed to the computer designer. The resolution of such
systems is more limited, and some kinds of color bleeding are avoidable only
by staying away from the certain color combinations that cause them. These
limitations are defined by the system, and nothing inside the computer can get
around them.

Chapter 1

Let's compare. On the Apple Il computer, character sets (predefined
sets of letters and numbers) are always white on a black background, no
questions asked. On the Atari, backgrounds can be any of 256 colors, but text
must always be white or black, at least from plain vanilla Atari Basic. In many
cases, however, a lack of contrast or severe color bleeding will make certain
color combinations unacceptable.

On the Commodore 64, there is much greater flexibility. Character sets
in any of 16 colors can appear on a background of any of those same 16
colors. Not only can the color of multiple characters be controlled individually,
but in a very straightforward manner, with direct keyboard commands (pressing
CTRL-WHITE turns the cursor, and all subsequent characters, white).
Combined with the keyboard graphics characters, this flexibility offers a
powerful graphics tool.

It also creates problems. Some color combinations render characters
utterly indistinguishable. Then there are the default color settings, which are
automatically provided when you power-up. They lack contrast and are difficult
to work with for long. Though there is no bleeding, the light blue characters on
a dark blue field with a light blue border can be eye-strainers. (This problem is
solved automatically by Simon’s Basic and on the portable SX-64, both of
which use a white background.)

No wonder some people complain about video on the 64, with such a
case of the blues. At the very least, many a C-64 user will press CTRL-WHT
to turn the cursor and characters white on the defauli (blue) background. That
is a real help.

Owners of new machines will probably wonder why an entire section of
this book is devoted to video. The latest machines have a very clear and
strong video signal, with very little bleeding. Owners of early C-64s may be
surprised to see how good the new machines look.

But the older machines have some problems, despite all the home
remedies we shall list ahead. Some color combinations used in this book may
cause bleeding problems on older machines or accentuate light parallel lines
running vertically down the screen.

Though all the programs in this book have been created on a vintage
C-64 (pre-rainbow logo), we cannot guarantee that every program will fook
terrific on every early-model 64. Sorry, folks.

In addition, many disappointed owners of older C-64s, some with color
monitors, have found that their screen outputs are suffering from a problem
known as “the sparkles.” This ROM problem resuits in a distracting glitter
effect across the screen. One of the 64s we have here at the lab has got a
really bad case of the sparkles. It renders many programs very hard to watch,
and certainly spoils graphic effects. Even text screens are affected.
Unfortunately, there is nothing you can do about the sparkles on your own.
You'll have to send your C-64 in for service to correct the problem.

If you do have the good fortune to own a color monitor, one thing you
should be sure about is the monitor cable you use. Many of the commercially
available cables which do wonders for the Atari and Texas Instruments
computers are not capable of providing maximum video quality for the C-64.

If you are buying a monitor cable, make sure it is specifically designed
for the Commodore 64. Better yet, consider saving the money on a
pre-assembled cable, and make the cable yourself.

What you'll need is a five-pin DIN male connector, an RCA male phono

Selting Up

plug, and a male mini-plug. When you buy a DIN connector, you must make
sure that the pins look like this:

Finding the right five-pin DIN plug.

There are several kinds of five-pin DINs, and only this kind will fit into the
monitor jack on the back of the C-64. The wiring diagram for a monitor cable
is as follows:

Wiring a monitor cable.

1 - Audio Output

2 - Not used
3 - GND
4 - Video

5 - Luminance

Monitor cable jack {niot the plug)

If you're too young or don’t know how to handle a soldering iron, buy a
cable from your local computer store. This project is only for folks who have
had a little soldering practice.

It you are still reading and are still dissatisfied with the video quality of
the 64, here are some fixes you can try:

Chapter 1

® You can get a heavy-duty shielded TV cable, with gold contacts, for
about $10. This replaces the cheaper, thin TV cabie that comes with the C-64.
The heavy shielding insulates the video signal from interference and static and
will provide about as good a signal as you can get to the TV switch box. Ask
your audio, video, or computer dealer for a heavy-duty gold-contact cable with
a male RCA phono plug on each end.

® You can bypass the switchbox entirely. Sometimes the culprit in video
problems is that innocent-looking little silver box itself. Cut one of the plugs off
the video cable and strip the leads. Attach these leads directly to the VHF
antenna terminals of the TV. It may be annoying to connect and disconnect
these leads when going back and forth from regular TV, but it might be worth
the extra effort.

® You can route the signal through a home VCR. Home video tape
recorders have their own RF modulator, and chances are it has a better RF
modulator than does your C-64. Wire a monitor cabie as shown above, with
RCA male phono plugs for both audio and video input. Plug the cable into the
video and audio-in jacks on your VCR, and see if your video quality isn’t
substantially improved.

® You can adjust the TV controls. Keep experimenting with the TV
control settings until you get the best setting for the C-64. As we said earlier,
these settings may be very different from those your TV uses normally. Again,
it will be a hassle to have to adjust everything when going from TV to the
computer, then back again. But it will be worth it for an improved picture.

® You can invest in a monitor. This is the most dramatic way to improve
your video quality.

&

Whar A DIFFERENCE A

A computer isn’t worth very much if it can’t store and retrieve programs. If
your computer couldn’t do these things, it would forget a program as soon as
it was turned off, and you’d have to rekey your entire program when you
turned the computer back on.

Clearly it is preferable to save a program on some sort of medium so
that you can simply load the program whenever you want to run it. Though
cassettes work simply and perfectly well for this purpose, floppy disks and a
disk drive turn the C-64 into a reaf computer.

Disk drives are random access devices. This means that a disk drive can
easily go back and forth across a disk, accessing any program or data without
needing to fast-forward or rewind. One clear advantage of using floppy disks
instead of cassette tapes is the ability to go right to what you are looking for,
without having to pass over all that comes before.

A single disk can hold a tremendous amount of data. Each Commodore
disk can hold about 170K (approximately 170,000 characters}, or nearly three
times the total memory capacity of the C-64 itself. A C-60 cassette tape can
hold a lot, but accessing through that much material would take an
eternity—not to mention the time used in having to flip sides of the tape.

The really good news is that Commodore disk drives are about the least
expensive drives on the market. If you shop around, you can get one for under
$250, and even that price continues to shrink.

Working with a disk drive is a little trickier than working with a cassette
drive, but after you catch on, you won't want to use casseltes ever again.
Disks can hold lots more programs than cassettes. And because the disk is a
random access medium, it will quickly locate your programs for you so you
won't have to note counter numbers as you do when using a cassette player.

One real trouble you can get into with disks is forgetting to do some
things that let the drive know what’s happening. If you make this kind of
mistake, you may not be able to load or save programs, and you may even
lose programs. So use a little extra care until you have learned everything you
need to know about using floppy disks. Treat your disks and your drive well,
and they will do the same for you.

Chapter 2

SHIFTING INTO
DRIVE

When using a disk drive, the first thing to remember is to turn it on
_g_eio_r_w_nmuw_-@‘ If your C-64 is already on, turn it mn the
isk drive, then turn the computer on again. This tells the computer that the

disk drive is connected and ready to use.

A good practice to get into is to turn the disk drive on or off while
there is a disk inside of it. This will heip™o avoid unnecessary disk damage.
This is not really a problem with the newer 1541 drives but it is with the older
15640s—much data can be lost as the result of a drive turned off at the wrong
time.

The drive is powered on when the green light on its front panel is
glowing. Then, when the computer is turned on, the red light on the disk drive
will come on for a few seconds. The computer now “knows” that it has a disk
drive attached to it (i.e. the disk drive has been “initialized”).

The red light on the drive means that the disk drive is spinning. It acts
like a traffic light. When it is red, don’t insert or pull out a disk. Wait until the
red fight goes out before opening the drive door. To open the drive door, press
on the black bar in the middle of the door. The door will snap open. It is a
good idea to hold the bar with your thumb as you press it, so it doesn’t snap
open too hard.

Now you are ready to insert a disk. Hold the sleeve as shown in the
diagram below:

Inserting a disk in the disk drive.

10

Make sure that the label side faces up and that your fingers don’t touch the
shiny disk surface through any of the windows on the sleeve. Slide the disk
through the door of the drive, making sure that the oval window is the first part
of the disk to go in.

Press the disk in all the way until it snaps into place. Then push down
on the black bar to shut the drive door.

Now we’re ready to control the drive from the C-64. The commands we’ll
use are a bit involved, and you may find them difficult to memorize. The first
encounter with a Commodore disk drive can be a disheartening experience.

Formatting
aDisk

What a Difference a Drive Makes

Fortunately, there is a better way to learn C-64 disk commands than

- having to memorize them. A spacial program called “Menu” will be introduced

shortly. It will help you take care of many disk housekeeping chores. Before
you allow yourself to become confused by cryptic command codes, bear in
mind that you'll only have to type them once if you type in the Menu program.
This will make the material which follows much easier to accept.

So, for the record, here’s how to control the disk drive from Basic. Grin

and bear it.

Before you use a blank disk to save your programs, the disk must be
formatted. Formatting organizes the disk into “pages” that your C-64 can write
to and read from. When you format a disk, you give the disk its own name and
number. With a blank disk in the drive, the command to format it is issued in

the following way:

OPEN 15-8+15-"NEWA:DISK NAME.TWO-DIGIT NUMBER"™

RETURN

where:
disk name = your chosen filename
two-digit number = 00—99

Instead of calling the disk DISK NAME, you can name your disk whatever
you like. You can even use multiple words with spaces between them. But
remember that a filename, including spaces, can be no longer than 16
characters. Follow the name with a comma and then a two-digit number. For
example, you might call your first disk DISK1, 01. You would type

OPEN 15.8-15-"NEWA:DPISKL-D1™ {RETURN

Don’t forget the commas and to use @ (zero), not O (letter O), after the
NEW command.

Once you've done this, the red light will come on, and the disk will spin,
guzzle, gurgle, and chirp for about two minutes. Don’t fret over these strange
noises. When the disk stops spinning, it is ready to use.

Always try to make the number of each new disk different from the ones
that have come before. For example, you might call your second disk DISK2,
02. If you give two disks the same name and number, you might confuse the
disk drive when you switch from one to another.

After any and every format procedure, type

CLOSE 15 |[RETURN

to close the file you opened with the FORMAT command.

11

Chapter 2

Saving Your
Program fo Disk

Veritying Your
Program

Loading Your
Program From
Disk

12

When you are ready to save a file to disk, follow these procedures:

1. Make sure that the disk drive was turned on first, and then the 64.

2. Make sure that the disk in the drive has been formatted, and that the
program you want to save is in the memory of the C-64.

3. Type

SAVE "PROGRAM NAME™.8 [RETURN

where:
program name = your chosen filename

When using quotation marks, you can name your program whatever you
wish. The number 8 tells your C-64 to save the program to disk. (If you leave
off the comma and the 8, the C-64 will assume you are saving to cassette.)

4. When you press [RETURN], the C-64 should tell you SAVING
PROGRAM NAME and then READY. If it doesn’t, repeat steps 1 through 3.

It is not as important to doublecheck your program on disk as it is on
tape. Just the same, you might want to make sure that the program is safely
saved to disk, and that it exactly matches the program in memary. Type

VERIFY "PROGRAM NAME™ 8 |RETURN

where:
program name = filename to be compared with program currently in memory

Remember that the 8 always tells the C-64 to use the disk drive.

The C-64 will now print SEARCHING FOR PROGRAM NAME, and then
VERIFYING. If the program has been correctly saved, the C-64 will say OK.

If you see VERIFY ERROR, it means the program on disk does not
match the program in memory. In that case you should try to save the
program again. Usually the only time this will happen is when a disk is
completely filled up. You'll probably encounter a filled disk only once in a long
while, but it is still a good idea to keep a few blank formatted disks around.
That way, when a disk is filled up, you will be able to save to a new disk
without any problems.

To load a program, use this checklist:

1. Make sure that the disk drive was turned on first, before the C-64.

2. Make sure that the disk in the drive has been formatted, and that it
contains the program you want to load.

What a Difference a Drive Makes

Obtaining a
Directory

Deleting a
File

3. Type

LOAD "PROGRAM NAME™-. & [RETURN

The name of the program you wish to retrieve goes in between the
quotation marks. Again, the number 8 tells your C-64 to load the program from
disk.

4. Press [RETURN).The C-64 should now read out LOADING PROGRAM
NAME and then READY when it is finished.

5. If something went wrong, you will see an error message. If it says
?FILE NOT FOUND ERROR you are sither not typing the right name for your
file or you do not have the right disk in the drive.

There are a few other commands that can come in very handy when
you're using a disk drive, and you might want to get 10 know one or
more of them.

What if you can’t remember the name of the program you want to load?
To see all the file names on a disk, type

LOAD "$".8 [RETURN]

Then type

LIST |[RETURN

This will display the name and number of your disk along with ail the file
names (programs) stored on it. If there are a lot of programs, the list may go
by too fast to read. You can slow the list down by pressing CTRL, or stop the
list completely by pressing RUN/STOP.

What if you want to get rid of a program? Well, the first thing to do is
make sure that you're working with the filename of a program that you really
want to remove from disk. Next, type

OPEN 15+8+15-"SCRATCHO:PROGRAM NAME™ |[RETURN

PROGRAM NAME will really be the name of the file you wish to delete.
Remember to type a 0, not an O, after the word SCRATCH.
After the drive stops spinning, type

13

Chapter 2

HIHHIHE

Write-Protecting

a Disk

14

CLOSE 15 |RETURN

to close the file you opened with the SCRATCH command.

One important note: you cannot use the SAVE command to update an
existing file. If you try to save a program under a filename that already exists,
you will not get an error message nor will the modified program have been
stored.

Sometimes you will make revisions to a program and you'll want to save
the new version under the same name as the old one, deleting the old file in
the bargain. The way to replace an existing file is to type

SAVE "@O0:PROGRAM NAME™ 8 |RETURN

The @ key sits between the P and * on the Commodore keyboard.
Again, make sure the 0 is not an O.

Another good thing to know about disks is how to protect them from
being mistakenly written to. Protecting a disk allows you to load programs
which are on the disk but does not allow you to save new or revised
programs. In effect, it keeps you from mistakenly destroying or changing
programs that you want to keep. To protect a disk, all you have to do is cover
the little notch on the side of the disk sleeve with a write-protect tab (these
are the sticky silver tabs that come with your disks) or a small piece of tape.

Write-protecting a disk.

3

Write-
Protect
Tab

MENU: OR,
THE EASY WAY

What a Difference a Drive Makes

When a protected disk is in the disk drive, programs can be loaded from
the disk, but no changes can be made to the disk. Any disk that you consider
“finished” should be protected with a tab on that little notch. If you should
change your mind and decide that you want to change what's on the disk, you
can always simply pull off the tab or piece of tape.

Becoming familiar with the disk commands takes time and effort.
Unfortunately, there are a lot of procedures to remember, and even something
as simple as obtaining a disk directory must be done in several steps. Even
more unfortunately, the manual that is included with the disk drive is difficult to
decipher and quite intimidating.

As an alternative to memorizing all the command codes for each disk
command, consider typing in and saving the following Menu program. This
program simplifies understanding the commands we’ve just discussed. It also
adds a few more disk management capabilities.

When you run the program, you are presented with a menu. You
automatically receive a directory for the current disk in the drive. You may then
pick any of a list of possible commands.

First the name and extender (the two-digit number which follows your file-
name) of the current digk are listed. Then the lengths, names, and types of
files are listed. After the directory is completed, a menu prompt of choices
appears. You pick a letter, hit [RETURN], and the chosen process is
automatically carried out for you.

Here is an explanation of all the functions Menu can perform:

® (&) RUN By pressing the left-arrow key, which is the top-left key on
the C-64 keyboard, you can autorun any program in the directory. Hit
to confirm your selection. Then the computer will ask for the filename of the
program you wish to run. Enter it. Then press once more. The
program you chose will load and run.

¢ (F) FORMAT Before you can store any information on a blank disk, it
must first be formatted. Choose the format selection. The program will then
give you a chance to insert the disk you wish to format. Spare yourself agony
by making sure the disk you are about to format does not contain a file you
cannot do without. Formatting destroys all existing files.

The program will then give you a chance to insert a blank disk and ask
you for a disk name. After you have entered a disk name, you will be
prompted to enter an extender. When you press again, the disk will
format automatically. Again—this kills whatever may have been on the disk, so
be careful about what you format.

 (C) Copy This function allows you to copy a file under a new filename.
You will be prompted for a source and a new filename. An identical file will
then be created under the new filename.

e (E) Erase This function deletes a file from disk. It prompts you for a
filename and then gives you one chance to reconsider before deleting the file.

e (D) Directory This function lists the files on the disk. This will happen
automatically once the program is run. It is a good idea to run a directory right
after any file manipulation from Menu, to make sure the operation has come
off successfully.

e (*) Check error status This function queries the error channel on the
disk drive. If any Menu operation results in a blinking light on the disk drive, it

15

Chapter 2

LR LLLLL LA LLL LI DL EL LI L L LE LR I e g Ty ey P e r L P e R P R Y Y R T L]

is time to choose this option. It will give you an error number with an English
translation, along with the track and sector location of the error if applicable.
Error 0 equals no error.

¢ (R) Rename This function allows you to change the name of any file.
It prompts you for an old and new filename, then changes the old filename to
the new filename.

¢ (W) Write menu This function automatically puts a copy of the Menu
program itself out to disk. After you have formatted a disk, go right to this
option and save the Menu program to the disk. Then you can use the new
disk directly to access the Menu program from that point forward. You can
also put a copy of the Menu on all existing data disks with at least nine
remaining sectors. The program takes up only 2.3K and can fit on even the
most crowded of disks. Try to find space for it.

¢ {Q) Quit Menu This function eliminates the Menu program from
memory and brings you back out to Basic.

The table that follows will help you locate all the special graphics
characters you will need to find in order to type in the program:

Disk menu special function keys.

Char /function Keypress Line{s)

G clear 210

@ rve CTHL {3] 262,276

W rvs off 262

B red [CTRL}=={3 | 225,262

green 225,276

blue [CTRL={ 7] 210.225.230,262,282

And here is the program itself:

1 REM PROGRAM 1

2 REM DISK USER'S MENU

3 REM

A REM o ot e e e e e e e e
1@ POKE S3280, 1:POKE 33281,1

2@ 605UR 2@

Bl PRINT M o o e e e e e e e e e e
4@ PRINT" () RUN, (F}ORMAT, (C)OPY, (EIR
ASE"

99 PRINT" (D) IRECTORY, (%) CHECHK ERROR ST
ATUS"

€@ PRINT" (R)ENAME, (WIRITE MENU, ((QYUIT
MENU™

16

What a Difference a Diive Makes

e

ed INPUT X$

99 IF X$="D" THEN GOSUEB Z2@
120 IF X$="F" THEN BOSUB 302
112 IF X%="C" THEN GOSUB 402
128 IF X$="E" THEN GOSUB S0
13@ IF X&="W" THEN GOSUB 6UQ
140 IF X#&="@" THEN GOSUR 350
153 IF X$="*x" THEN GOSUER 65@
162 IF X&="+" THEN GOSUB S55@
170 X&="R" THEN GOSUER 452
18

435 Sﬁ?ﬂ‘ﬁfﬁ#“—%

1@ PRINT:PRINT 2 PRINT " i — e oo omme =
Z2@ PRINTYMENU 1541 —— VERSION 2.8 -- C-
&4 —— JJA"

DT PR TNT 1 e o e e e
225 PRINT"TLENGTH EBNAME

WTYPE"
SRR PRINT " B oo e e m
251 OPEN 1,8,0, "$"
252 GET. #1, A%, B$
254 GET #1,R%,E%
256 GET #1,A$, B%
258 C=@:IF A${) ""THEN C=ASC (A%)
260 IF B% O "WTHEN C=C+ASC(B$)*256
262 PRINT'NGMMIDS (STR$ (D), 2) s TAR(7) 3 "2

]
264 GET #1,B$:IF ST @THEN 282
266 IF B$ () CHR%(34)THEN Z&4
268 GEY #1,B$:IF BE$) CHR$(34) THEN PRINT
B$'=GDT0268
270 GET #1,Bs:IF B$=CHR$(32) THEN 270
272 PRINTTRB(EE};:C$—""
274 Cﬁ=C$+E$:EET #1,B8:IF B$ () “"THEN &74

276 PRINT“EMLEFTH(C$, 3)
288 IF ST=@ THEN 254
287 PRINTYBLOCKS FREESR
284 CLOSE 1:RETURN

322 REM EQRMAT DIS%
325 PRINTVINSERT DISK TO BE FORMATTED. ":

PRINT
31@ PRINT"INPUT DISK NAME" :INPUT DISKS
32@ PRINT "INPUT DISK NUMBER":INPUT EXT%$

325 MACRO$="N:"+DISKs+", "+EXT$
338 OPEN 15,8, 15, MARCRO$

17

Chapter 2

249 CLOSE 15:MACROS$="":RETURN

350 REM EXIT PROGRAM

38@ PRINTVEXIT TO BASIC. ":NEW

402 REM COPY FILE

419 PRINT"INPUT SDURCE FILE NAME® :INPUT
DISKS

42 PRINT "INPUT NEW FILE NAME":INPUT NW

8%

485 MACRO$="C:"+NWS$+"="+DISKS

430 OPEN 15,8, 15, MACROS

449 CLOSE 15:MACRO%$="":RETURN

45@ REM RENAME FILE

46@ PRINTINPUT OLD FILE NAME"™ :INPUT DI

SK$

479 PRINT "INPUT NEW FILE NAME":INPUT NW

S$

475 MACRO%="R:"+NWS$+"="+DISKS

482 DPEN 15,8, 15, MACRO$

490 CLOSE 1%:MACRO$="":RETURN

S5@@ REM DELETE FILE

51@ PRINT”INPUT FILE NAME TO DELETE":INP

Ut DISKs
Se@ PRINT"HIT (RETURM) TO DELETE":INPUT
X%

530 MACRO$="G:"+DISKS

535 OPEN 15,8, 15, MACROS

540 CLOSE 15:MACRO%="":RETURN

S5@8 PRINT'TYPE IN FILENAME TO RUN, HIT <
RETURN) *

S7@ INPUT N$:LOAD N%, 8:RUN

600 REM SAVE MENU FILE.

€1@ PRINTTINSERT DIGK 10 BE WRITTEN TO. "
s PRINT

620 PRINT"HIT (RETURN) TO WRITE MENU FIL
E": INPUT X$

€625 OPEN 1,8, 15

630 SAVE "MENU", 8

635 CLOSE 1

£1% T gy e omes

660 INPUT#1,A,Bs$,C,D

6890 PRINT"ERROR STATUS":PRINT:PRINT"ERRO
R # "3A

685 PRINT B%:PRINT"TRACK ";C, "SECTOR ";D
699 CLOSE 1:RETURN

18

What g Difference a Drive Makes

DRIVING THE
WEDGE

Don’t worry if you don’t understand all of the commands possible from
Menu just yet. You can use as little of it or as much of it as you want. It
certainly makes formatting and file maintenance much less of a chore.

Another program that can help make the disk drive eagier to use is the
Wedge. This program now ships on the demo disk with all new disk drives.

Loading the Wedge as it appears on the demo disk accompanying new
1541s is as simple as typing

LOAD "C-b4 WEDGE™ 8 |RETURN

Then type

RUN

If you have the Wedge supplied on the Commodore Disk Bonus Pack,
the loading procedure is slightly different. Type

LOAD ™ DOS WEDGE™A&-1|RETURN

When the Gommodore comes back with a READY, type

IY3 52224 [RETURN

and the Wedge header should come up on the screen. Don’t forget the
leading space in the filename, or you will get a FILE NOT FOUND error.

Once the Wedge is loaded, disk commands are much easier to invoke.
Here is a table of available commands:

19

Chapter 2

Dos Wedge command format.

Command

T <FILENAME:
« <FILENAME:
/ <FILENAME:
% <FILENAME:>
@

3

@S5 <FILENAME:
@]

Ul
@N<DISKNAME: <ID:

@0

@C<NEWFILE>=<«QLDFILE>

Function

load, then run <FILENAME>
save <FILENAME:>

load <FILENAME:

load<F1 LENAME:> at address
query disk error channel
list directory

scratch <FILENAME:>
initialize drive

reset DOS

format disk <DISKNAME: <1D»

rename <«OLDFILE> as <NEWFILE>
quit DOS wedge

No longer must you memorize cryptic command codes to load, save,
scratch, or rename files, or to format disks. Using the Wedge you may call up
a disk directory without clearing the current program from memory. You can
query the disk error channel with a single typestroke and you can even load
and run programs in a single step.

20

THE CAPS MODE

3N

N O

THE KEY TO THE

When you take your new Commodore 64 computer out of the box, the
keyboard of the machine offers an immediate challenge. Staring at it, you can
nearly hear it say, ““| dare you to make me do something.”

Of course you can make it do plenty of things without learning all that
much about its capabilities. You might choose to learn only the commands
that load prepackaged software into the machine. But if you want to do more
than this, you will have to learn more about the Commodore keyboard layout.

The basics concerning the keyboard of the machine are relatively easy
to learn but do have their little tricks. One particular aspect of the keyboard
that can be confusing is the concept of special graphics characters. They have
their own special meanings, and are sometimes hard to find on the keyboard.
This kind of problem often surfaces when you are typing in a listing from a
printed source. You know what the character is, but you don’t know how to get
it to appear.

It seems that the questions asked most often about the C-64 concern
the keyboard, so we'll hold a short tutorial on the subject. Even if all that
follows seems very simple to you, try reading it through. It might help clarify
things in the long run.

When you turn on your Commodore machine, it defaults to the “caps
mode.” In this configuration all letters are printed out as capital letters (upper
case). Shifted characters print out as the special graphics shapes depicted on
the front righthand side of each key. Make sure you are always in this mode
while programming. If you are not in caps mode while programming, you can
end up making things tough on yourself later.

The other mode you can choose is “lower case mode,” which is turned
on and off by pressing the SHIFT and Commodore logo (E) keys
simultaneously. The screen characters will then resemble those on an ordinary
typewriter, with capital letters appearing when SHIFT is pressed.

To get the graphics characters which appear on the righthand side of
each key front, press the SHIFT key along with the key that depicts the shape
you want.

To get the graphics characters on the lefthand side of each key front,
press the Commodore logo key (@) along with the key that depicts the
shape you want. That's all there is to it.

21

Chapter 3

LT

THE QUOTE

MODE

pbae b el

e oprt A
by

22

el

But not every graphics character is depicted on the keyboard itself.
There are some mysterious but especially powerful ones you should and will
soon get to know.

The reason problems occur if you program in the lower case mode will
become obvious if you look at mixed caps and lower case text from the caps
mode. All the capital letters will have reverted to graphics characters. Lots of
time can be wasted trying to load a filename with caps that have been entered
from the lower case mode. Filenames with graphics characters in them are
rather inconvenient to type, and since a filename entered in caps from the
lower case mode will appsar only as graphics characters from the caps mode,
it can become terribly frustrating.

This problem may also drive you crazy when you're looking for graphics
characters when typing in a program. Stay in the caps mode, unless there is a
very good reason to go to lower case. A good rule of thumb is to use the
lower case mode when running, as opposed to editing a program. If you are
editing lower case text, shift back regularly.

You may also have noticed that something funny happens after you type

a quotation mark. When the Commodore editor “sees” a quote, it puts the_
computer Into-what in other machines is called an “escape” mode. That
means that rather than executing a keyboard commg message

wgggg__at_c__mutmmnd into a PRINT statement within the v vithin the very program’you
are typing. When it sees a closing quote, it reverts back 1o normal.

Qutside a quote, CTRL-BLK will turn the cursor, and all subssaquent
.Characters, black Inside a quote, a special character will be inserted, which
tells th rn_the cursor black upon execulion of that line.

These are where all the mysterious special characters come into play
when typing program listings. It takes some practice to get to know these

The Key to the Commodore Keyboard

characters when you see them, let alone what they mean and how to attain
them.

Many characters act just like Basic program instructions to complete
some screen operation. They change colors, clear the screen, move the

cursor, and check the function keys.
Don't feel like you have to memorize all the special function characters,
but do become familiar with them. All of the important ones appear in the

following table. Try to get to the point where you can at least recognize them.

C-64 special graphics characters.

o EeEEREANBLRDErFRIAEREREORSAEO

clear SHIFT LA HOME

home

left [SHIFT ==

right

w
down [+ CHSR 4

V8 CInL==f 9]

rva off ——JCTRLF={1]
black [CTEL =

white [CTRL 12 |
Ted CIRLF43]
medium biue CTELF—14]
purple CTELF{5]
grean [CTRL=—{F]

blue [CTEL}={7]
yellow ——— ICTRLF—{ 2]
oxange ————{B—11]

dark grey
medium grey — =43]
light green ——JE4=—{6]
light bine

r

light grey] & |

f

12
3 ~—{3

f4
15 ———f3]

16
17

£ [SHIF T —{17]

23

Chapter 3

Other Things to If you want to stop a program during execution, press the RUN/STOP
Know About the key. If you want to stop a program, clear the screen, and return to default
Keyboard colors, hold down RUN/STOP and press RESTORE.

The SHIFT LOCK key will lock you into upper case. It works in both the
caps mode and lower case mode, although chances are that the only time you
would want to use it is from lower case mode.

The four function keys have eight labeled functions. The functions f1, 13,
15, and {7 are obtained just by pressing the labeled keys themselves. The
function keys f2, 4, {6, and {8 are obtained by holding the SHIFT key down
while pressing on a function key.

24

TN

BASIC BASICS

Deferred and
Direct
Commands

R

\\\ &
-
‘ S

Okay. You're hooked up now, and you’re pumping a high quality signal to your
TV or dedicated monitor. You're somewhat familiar with how the keyboard
works and how to save and load programs. Now you are ready to begin to
make graphics happen on the screen.

We’re assuming here that you know nothing at all about computers. It
you already know something about Basic, what follows will seem very simple
to you, at least at the beginning. It might be a good idea however to go
through the paces anyway. We are going to build everything we learn on
knowledge we have gained before. So stick with it, even if it seems simple.

For many of you, especially the total beginners for whom this book was
designed, the following material will not seem easy. Don't get discouraged.
Plod onward, even when commands and techniques don’t seem utterly
obvious. Things will come together with practice. Sometimes insights work
backwards, and a more advanced application will shed light on some simpler
concepts that you didn’t quite catch the first time.

It is a good idea to save each program as you go—once it is typed in,
debugged, and running as adveriised. That way you can go back and play with
it again when the mood strikes, without having to re-enter anything. If you
create your own customized versions of the programs given here, save those
too. The idea is to use these seed programs to build bigger and better ones
and eventually build up your own personal program library.

Enough of this. Let's get to the fun stuff.

When you turn on the computer, it indicates that everything is in working
order by *“‘signing on.” It tells you it is running Commodore 64 Basic version
two, and that 38,911 bytes are free for Basic programming. You are going to
tearn how to program those bytes to get the computer to do neat things. If the
computer doesn’t start off with this message, you'd better go back to the
section on setting up.

Don’t be put off by the terminology of “deferred” and “direct”—these
terms are easily explained. There are two ways of entering commands into
Basic. The way we usually think of is the deferred method, which invoives the
use of a legal Basic command with a line number in front of it. This is the

25

Chapter 4

WHINHIN
Printing From
Basic

26

method by which we program in Basic. All Basic programs are made up of
lines, and all those lines must be numbered. The order of line numbers in a
program tells the computer what order to use when executing commands while
running that program. It starts with the lowest line number and works its way
up. This is the heart and soul of Basic.

But there is another way to enter commands, and that is in the direct
mode. If you type a legitimate command without a line number, the computer
will try to execute it right then and there—it won’t matter whether or not there
is a program in memory. You can use a direct command to get the computer
to do something you want it to, or even to ask it a question. For example, try

typing

PRINT FRELLY|RETURN

The computer will tell you how much memory is left for Basic programming.

Throughout this book, you will be entering commands in Basic through
the deferred and direct modes. Each mode has its time and place, and you will
eventually get comfortable with using both of them.

Just about the first thing anybody can learn about Basic is how to print to
the screen. Because the C-64 has some special powers, the PRINT statement
can be used to very good graphic effect. Type

PRINT "HELLO™ [RETURN

and the computer does just that. This is an example of a direct command.
Next type in the program below, then type

10 PRINT "HELLO™ |[RETURN
20 60T¢ 10

RUN

This is an example of a deferred command. It is executed only when the
program is run. To stop the program, press the RUN/STOP key.

To return to the program type

LIST |[RETURN

Basic Graphics and Sound

LT

2l

i AR,

The command to print is very simply the word PRINT followed by
characters enclosed inside quotation marks. For example

10 PRINT "HELLO FROM THE DEFERRED MODE"
20 60T0 10

In the program above, line 10 says to print a message on the screen. Ling 20
tells the computer to go back and execute line 10 again. Voila! The screen
displays the message once again.

After it executes the line again, the computer goes to line 20 for a
second time. Line 20 tells the computer to go back to line 10 again. The result
is a foop which will print HELLO FROM THE DEFERRED MODE again and
again on the screen, until we tell the C-64 to stop. To get out of an endless
loop, we must press RUN/STOP. This won't hurt anything and it isn’t cheating.

And without having to get much more technical than that, we can start
to build graphics.

Look at the next program, and try to guess what it will allow us to do.

1 REM PROGRAM 2
2 REM PRINT TEMPLATE
3 REM KEEP A BLANK COPY ON FILE

1@ PRINT" "
27

Chapter 4

28

15 PRINT" "
2@ PRINT" "
25 PRINT" "
38 PRINT" "
35 PRINT" "
4@ PRINT" "
4% PRINT™ "
5@ PRINT™ "
55 PRINT" u
6@ PRINT" "
€5 PRINT" "
78 PRINT" "
75 PRINT® "
B@ PRINT" "
85 PRINT" "
9@ PRINT™ "
95 PRINT" "

This program is just waiting for you to enter print characters between the
quote marks, so they can be printed out to the screen. If you save this
program as it stands, it can act as a fempfate or frame for future print
graphics. You can use it again and again as a starting point for pictures, which
can be saved and loaded from cassette or disk.

Here’s a hint on how to type that listing with the least effort from you,
and the most from the Commodore 64 editor. Type

k0 PRINT™ {COUNT 29 SPACES} "[RETURN

Then, using the cursor movement SHIFT-UP ARROW, move the cursor back
to the line you just typed. Change the line number from 10 to 15, then hit
[BETUEN]. A new, duplicate line will automatically be entered. The original line
10 will not be erased or changed in any way. You can do this for each line of
the program and save a lot of time and effort in the process. It's like 18 lines
for the price of 1t

There are lots of times when you are programming where you can use
the cursor keys to make things easier. Get used to using them, and it will pay
off in the long run. You're bound to get confused for a while on how to move
the cursor—but since it never disturbs anything as it moves over it, you can’t
harm a program or graphics. And as you get used to working the cursor keys,
you'll quickly learn the shortcuts to their most efficient use.

There are a couple of things to bear in mind when using the cursor keys
to edit a program. First, the editor acts kind of funny after you enter a
quotation mark. Instead of moving the cursor, it prints weird graphics
characters. Later we will learn to harness this power to do animation. For now,
the phenomenon may turn out to be only a colossal aggravation. Just
remember that after you've typed a quotation mark, all cursor movement bets
are off, until you either type another quotation mark or hit (RETURN]. ‘

Also, when typing new line numbers over old ones, make sure you don’t

Basic Graphics and Sound

llIIIIl-Illl-III--IIIIIIQI--I-ll--l-l---IllI--lll---lll.I----lllllllI.lllII-Ill--Illllll.-'-.lll.ll...lllll!.llllllllll

try to create two lines with the same number. Luckily, the Commodore 64 is
smart enough not to delete an existing line number if you try to create a new
one with the same number using the editor as described. But you may be
surprised to discover that your new line hasn’t been accepted when you give it
an existing line number with the editor. Be somewhat careful, and you won't
get into serious trouble. At the worst, you'll just have to try again with a new
line number. To delete a line, you must type the line number on a fresh line,
then press [RETUBN]. Or, you can type

NEW|RETURN

which will clear the entire program out of memory. Don’t type NEW unless
you don’t mind losing all the work you've done up 10 that point.

Here is the way the cursor moves:

Moving the cursor.
DIRECTION KEYPRESS
right +CRSE S
left [SEIFT}=]¢CRSE)

down

up SHIFT F=—={+CRER+

There is one very important thing to remember about making changes to
any program with the screen editor. Merely making the changes, then moving
the cursor elsewhere, is not enough. You must hit while the cursor Is
on any line to send that line to the computer. So make the change, then press
[EETURN. It doesn’t matter where the cursor is on the line you wish to enter,
just that it is somewhere on that line. LIST the program again to see if it has
registered the change.

Here's another hint. You can abbreviate the word PRINT by just typing a
question mark. After you hit [EETURN], and then list the program again, the
question mark will have “magically” been turned into the word PRINT by the
Commodore editor. Once you get used to using the question mark to mean
PRINT, you'll never go back to typing the word again.

Now let's get back to our print template. If you run it as it stands, not
much happens. The next program uses the template to insert something in
between those quotes, and have it printed out to the screen.

29

Chapter 4

30

1 REM PROGRAM 3

2 REM THE LETTER FELLA

3 REM S8AY HI TO HENRY

4 REM e oo e e e s — —————
1A PRINT® "
15 PRINTY Mivivi .
2@ PRINT™ MMM H
20 PRINT™ MMM "
3@ PRINT™ v viivivivi i "
32 PRINT" is ittt fiutuit H
4@ PRINT" MMM Hitim "
45 PRINT" MM — ~ MM "
S PRINT® M 0 O ™ "
05 PRINT™ L] "
&8 PRINT" 1 L. I "
&5 PRINT" { } "
78 PRINT® === ¥
75 PRINT® { } "
8a PRINT" i "
85 PRINT "
2@ PRINT™ "
95 PRINT™ "

Typing in the print characters, you may have some trouble with the right
quote sign or when you make a mistake. The cursor enters the “quote mode”
when it passes a quotation mark, and will behave differently until it encounters
another. Remember, you can back out of a line by hitting and then
go back and rework it with the cursor keys. Use the cursor keys rather than
the INST/DEL key to change the print characters.

If you find yourself messing up the right quotation mark, don’t worry
about it. It doesn’t matter where it is, as long as whatever you want to print is
to the left of the second set of marks. In fact, you can leave the second set of
quotation marks off completely, and the program will still run.

When the picture is done and you are happy with it, move the cursor
back up to line 10 and start hitting [RETURN]. Hit for every line of
your program that contains a part of the picture. Otherwise, the program won’t
know exactly what to remember. Later we’ll save pictures in a different way,
and you won’t have to do this chore.

When you RUN this program, the computer will print out a picture of the
“letter fella.” He’s made entirely of M’s, O’s, I’s, left and right brackets,
“greater- than” and “less-than™ signs, equal signs, and dashes. While the
appearance of our little friend may be a bit primitive, the idea underlying how
he was made will eventually ailow us to begin creating much more
sophisticated images. The PRINT statement can do a surprising amount of
graphics work on the Commodore 64.

Take a look at the front of the keys on the C-64, as opposed to the tops
of them. See all those weird shapes? Those are special graphics characters,
specially designed to draw with. You can type them directly from the keyboard
whenever you want. The shapes on the front lefthand side of each key will
appear on the screen when you hold down the Commodore logo key and

Basic Graphics and Sound

press another key. In caps mode, the shapes on the front righthand side of
each key will appear on the screen when you hotd down the SHIFT key and
press another key.

A quick word about caps and lower case mode. Hitting the Commodore
logo key and SHIFT together toggles you in and out of these states. Hit them
together a few times, and see what happens. In the caps mode, all letters are
upper case, and alphabetical keys result in graphics characters when
SHIFTed. That is the best mode to be in when programming, and certainly the
mode to be in when using this book. If you use the lower case mode, then
shift to caps mode, all caps will turn to graphics symbols. This can be very
messy. Also, Basic is easier to read and write without worrying about lower
case. So stick to caps at least for the time being.

Let's rework our little friend using some of the special graphics
characters possible on the Commodore 64.

Instead of M's for hair, we’ll use the shape of the Commodore logo key
and the plus sign). For eyebrows we’ll use the Commodore logo key and the
British pound sign (£). For eyes we'll use SHIFT-W (). Instead of brackets for
the ears, we'll do them in two parts each: the left ear as SHIFT-U () and
SHIFT-J (~.), and the right ear as SHIFT-I (-} and SHIFT-K {.7). The sides of the
face are made of SHIFT-Ms {~) and SHIFT-Ns (). See if you can find the
other three shapes on your own. Once you become somewhat familiar with the
graphics characters, you'll find that you will easily remember your favorites.

Don't forget to go back and hit over each program line you
rework. Otherwise your efforts won't be entered into the memory of the C-64.

1 REM PROGRAM 4
2 REM BEGINMNING GRAPHICS CHARACTERS
2 REM HARRY GOES TO FINISHING SCHOOL

1@ PRINT® *
15 PRINT®
20 PRINT®
25 PRINT"
3@ PRINT®
35 PRINT”
48 PRIMNT"
45 PRINT"
5@ PRINT”
55 PRINT"
6@ PRINT"
63 PRINT"
78 PRINT®
79 PRINT"
g8 PRINT"
85 PRINT"
S8 PRINMNT® "
85 PRINT" "

As you can see, the entry of special graphics characters can improve
the look of your work quite a bit indeed (and wait until you see what's next...).

3

Chapter 4

SN

COLORING Getting the C-64 to work in living color is very easy. Press a
THINGS IN few times, then try this: hold the CTRL key down while pressing a number

from 1 to 8. The color of the flashing cursor will change. If you begin to type
characters or graphics characters with the cursor in a certain color, the
characters will print out in that color.

When. programming on the 64, try pressing CTRL-2 before doing much
else. This turns the cursor, and all subsequent typed characters, a bright white.
You may find that the contrast of white characters on a blue background is
easier o read and to work with than the’l'ght blue that is automatically
provided.

The fronts of the keytops humbered 1 to 8 label the colors that can be
obtained by pressing CTRL along with them, By holding down the Commodore
logo key and pressing 1 through 8, you can get the second group of eight
colors, for a total of sixteen colors. The numbers and keycodes for the sixteen
colors are as foliows:

Keypress and color codes.
Color Keypress Color Keypress
0 hisck 8 orange
1 white CIRLFZ] 9 brown
2 red 10 pink —L$—{31
3 medium blue{CTRLF={4] 11 dark grey
4 purple CTRLES] 12 medivm grey—R$={5]
5, green CTRLF={6] 13 light green
© blue CTRLF=7] 14 light blue A
7 yetlow [CTEL{E] 15 iight grey

Play around with color graphics in the direct mode until you've had your
fill. Next we shall learn how to enclose color graphics within PRINT
statements.

Type NEW to clear any current program from memory. Next,
type 10 PRINT* and then try holding down CTRL or the Commodore logo key,
while pressing down on a number key from one to eight.

Surprised? The cursor color does not change. Instead, a special
graphics character appears on the screen. This is one of the special aspects
of the quote mode, which we hinted at earlier. When the C-64 editor
encounters a quotation mark, it changes direct commands into special
graphics characters that represent those special commands. Then, when the
program is executed, those commands are interpreted and acted upon. This is
how you can get color pictures to appear on the screen.

32

Basic Graphics and Sound

Changing Colors
With POKE

1 REM PROGRAM S

2 REM COLOR GRAPHICS CHARACTERS
2 REM AND THEIR COLORS

18 PRINT“m BLACK"

20 PRINT"3 WHITE"

30 PRINT"® RED"

49 PRINT'M CYAN <LIGHT BLUE>"
S8 PRINT*@ PURPLE"

60 PRINT"H GREEN"

7@ PRINT"@ BLUE"

80 PRINT"E YELLOW"

9@ PRINT"I] ORANGE *

100 PRINT "M BROWN"

118 PRINT"@ PINK®

128 PRINT"H DARK GREY"
138 PRINT"x MEDIUM GREY"
148 PRINT"@ L IGHT . GREEN"
158 PRINT*{] MEDIUM BLUE®
168 PRINT"HM LTGHT GREY"
READY.

When typing this program, you can easily find the special characters.
They go in order—hold CTRL, then press 1, 2, 3, 4, all the way to 8 before
typing the color names. Then hold down the Commodore logo key, and press
1 through 8 again before typing the second eight names. It might be a good
idea to get to know the special color characters. Then when you see them in
a program, you will recognize what they do.

This program lets us look at all sixteen colors, and see what special
graphics characters represent them. Each of the special characters in front of
the words that describe the colors themselves tell the computer to print in that
color. When the computer encounters those color characters during the RUN
of a program that inciudes them, it automatically switches to the colors when
printing whatever follows them.

But wait a minute. When you run this program, there is a space between
green and yellow right where dark blue shouid be. Can you guess why this
happens?

The words DARK BLUE are in fact printing out in the color dark blue,
but because the background color itself is dark blue, you can't see the
printout.

Another thing that may happen on your system when running this
program is that some of the words may be hard to read, especially BROWN.
Some color combinations on the C-64 work better than others, and brown on
a dark blue background is not one of the big winners. The time has come for
us to learn how to change background and border colors on the computer.

Some of the powers of the Commodore 64 truly seem like magic. Like
the sorceror’s apprentice, you've got to be careful harnessing these powers, or
things may happen that are beyond your control.

POKE commands are a good example of this. Using the word POKE,
you can tell the computer to do some very special things. We will be making

33

Chapter 4

IIIII-lllII-IIIIIIIII.III.IIIIIIIIIII'IIIIlll-lIIIIIIlIllllllI-lllllll-IIIIIIIIIIIIIIlll..]..IlIIIIIII-IIIII-IIIIIIIII-

much greater use of POKE commands as we progress. But like many good
tools, they can be dangerous if not used correctly.

Try typing POKE 53272,6 into your computer. This tells the
C-64 to put the vaiue 6 into memory location 53272. Watch what happens to
the screen display when you do so. What you've done is robbed the C-64 of
its normal sense of “identity.” The pointer that tells it where to find its usual
character set has been changed, so typing anything else will be pretty difficult.
~"You can still get out of it though. You can carefully type POKE 53272,21
[RETURN]. Or you can hit RUN/STOP and RESTORE together. Whew. Glad to
be out of that predicament.

Try typing POKE 53272,1. This blows the mind of our C-64 in yet
another manner. You'll have to restore things again to continue with our
discussion.

So we can see that POKEs are very powerful commands from Basic.

Unfortunately, the version of Basic that comes packed inside the
Commodore 64 does not have special commands to make it do all that we
want it to. Up ahead we’ll explore the language Simon’s Basic, which is much
better able to let us get at the power of the C-64. To program graphics and
sound from plain old Basic, you're going to have to learn more about POKESs,
in order to do things plain old Basic can't do.

Location 53281 is just about the first one you should learn to use
effectively. A POKE to that location allows us to change the background color
on the C-64,

Get yourself back into Basic, and RUN the color program above. There’s
that space between GREEN and YELLOW. Now type POKE 53281,0

[RETUEN]. Look what happens.

34

Basic Graphics and Sound

ll-I-l-lIIIl---llllllII-I-llllll-II-ll-l-I-lllllll-lullll-lIl---lllll.l--llI-II-l-llllll--'-lIl----lllllll.lla..lll----

The screen background turns black. Now you can read DARK BLUE,
and see that it had in fact printed out when the program ran. Problems with
smearing, as with the word BROWN, are eliminated. You can no longer see
the word BLACK, though, because it is now printed out on a black
background.

Turning the background black when working with color graphics will
make the colors look as bright as possible, with no opportunity to smear. To
do this, you would have to place the command POKE 53281,0 into the first
line of a graphics program. You can easily make the background color into any
of the sixteen available.

You can also change the border color just as simply. Its color is stored
in location 53280. To change the border color to black, type POKE 53280,0.

POKE color codes.

(O black 0 orange

] white G brown

2 red 10 pink

3 mediumbiue |1 dark grey

4 purple 2 medium grey
S fgreen 13 light green
6 blue 14 1light blue
7 yellow 15 tight grey

Looping in Color

Use the table above to change background and border colors to any you
choose. You may or may not want to memorize the actual color values. Note
that they do not match the first sight number keys and their colors. When
POKEing colors, black is not 1 but 0. White is 1, red is 2, and so on. This may
be a bit confusing, but work with it. Forget about the numbers on the color
keys themselves.

Two numbers you will want to memorize, however, are 53280 and
53281. Once you have them in your head, using them can become second
nature.

Remember our very simple loop, where line 20 told the computer 1o go
back and execute line 10 again and again? Let's write a program that loops
through background and border colors. It's easy.

1 REM PROGRAM &

2 REM FLASHING BACKGROUND COLORS

3 REM USING POKES AND LOORPS

fp REEIM— oo e et e i e e
1@ X=X+l

35

Chapter 4

20 IF X)15 THEN X=0
30 POKE 53280, X

40 POKE 53281, X+1

S@ FOR I=1 TO 2@R:zNEXT I
€8 GOTO 1@

I's only six lines long, but this program includes a couple of concepts
that will allow us to go on to do some amagzing things. Let's see how it works.

Line 10 introduces the concept of the variable, and the concept of the
counter. The power of variables comes from the fact that they do not need to
remain the same fixed number all the time, but can change their values, even
in the course of a single program. Sometimes their values change in a single
program line, as in line 10 of this program. This line says to take the value of
some variable named X, and add 1 to it. Since the computer has not
encountered the variable X before, and we have not set it to any special
number beforehand, it has assigned no value to X—so X starts off as 0. Then,
at line 10, we tell the C-64 to add 1 to it. The machine says to itself that
0+1=1, so X=1. Therefore, line 10 is a counter for variable X.

|F/THEN Line 20 is a very powerful command, known as IF/THEN. As you
progress with this book, you'll learn about the many things this command can
do. The format for this command is as follows:

IF expression THEN command

where:
expression = defined expression
command = legal Basic command

Don't worry if IF/THEN seems a little confusing now. Here all it says is if X is
greater than 15, don't let it become 16, but set it back to 0. Using this
command, we can shape the value of X to meet our requirements. It is as
simple as that. In this program, 1541 will equal 0—because in line 20 we've
told the computer that this is the way it shall be.

Aren’t computers fun?

When the computer begins the RUN of this program, at line 10 it sets
the value of the variable X to 1. At line 20, it asks itself if X is greater than 15.
This time through, X is not greater than 15. When the “if”" condition of an
IF/THEN statement is not met in a program RUN, the computer ignores the
“then” completely. So on we go to the next line.

Line 30 should seem somewhat familiar. We will POKE the value of
location 53280, which sets the border color. There is a change here,however.
Instead of POKEing the location with some fixed number, we shall POKE it
with the value of the variable X. The computer is just as happy to set the
value of location 53280 to X as it is to any constant. This time through, X=1
and the color of the border will be switched to white.

Line 40 does the same thing for the background color, with one change:
it adds 1 to the value of X before executing the POKE. We could very easily
have set location 53281 to the same value as 53280. But that would change

36

Basic Graphics and Sound

FOR/ NEXT the entire screen to a solid color, and we would lose some effect. What is
neat here is to have the background and border colors contrast during
program execution. So we POKE the background color to X+ 1. When the
program runs through the loop the first time, line 40 sets location 53281 to 2.

if you haven’t spent any time with Basic, line 50 may seem like a real
puzzler. Believe me, by the time you're done with this book, you’ll wonder how
you ever got along without FOR/NEXT loops.

This whole program is a loop, and line 50 is a loop within the loop.
When a program has a line like line 60 here, which says to go back to an
earlier line, a loop is constructed.

A FOR/NEXT loop is another way of setting up a loop, and a handy one
at that. The format for the use of FOR/NEXT is

FOR variable = n to range
NEXT variable

where:

variable = variable chosen to count the loops
n = starting value of variable

range = number at which counting stops

The neat thing about FOR/NEXT loops is that you can get them to count
for you, and they will stop automatically at the number you specify. You tell the '
computer how many times you want it to loop. It will count each time through,
and then let you out of the loop. We'll be talking more about this up ahead.

But why is line 50 necessary here, and what does it do? Well to answer
that question, you might first try running the program without line 50. Go
ahead.

37

Chapter 4

See what happens? Everything goes by so fast you don’t get a chance
to see what happens. The program needs something to slow it down. That is
why line 50 is here, and that is simply what the FOR/NEXT loop does in this
case. It slows down the execution steps of the program so that we can watch
the colors change at a pleasant rate.

fn Simon's Basic there is a better way to effect such a pause, but in
ptain vanilla Basic this is the only way to do it. FOR/NEXT loops can do lots
more than this, but this is a good way to start with them.

Line 50 sets up a new variable called |. It telis the computer that the
variable | will count from 1 to 200. The FOR/NEXT command is in two
separate parts. Every time the computer encounters the statement NEXT |, it
will count-—so | starts out as 1, then becomes 2, then 3, 4, and so on all the
way to 200.

In this program all line 50 says to the computer is to count to 200 before
going on. The result of the command is a short pause. If we change the last
number of the FOR statement, we change the length of the pause. Try it. The
statement FOR |1=1 to 50 will make it a very short pause. Saying FOR I=1 to
500 will make it a long pause. That's alf there is to the FOR/NEXT here.

When the C-64 has finished counting to 200, it goes on to line 60. Line
60 establishes an endless loop, by telling the computer to go back to line 10
and start all over again. This loop can only be broken by pressing RUN/STOP.

So the computer goes back to line 10. Variable X has a value of 1 now,
and line 10 says to add 1 again. Because 14-1=2, the value of X is set to 2.
This time through the loop, our POKEs will be 2 to the border, and 3 to the
background. The computer counts to 200 again, then returns to line 10. It
makes X into 3, then 4, then 5, then 6, and so on every time it runs through
the loop. In doing so, the background and border colors run through every
possibility.

Line 20 never does us any good until the 15th time through the loop.
Then variable X reaches fine 10 with a value of 15, and line 10 says add 1 to
it. The computer reaches line 20 with X equaling 16. Now line 20 does its
stuff. The value of X /s greater than 15, so the THEN side of the IF/THEN
statement is activated. X remains 16 only for a very short time. Line 20 then
turns the value of X back to 0.

38

Basic Graphics and Sound

Color Graphics
From Print
Statements

This way we can reset the values to be POKEd into the border and
background locations. What happens if we remove line 20? Actually, the
program will still run—for a while. The C-64 will accept numbers up to 255 in
locations 53280 and 53281 without ill effect. Once we attempt to POKE a
value of 256 in either location, however, the program crashes with an ILLEGAL
QUANTITY error. Line 20 allows the program to run as long as we want, and
until we press the RUN/STOP key.

You may be finding this material to be quite easy to understand. If you
are, good, and rest assured, we're well on the way to the good stuff. If you're
having a problem grasping the material presented so far, study this program
and pretend to be the computer. Go through the loop each time in your mind.
Play with the values of the program. Get a grip on how it works. You'll need it
for what's to come.

Remember our portrait? Let's get our friend to print out in living color.

REM PROGRAM 7
REM HARRY GETS S0OME COLOR
REM IN HIS FACE

AHOMm -

POKE 53281,0

18 PRINT®]
15 PRINT"®@ —

26 PRINT"

25 PRINT®

30 PRINT"

35 PRINT"

48 PRINT" :
45 PRINT" B o B)

5@ PRINT® w4 o o @ Es)

55 PRINT®) . .

68 PRINT" . r S)

65 PRINT® N P)

70 PRINT® Ty, .
75 PRINT" T - | ,

80 PRINMT" 4 r .

85 PRINT® Ul .

99 PRINT" i

95 PRIMT® .

First we get the background to turn black. That's what line 5 does. But
wait—our buddy’s face looks a bit messed up when viewed as a list. What the
heck is going on here?

tn line 10, we turn the cursor yellow. it will remain yellow until we tell it
otherwise. That's why the hair comes out blond, all the way through to line 50.
But things seem to go haywire at line 50. The eyes are out of place. The right
sideburn is doubly out of place. The mouth also seems wrong.

Type in the program the way it appears, and you'll see that it prints out
correctly when RUN. Qur picture is exactly the way it was before, only now it
is in color.

39

Chapter 4

40

When we insert special graphics characters in a program listing to
change cursor color, they will not be printed out as they appear, yet they take
up spaces in the listing. Because of this, you must make up for the space they
occupy by adding an extra space for each one you use—before typing the
characters that will be printed out.

In line 50, we first want to make the eyes red. So we type the character
that indicates a change to red in the print statement.

Then, to make up for the space that the graphics character itself takes
up, we must add a space to print before the eyes. This is why in the program
listing the eyes are pushed one space to the right of where it seems they
should be. By the time we get to the right sideburn, we want to go back to
yellow, and so we enter a second color change character. Now we must insert
another space, which pushes the sideburn fwo spaces away from where it may
seem to belong.

When the program runs, the color change characters will not print out,
and what is left will fall back into the order we intend it to be.

This displacement problem is one of the major disadvantages of the
print template approach to color graphics, but you can learn to work with it. All
you need to do is get the hang of adding spaces where necessary. Here are
some examples of one-color shapes and the changes the listings undergo
when color is added.

1 REM PROGRAM 8

2 REM MOMNOCHROME TO COLOR
3 REM BEFORE AND AFTER
4
]

REM "BEFORE"

18 PRINTY p—mrmrm—my
20 PRINT* |3

|
30 PRINT"] @ |
48 PRINT"I % |
58 PRINT"] % |
@ PRINT"| 31

70 PRINT" Lt
85 REM "AFTER"
118 PRINT" @ —

128 PRINT" |43]
138 PRINT"| M NI
148 PRINT"] 2 m|
158 PRINT"] 3w wml|
188 PRINT"| =138 |

170 PRINT" I—

REM PROGRAM 9
REM MOMNOCHROME TO COLOR
REM BEFORE AND AFTER

A DM -~

REM "BEFORE"

Basic Graphics and Sound

19 PRINT" po—,
20 PRINT"|A i
38 PRINT"| }
48 PRINT"| & |
5@ PRINT"| I

6@ PRINT"| Al

78 PRINT" L—d
85 REM "AFTER"

110 PRINT" o o—-,
128 PRINT" |mA a1
1380 PRINT"| I
148 PRINT"| me a|
158 PRINT* | I
16@ PRINT"| mAN|
178 PRINT® L—

REM PROGRAM 18
REM MOMOCHROME TO COLOR
REM BEFORE AND AFTER

LI -3 VI (VI

REM "BEFORE™"

18 PRINT" MOMOCHROME SQUARES
28 PRINT" r— r—

20 PRINT" | I It I

48 PRINT® Lt—J b—t b

58 PRINT" r— r— r—

6@ PRINT" | P 11 |

70 PRINTY L—J L—d L—1

895 REM "AFTER"

118 PRINT"SMEB A TRIGSCHOMALEBCAR SQUARES"
128 PRINT" 3 r—Mr—hr—
1380 PRINT" 2 181 Il |
140 PRINT" Fb—IFL—ij b—
156 PRINT" Br—Hlr—aflr—
160 PRINT" B (& (=l |
178 PRIMNT® nl...—..rnl..-—-..l.b—..l

1 REM PROGRAM 11

2 REM MONOCHRCME 70 COLOR
3 REM BEFORE AND AFTER

4 REM----------------srrm e m e
5 REM "BEFORE"

18 PRINT" —_—

28 PRINT® VAl I BN
28 PRINT" v L ™~
40 PRINT®" e\
S8 PRINT" g Lo Uy
B8 PRINMT" 1 |
78 PRINT® t—l

95 REM "AFTER"

41

Chapter 4

The REVERSE
Mode

42

110 PRINT® | _
120 PRINT" 9 /5 e a3
13@ PRINT" 4 L N
148 PRINT" o m—
150 PRINT® {32 U U g
168 PRINT" { I
178 PRINT® —]

As you may have noticed by now, another disadvantage of this approach
is the limitation of the size of your shapes. It gets confusing to try and design
a shape wider than 30 characters because you won’t be able to clearly
envision your shape while composing it. Though a program line can be up to
80 characters long, this approach keeps them much shorter, so that what you
see will be at least something like what you get. Up ahead we will learn a trick
that aliows us to design, save, and retrieve pictures the size of the whole
screen quickly and easily, though saving and retrieving will take a bit longer
than the fraction of a second this method takes.

The advantages of printing color graphics in this way are the simplicity
and speed with which the graphics can be saved and retrieved. After we learn
a few more tricks, we will even learn to animate shapes using this approach.

Here’s another powerful trick. First, make the background color
black—type POKE 53281,0. Next, press CTRL and while holding it down, type
9. On the front of the 9 key you'll notice the mysterious phrase RVS ON. Type
whatever you want, and look at the screen.

Instead of characters appearing the way they usually do, the letters will
be formed in the background color, on a background sguare of the cursor
color. This is the inverse or REVERSE mode. It is as if printing takes place in
a stencit of the normal characters.

To get out of this print mode, press CTRL-0. The front of the 0 keytop is
tabeled RVS OFF, and when pressed with CTRL, it does just that—it turns off
the REVERSE mode. So does hitting [RETURN].

Now it is very simple to change color in the reverse mode, too. Press
CTRL-9, then hit some keys, then change the cursor color in the way you've
learned, then hit some more keys, and so on. Take a look at what happens
when you hit the spacebar in the reverse mode. You get a solid square of
whatever color the cursor is set to. '

Using the reverse mode and the spacebar is just about the simplest way
there is to fill the screen with color. Like the cursor color codes, special
graphics characters can be inserted into PRINT statements to turn the reverse
mode on and off.

Basic Graphics and Sound

Inverse character codes.

@ rve [CTRLF={ 9]
m yve off ——JCTRL}F={ 0]

Just as with cursor color changes, turning the reverse mode on inside
quotation marks produces a special character, which will turn the reverse
mode on in deferred mode when that program line is reached during a RUN.
Like with the cursor characters, the presence of the RVS character will
displace the print characters by one space.

There is one big difference however in the way RVS acts as opposed to
the way the cursor colors act. When RVS is on, it acts only on the one
program line in which it appears. When we colored the face picture, ail we had
to do was turn the cursor yellow once, and it remained yellow through four
program lines. The reverse mode must be turned on in every program line it is
to act upon.

1 REM PROGRAM 12
Z REM RAINBOW
3 REM USING RYS OM AND COLOR CODES

10 POKE S3281.8

20 PRINT” AN !
389 PRINT" A "
48 PRINT"Sa !
58 PRINT"E “
58 PRINT" 5 "
78 PRIMNT" A "
80 PRINT"IEI !
9@ PRINT"E] !
1900 PRINT" "
112 PRINT" I "
1260 PRINT"NE "
120 PRIMT "B "
148 PRINT "R "
158 PRINT K] "
1680 PRINT"ES Y

If we had not inserted a RVS ON character in each line here, only the first one
would print as a color bar. By inserting one in each program line, we get a
rainbow-colored test pattern.

43

Chapter 4

Making Loops
Fruitful

44

We can make a FOR/NEXT loop do much of the work for us in creating
a test pattern. Type in this short program:

1 REM PROGRAM 13

2 REM EASY RAINBOW, OM WHITE BACKGROUND

3 REM LOOPS DO THE WORK, NOT YOU

4 REM= = — o e e e

S5 POKE 53281,1:POKE 53220, 1

10 FOR X=1 TO 23

29 PRINT" Ed ® xu N 3 A 8 d =%
3 @ 3 & » O @3 *

38 NEXT

Line 5 turns the entire screen, background and border, to white. Line 10
is the first part of a FOR/NEXT loop, and it tells the computer it will be
counting from 1 to 23. Earlier, we set up a loop where the NEXT part of the
statement came directly after the FOR—resulting in the computer merely
counting “quietly” to itself before going on with program execution. Here we
do things a bit differently.

By sticking a command or commands in between the FOR and the
NEXT statements, we can make the computer execute these instructions
however many times we like. Here, we have said to count from 1 to 23, and
then inserted a PRINT statement between the FOR and the NEXT statements.
What will happen when we run this program?

Pretend that you are the computer, and trace the program through an
imaginary RUN. First you are told to count from 1 to 23. The first time through,
X will equal 1, until you see the NEXT statement, which tells you to count
again.

But before you see the NEXT statement, you are told by line 20 to
PRINT something. REVERSE is turned on, and the cursor color is switched
through every possibility. So you print that line to the screen.

Then you encounter the NEXT statement in line 30. That says to go
back to line 10 and count. This time through the loop, X will equal 2. You print
line 20 again, then NEXT tells you to return to line 10 again and increase the
count by 1,

The process happens again and again, until the value of X reaches 23.
Then the FOR/NEXT loop terminates, and the program ends.

Now actually run the program. instead of having to use a print template
to fill the screen with color, we have looped through one PRINT line to do the
same thing. The colors line up beneath each other to form a vertical rainbow
test pattern.

Hold everything a second. Isn’t there something wrong with line 30?
Instead of saying NEXT X, all it says is NEXT. But the program still works.
Why?

Because we're only working with one loop here, we don't have to say
NEXT X. There are no other loops to get confused with. All we have to say is
NEXT, and the computer knows which loop we are tatking about. Later on, we
will be working with multiple loops, nesting them with one FOR/NEXT

Basic Graphics and Sound

EASY ANIMATED
GRAPHICS

statement inside another. In that situation, you must always tell the computer
which loop you are talking about when you type NEXT. For now, though, you
don't need to.

Time to pull a really neat trick out of the hat. Try this: put a semicolon
after the final quote in the print statement (line 20) in the previous program.
Witness the result by running the program.

Originally, each time through the loop, the program printed line 20ona
new screen line, making an ordered test pattern. By putting a semicolon in
after the final quote in line 20, you command the computer to start the next
print line right where the last one left off. instead of each print line in the loop
starting off on the lefthand side, each starts right at the point where the last
one ended. Our test pattern becomes a diagonal mosaic pattern.

By taking things one step further, we can obtain very pleasing animated
abstract patterns. Try this one on for size.

{ REM PROGRAM 14

2 REM EASY ANIMATED GRAPHICS

3 REM

84 REM=m————==-— - —wmm———— oo —— s

5 POKE S3281,8:POKE S32390.0

i@ PRINT" ad ® 4 n A na K
4 6 3 #aA O &3 "

2a GoOTO 1@

This program is very much like the two we've just looked at—the print
line is just the same, with the addition of the semicolon at the very end.
However, the screen has now been turned totally black by line 5, and the
FOR/NEXT loop has been replaced by an endless GOTO loop.

When we run the program, the color bars print continuously, until we
press the RUN/STOP key. As the bars print to the bottom of the screen, the
print scrolls upward. The effect is a looping cascade of color. Let's see any
other computer do this quite so easily!

You can harness the power of scrolling PRINT statements for a
sophisticated effect. By inserting graphics characters as well as RVS bars, you
can create textured effects. The programs themselves can be very shori—you
can, in fact, fit them on a single program line. Here are some examples to get
you going.

1 REM PROGRAM 135

2 REM

3 REM

4 REM--m———=———=——mmmmmmm—mmmm e mm e m -
16 PRIMT" 2 o =] A n

2 = ";

28 GOTo 1e

45

Chapter 4

IlllIIIlll----ll-'--IllIl-n!--I-Illl.llII-lIla-.llll----ll-lll----IIIII-----lll-IIIIIlll-IIll-IIll--l-----unllln----lnl

REM PROGRAM 16
REM

£
E
@ PRINT"ZFFPYPIG: 1110 MM Wen 5 % W
B2 VARG

28 60To 14

33 GOTO Se

o]

A
X

i
2
3
4

1

REM PROGRAM 17
REM
REM

L) 1) s

POKE 53281.8
0 PRINT " : .
Zeeseell %*;:GOTO 1@

v (N0

! REM PROGRAM 18

2 REM

3 REM

G REM- oo o o e e e e
S POKE 53281.8

1

a PRINT "3 h a -
(essedd E"::G0T0 10

! REM PROGRAM 19
2 REM AMOTHER SCROLLING COLOR EXAMPLE

3 REM
4 REM— == = = = e e e e o
19 POKE 53280,0:POKE 53281,0

28 PRINT" SSSEme-H - -~ O X
A 3080808000882 m";

2@ GOTO 28

Using FOR/NEXT loops, you can stack print lines in a single program to
move through different patterns at whatever rate you desire.

1 REM FPROGRAM 20
2 REM LOOPING THROUGH TWO
3 REM ANIMATED PATTERNS

18 FOrR =1 TO 184

46

Basic Graphics and Sound

28 PRINT "S- HHHHEHHHET T

CLIR LIl iimel L BB "7 TNEXT
8 FOR ¥=1 TO 108

48 PRINT

5@ FOR x=1 TO 1@a@

60 PRINT "Hll~----3h-aqak b HEFFHETONYYY
AU g " INEXT

78 GOTO 18

Here each FOR/NEXT loop runs through a different pattern, then moves on to
the next. These loops are enclosed within a GOTO loop, which starts
everything over again. See how easy it is to nest loops? There’s nothing to it.

Want your abstract pattern to go truly nuts? Poke the value of X into the
background location each time through the loop. Add the statement POKE
53281,X as lines 15, 35, and 55 in the program above.

REM PROGRAM =1
REM FLASHING THE BACKGROUND
REM DURIMNG EASY ANIMATION

EET SV (VR

18 FOR K=1 TO 18e

15 POKE 33281 .4

20 PRINT " @
PULRGI DI Dmel | | LB | 5 S NEXT

3@ FOR ¥=1 TO 18&

35 POKE 33281 ,X

4@ PRINT "3 ik

5@ FOR M=1 TQ 188

55 POKE 53281.R

€8 PRINT *fll~-~-13h-a--MFEFEEHETOONN
VIV YY] [nmE v sNEXT

7@ GOTO 18

Talk about psychedelic! A calmer muiticolor background may be
preferable in the long run.
Here is one to experiment with.

1 REM PROGRAM 22
2 REM FLASHING THE BACKGROUND
3 REM AT A MORE REASONABLE RATE

1@ M=K+l
20 IF X¥>28 THEM Y=Y+1

47

Chapter 4

23 IF X>28 THEN x=6

23 IF Y>15 THENM Y=8

30 PRINT" SUENE MBS 9 R5E 10 A NN mumsss
LN S B DR 0 ;

48 POKE 53281.,Y

58 GOTO 1@

Here we have taken the concept of the counter one step further. We
have set up a counting GOTO loop much like the one we used earlier, using
IF/THEN statements to keep the values of X and Y trimmed to our
requirements. The major difference this time is that we have set up two
counters—and one counts much slower than the other. As we move through
the loop, Y counts by 1 only after X has counted by 20. If we were to POKE
location 53281 with the value of X instead of Y, the background color would
change as fast as it did in our psychedelic program. But Y counts more slowly,
allowing the background color to change at a much more restiul pace.

Line 10 sets up the X counter, just as it did in our earliest print program.
Line 20 says that when X has counted to 20, Y can count once. Only if X is
about to become 21 can Y increase by one.

Line 23 says to reset X to zero once it has counted past 20. Then it
starts counting all over again. Line 25 says to reset Y when it reaches past 15.
Just as in our color changing program, we want to go back to black once we
have cycled through all the available colors.

Line 30 contains our abstract pattern. Don’t forget the semicolon after
the closing quote mark. Line 40 sets the background color to the value of Y.
Line 50 sends us back to the beginning, to start all over again. We add one to
X, and go through the loop again.

That’s all there is to it!

Now we'll discuss some special graphics characters you can use for
animation. They alter the screen display by moving the cursor, or by clearing
the screen. Using them, we can make shapes move across the screen.

SHIFT-INVERSE Pressing SHIFT-CLR in the direct mode has the effect of
HEART clearing the screen. You can include this special graphics character, like all
v others, between quotes in a print statement to clear the screen during a

program run as well. The format is as simple as

PRINT “SHIFT-CLR” [RETURN

where we obtain the special graphics character by typing SHIFT-CLR. This
command is used often at the top of a program to clear the screen so that
printing can take place.

You can also use this function to perform a simple, if flickery, form of
animation. Here is a very crude example:

48

Basic Graphics and Sound

1 REM PROGRAM 23

2 REM CRUDE SHIFT-CLEAR ANIMATION

3R

iae
118
120
130
14&
158
168
178
isa
192
zaa
218

EM

PRINT"J*
PRINT"®"?
PRINT""
FRINT" @
PRINT"J"

PRINT" @"

PRINT""

PRINT"

PRIMNT™J"
PRINT"
PRIMNT ™"
PRINT"
PRIMNT"J"
PRINT"
PRINT"W"
PRINT"
PRINT"J"
PRINT"
PRINT""
PRINT®
GaTo 19

.l‘

shape appears to be moving to the right.

In this program, we position a shape, print it, clear the screen, then print
the shape one space to the right. We repeat the process a few times, and the

Let's take it one step further. We'll design a program that prints a more
complex, multi-line shape, then move that shape across the screen in the very
same way.

1 REM PROGRAM 24

' 2 REM YARIATION ON THE SAME THENE
3 REM
4 REM-~—--r—————m s mm—mmm———— o m— i —
19 PRINT "
28 PRINT® — "
38 PRINT® 1 L,0
48 PRINT* to—04"
58 PRINT"J"
68 PRINT" — "
7O PRINT" e T
88 PRIMNT® to—a "
188 PRIMT""
118 PRIMT" — "
2@ PRINTY e
1286 PRINT" Lg—gd "
14@ PRINT*J"

49

Chapter 4

158 PRIMT™ "
188 PRINT® e I
178 PRINT" to—p4
138 PRIMT™J"

198 PRINT® — "
2@ PRINT" e T
218 PRINT®" Log-gt "
229 PRINT"J*

238 PRINT® — "
248 PRINT®" e I
258 PRINT® Lo—ga
268 PRINT "

278 PRINT" ™ "
2880 PRINT" A
288 PRINT" to—0t "

38 60TOo 1@

But there is even a better way to effect animation: using special
cursor-movement graphics characters. There are codes to move the cursor
one place left, right, up, or down, and they can be used in any combination
you like. They can be placed inside print statements, and when used in
conjunction with spaces, they act to erase old print positions in the course of a
sequence of commands or program loop.

INVERSE Probably the handiest of the cursor movement characters is INVERSE
BRACKET BRACKET, obtained by pressing SHIFT-CRSRLEFT while in the quotation
1) mode. The format is

PRINT “SHIFT-CRSRLEFT”

and you can see that the cursor left graphics character is composed of two
small rectangles side by side.

Type in the following program and see how straightforwardly it erases
old print positions as it creates new ones.

1 REM PROGRAM 25
2 REM AN EXAMPLE OF ANIMATION

3 REM USING CURSOR MOVEMENT KEYS

4 REM==— = m oo
S PRINT"J"

18 PRINT"H o":
28 FOR X={ TO S@:NEXT
3@ 6070 1@

Now look at this program and see if you can guess how it employs
SHIFT-CRSRLEFT to take care of erasure:

50

Basic Graphics and Sound

Saving Low-Res
Screens

REM PROGRAM 26
REM AMNOTHER EXAMPLE OF ANIMATION
REM USING CURSOR MOVEMENT KEYS

U oB oW

PRIMNT"JY

124 PRINT"Q 00"}

20 FOR ®=1 TO S@:NEXT
28 GoTD 19

Each time the program prints out a new position for the ball, it first
moves left and prints a blank space over the old position in which the ball
appeared. Then it moves right two spaces, to print the ball at a new position.
The animation is smooth and relatively flicker-free.

You can animate longer shapes by using multiple cursor movement.
Here is an example:

1 REM PROGRAM 27

2 REM AN EXAMPLE OF SHAPE ANIMATION

3 REM USING CURSOR MOVEMENT KEYS

4 REM-—==-=rm——m———mm=mmmm o e —m——
5 PRINT"u"

i@ PRINT" . INENSS - IESEEEE -0—0
 IEEERSET" ;

28 FOR X=1 TO SO:NEKT

38 GO0TO 18

Here is a program that allows you to use the disk drive to save and
retrieve low-res screens you have designed. A chart is included to help you
find all the special graphics characters you need to type in the listing.

Screen save special function keys.

Char /funiction KeyDress Line{s)
W clear —————[FHIFT}—{CLE/HONE] 8,24

B | [SHIFT —{¢ CESRS) .9.10
@ white 8

+ Dizmond ISHIFT = 2 | q

& ft i1 11
L& {13 12

! s {2 13

51

Chapter 4

l---l-'Illl--l-I’Il-IllllllllIIIIl-llIIll..l..Illl.--l---.Illt---ll-..l.-.--.---llll---ll--IllIh.-l-.-ll.----l---ll---.-

SOUND FROM
BASIC

52

REM PROGRAM 8

REM LLD-RES SCREEN SAVE RBRY R. ALONSO
REM MODIFIED BY J. ANDERSON

R~ — e e e e e
POKE 650, 128

P=PEEK (197) : POKE 53280, 2: POKE 53281, 0
8C=10&4 :CR=55296 : BC=5328Q : C$=" "
INPUT“TIRNAME OF DRAWING" ;A% :PRINT"&"

GET B$:IF B$=""0R B$=CHR$ (34) THEN E$=
u *"ll

1@ IF P=2Z OR P=7 OR P=1 THEN C$=" I :PRI
NT C%3;

11 IF B$="@" THEN PRINT C$:60T0 15

12 IF B$="S" THEN PRINT C%:50T0 19

13 IF Bs="I" THEN PRINT C$:END

14 PRINT B%;:GOTC 9

15 FOR X=1 TO 15:PDKE BC, X:NEXT

16 OPEN 2,8,2, "@:"+A%+" &, W"

17 FOR X=@ TO 999:8=PEEK(5C+X) :C=PEEK (CR
+X)

18 PRINT#Z,S:PRINTH#2, CiNEXT:CLOSE 2:60T0
9

19 FOR X=1 TO 15:POKE BC, X:NEXT

2@ OPEN 2,8,2, "@:"+A%+", 8, R"

E1 FOR X=0 TO 999: INPUTHZ, S, C: POKE SC+X,
5

22 POKE CR+X,C:NEXT:CLOSE 2:60TO 9

23 OPEN 15,8, 15: INPUTH1S, W$, X$, Y$, 2%

24 PRINT"@', W$, X%, Y$, 24

25 CLOSE 15

UENDPULUm=

When you run the program, it will ask you to name the drawing you want
to design or retrieve. After you have input a name, you may go ahead and
design a screen. Use the cursor keys as you would from the editing mode to
move the cursor. You can use all the colors you want, RVS mode, text, and
graphics characters. When you are ready to save your masterpiece, press f1.

To retrieve a screen that you have saved previously, enter the name of
the screen you want at the opening prompt of the program, then press 3. The
screen will load.

Using this program simplifies low-res graphics to just about their utter
simplest. Now you can design low-res screens to your heart’s content, without
losing them when the computer is turned off.

We'll make no bones about it—programming sound from plain old Basic
is no easy chore. In fact, we won't even examine it in detail here. Rather than
trying to explain the fundamentals of Commodore sound at this point, we will
supply some prepackaged examples that you can use in your own programs.

Feel free to experiment with the programs that follow, and make sure
that you read the section on sound from Simon’s Basic up ahead. Though it
still requires effort, at least there are special sound commands at your disposal

Basic Graphics and Sound

in Simon's Basic that simplify sound with the C-64 a great deal.
But the programs that follow don’t sound bad, and simply by piaying with
them you can change them and make them your own originals.

1 REM PROBRAM 29

2 REM SOUND EFFECTS FROM BASIC

3 REM MACHINE GUN

4 REM=—— e - e
5 S5=54272

1@ FORL=@TO24 : POKES+L, @:NEXT

320 POKES+?, 14@: POKES+1, 31

40 POKES+S, 38: POKES+20, 124

S50 POKES+E1, 233 POKES+E4, 12

8@ FORN=1TO15:POKES+4, 129

10@ FORT=1TO6@:NEXT:POKES+4, 128
119 FORT=1TO20:NEXTT, Nz POKEGS+E4, @

1 REM PROGRAM 3@

2 REM SOUND EFFECTS FROM BASIC
3 REM WIND CHIME

4 REM- - e e e
10 S=54272

28 FORL=BTOR4 : POKES+L, @sNEXT
25 DOKES+4, 18

30 POKES+1, 1@

35 POKES+6, 7

40 POKES+S, 12

S@ POKES+1S, &

6@ POKES+Z4, 143

7@ POKES+4, 19

8@ GUTOES

1 REM PROGRAM 31

2 REM SOUND EFFECTS FROM BASIC
3 REM RED ALERT ALARM
4
S

S=54272

1@ FORL=QATOZ4 3 POKES+L, @:NEXT
30 POKES+@, 23 :POKES+1, 15

4@ POKES+S, 155 POKES+2D, 200
SO POKES+Z1, 255: POKES+24, 83
8@ POKES+4, 99

85 FORX=1TOZ2S5@:NEXT

5@ POKES+4, :G0TO32

53

Chapter 4

1 REM PROGRAM 32

2 REM SOUND EFFECTS FROM BASIC
S REM SAWING WOROD
4
b}

S5=54272
1@ FORL=0TORZ4: POKES+L, @sNEXT
30 POKES+@#, 23: POKES+1, 15
42 POKES+S, 155: POKES+22, 222
SR POKES+Z1, 255: POKES+24, 89
88 POKES+4, 189
83 FORX=1TO3@Q:NEXT
92 POKES+4, 0:60T03D

1 REM PROGRAM 33
€ REM SOUND EFFECTS FROM EBASIC
3 REM [LASER BGUN

S S5=54272

ia FORL=@TOZ4 : POKES+L., @:NEXT
30 POKES+Q, 23: POKES+2Z, 155

4@ POKES+35, 155: POKES+2R, &0@
&R pDKES+El,ESS:DDHES+E#,89
82 POKES+4, 93

a5 FORX=iTDESS:PGKES+1,X:NEXT
9@ POKES+4,0:60TO3R

1 REM PROGRAM 34
2 REM SOUND EFFECTS FROM BASIC
3 REM BONUS POINTS

18 S=54272
£0 FORL=0TOZ24: POKES+L, @:NEXT

25 POKES+4, 31:POKES+S, &5

35 POKES+6, 871 POKES+7, 121 POKES+24, 15

75 FORX=1TO15:POKES+1S, @5-X :FORDE=1T025 :
POKES+15, X+25: NEXTDE, X

8@ GOTORS

1 REM PROGRAM 35
2 REM SOUND EFFECTS FROM BASIC
3 REM BOMBS AWAY

12 5=54272

2@ FORL=@TOZ4:POKES+L, @:NEXT
25 POKES+4, 291 POKES+S, 83

3@ POKES+L, 16: POKES+E, 16

54

Basic Graphics and Sound

35 POKES+6, 27: POKES+7, 12: POKES+24, 15
75 FORX=1TO15@:POKES+15, 850X tNEXT
82 GOTOES

1 REM PROGRAM 3&

2 REM SOUND EFFECTS FROM BASIC
3 REM ELECTRONS
4
]

G=5427&

1@ FORL=@TO24:POKES+L, B:NEXT

30 POKES+@, 23:POKES+1, 15

4@ POKES+5, 155 : POKES+E@, 203

50 POKES+21, 255 : POKES+24, 89

82 POKES+4,99

85 FORX=1TDES: POKES+D, X : POKES+1, 855—X
92 FORDE=1TOS®:NEXTDE, X

95 POKES+4, 0:BOTOZR

1 REM PROGRAM 37

2 REM SOUND EFFECTS FROM BASIC

3 REM DUT OF FUEL

4 REM - —— - T
10 S=54272

2@ FORL=@TOS4:POKES+HL, 0 NEXT

&5 POKES+4, 18

32 POKES+1, 1@

3% POKES+6, 27

4@ POKES+S, 18

=50 POKES+1S, &

7@ POKES+4, 29

75 FORX=1TD15%: POKES+24, X : POKES+15, X 1 NEX
T

80 BOTOES

1 REM PROGRAM 38
& REM SOUND EFFECTS FROM BAGSIC
3 REM MORTIAN POGO STICK

&

5 G=04n?s

1@ FORL=ATOLIS: POKES+HL, Qs NEXT
33 POKES+®, 22: POKES+L, 12

4@ POKES+S, 135: POKES+2@R, 193
=@ POKES+E 1, 299 POKES+24, 89

55

Chapter 4

56

aa
83
@
93

POKES+4, 39

FORX=1TO 5:POKES+Q, X: POKES+1, 2855-X

FORDE=1TOS@:NEXTDE, X
POKES+4, 2: 6OTO3@

REM PROGRAM 39

REM SOUND EFFECTS FROM BASIC
REM SPACE MACHINERY

REM

S=5427
FORL=0TO24 : POKES+L., @: NEXT
POKES+@, 231 POKES+2, 150
POKES+S, 1@: POKES+20, 255
POKES+E1, 10: POKES+24, 100
POKES-+4, 83
FORX=1T0D 25:POKES+1, X:NEXT
POKES+4, 2: GOTO3@

Q

SIMON'’S BASIC
COMMANDS

GETTING INTO
Simon's Basic

Loading Simon’s Basic is as simple as plugging in the cartridge in the back of
the Commodore 64, then turning the computer on. Make sure that the label
side faces up, and don't plug the Simon’s Basic cartridge into or out of the
computer while it is turned on. This can cause damage to the cartridge and to
the computer.

Other than that, there isn’t much more you can do seriously wrong. Plug
it in and start cooking. Simon’s Basic adds 114 new commands to Basic, many
of them related to graphics and sound control.

When Simon’s Basic boots up, the screen will be white with a blue
background. The characters will be black, and easy to read. You should see
the words “Extended CBM V2 Basic”, “30719 Basic Bytes Free”, followed by
a “Ready” prompt. This indicates that all is well, and you are indeed ready to
begin programming in Simon’s Basic.

Disk commands to save and load are the same as in plain old Basic. If
you need a refresher, refer back to the chapter on the disk drive.

There are, however, a few new commands you should know about. You
can now obtain a disk directory at any time simply by typing DIR$ [RETURN].
This will not affect any program currently in memory. In addition, Simon’s Basic
allows simplified disk-handiing using the command DISK. The following table
shows how to execute disk commands directly from Simon’s Basic.
Alternatively you may still use the MENU program, presented earlier in the
book. It runs perfectly well in Simon’s Basic, and is still easier to use than
Simon’s Basic DISK commands.

57

Chapter 5

IR

COLOUR

58

Simon's Basic disk commands.

DIR “§" OBTAIN DISK DIRECTORY
DISE "N&DISK NAME 01" —————FORMAT A DISK
DISK "S@FILE NAME, 01" ——————SCRATCH A FILE

DISKE "CB-NEWFILE=0:0LDFILE"— COPY & FILE
DISK "R NEWNAME=O0LDNAME" —RENAME A FILE

L

Note these sre zerog. twt “ohe”

Now let's start learning about Simon’s Basic graphic and programming
commands.

Want io change screen background and border colors? Simple as can
be. Use the command COLOUR.

That spelling is correct for the British, and it was incorporated as such
into Simon’s Basic. So whenever you want to say the word “color” to Simon’s
Basic you will have to spell it the British way. Here’s the way it might look as a
direct command:

COLOUR 4+7|RETURN

Getiing into Simon'’s Basic

This command will turn the center of the screen yellow and the border
purple. If you read the section on plain old Basic, you will know how much
simpler the COLOUR command makes it to switch screen and background
colors. Type COLOUR, then the border color number you want, then the
screen color number you want. Separate the two numbers with a comma. The
format is

COLOUR border,screen

Watch out, early owners of Simon’s Basic. The manual gets it wrong
here (as it does in several places). The order of commands is COLOUR
border,screen—not the other way around.

The color codes are just the same for Simon's Basic as they are for
old-fashioned Basic. Here they are again:

Simon's Basic color codes.

Black 0 | Orange &

‘White 1 | Brown 9

Red 2 1 Pink 10
Mediurn Blue 3 | Dark Grey——————11
Purple 4 | Medium Grey ——12
Green S | Light Green ———13
Blue 6 | Light Blue —-———14
Yellow 7 | Light Grey —— 15

Look how easy it is to write a color flashing program in Simon’s Basic:

REM PROGRAM 4@

REM FLASHING COLORS FROM

REM SIMON'S BASIC

REM e e e o s =
i@ FOR X=@¢ TO 15

=@ COLOUR X, X+1

3@ FOR Y=1 TO 30@:NEXT Y

4@ NEXT X

3@ BOTOD 1@

Ll T e

Perhaps it is becoming clear that we are now dealing with a language
that will finally allow us to get a reasonable result for the amount of work we
put in!

59

Chapter 5

Hmuma

KEY

60

Before we go on to more advanced graphics, let’s look at a few other
facets of Simon’s Basic that will make all of our programming much easier.

The command KEY allows you to define a string or command as a simple
press of the function key. This comes in really handy with functions that are
repeated over and over—instead of having to retype them each time you need
them, you can make them KEY commands.

For example, let's say you are writing a program that uses many
COLOUR statements throughout the listing. Instead of typing the word
COLOUR over and over you could type the following just once:

KEY 5 "COLOUR™ [RETURN

Getting into Simon's Basic

Now, whenever you need to type the command COLOUR, ali you need to
do is hit the 5 key (for “function key 5"}, on the lower righthand side of the
C-64. This is called “macro definition” on more sophisticated systems and it is
a very powerful capability. The format for the command is

KEY n “string”
where:
n=1-16

string = words, graphics characters, commands to define as key

You may even embed low-res color graphics statements into KEY
macros. This can speed screen development for the screen save program
shown in the previous section. Here is an example:

i REM PROGRAM 41
Z REM EMBEDDING LOW-RES COLOR GRAPHICS
3 REM INTO SIMON'S BASIC

2@ KEY 3, “Eefm"
30 KEY 5,
4@ KEY 7,"CEd = " A "
S@ DISPLAY

Note that it is & good idea to return the cursor color to default at the end
of the macro, so you will readily be able to read whatever you type next.
Actually, you can leave the cursor any color you want, as long as you make
sure it is compatible with the background color. Otherwise you won't be able
to see what you're typing.

Remember that whenever that does happen, you can always hit the
RUN/STOP and RESTORE buttons together to return to the default color
combination.

Let's look at another very powerful potential of the key command. Type
in the following:

KEY 1+ "LIST"+(CHR${13} [RETURN

By typing +CHR${13), you have taught the computer how to “hit
[EETURN]” on its own. Now, whenever you want to list the program currently in
memory, all you need to do is hit f1 (for function key 1), at the top righthand
side of the keyboard. To make LISTing and RUNning the programs a snap
when working with Simon’s Basic, keep f1 defined as the LIST command, and
F7 as the RUN command. You can do this by typing

KEY 7. "RUN"+CHR#{13} |[RETURN

61

Chapter 5

There are 16 possible combinations of function keys and 16 possible
KEY macros, each with a maximum length of 15 characters. The chart below
shows how each function key is pressed:

How to type key command functions.

fl fg [HB—@
{2 HiEn— f10 [—H
i3 11 —R

¢ EE-B 12 B

{5 (13 EEE—E—
6 R (14 A
(7 (15 B

fs ENEN—M 116 e

You can get around the length restriction by devoting two macros to a
single string. For instance, you might type

KEY 3.1 "COMMODORE L4 GR™|[RETURN
KEY 5+ "APHICS @ SOUND™ |[RETURN

Then you would use the two keys together to achieve the complete
macro.

DISPLAY In order to see a full list of the defined function keys, type DISPLAY
[RETURN]. All function key commands will be listed.

You can use the KEY and DISPLAY commands in the direct or in the
deferred mode, as well. You can load the program below, for example, and
automatically load your own custom set of macro definitions. RUN the
program, and they will be installed. You can then load in new programs,
without disturbing defined KEY functions.

1 REM PROGRAM 42

2 REM KEYING KEYBOARD FUNCT IONS

3 REM INTO SIMON'S BASIC

RE M-~ BT e

.S

62

nniani

Getling info Simon’s Basic

1@ KEY 1, "LIST"+CHR$(13)
22 KEY 3, "LOAD"

30 KEY S5, "SAVE"

4 KEY 7, "RUN"+CHR% (13)
=@ KEY &, "PRINT"

60 KEY 4, “FOR"

7@ KEY &, "NEXT"

8@ HKEY 8, "REM"

9@ DISPLAY

AUTO You may also define key functions to be accessed from within a program
or define multiple custom macro sets. As you can see, the KEY function is a
major convenience of Simon’s Basic.

When programming in Simon’s Basic, you can use the AUTO command
to generate line numbers automatically. The format is
AUTO [ine number,increment
where:
line number = legal Basic starting line number
increment = amount to count
= e == =
oy e —
- ==
Q 4 L
/4)
T2 -\
[© iy
Y B
= N 2

63

Chapter 5

The parameter line number is- where you want to begin the code, and
increment is the amount to skip between numbers. The command

AUTOC 10.10 [RETURN

will begin automatic line numbering at 10, and continue with 20, 30, 40 and so
on. Every time you press return, a new line number will be generated and
displayed at the start of the new line.
To end an auto function, simply press without typing anything
eise on that line. This will return you to default operation.
HImmm

RENUMBER Another line numbering capability of Simon’s Basic is the function
RENUMBER. it works just the way AUTO does, only it is used on an existing
sequence of code. The command RENUMBER allows you to move a chunk of
code around within a program without having to retype it. It will also allow you
to recover space between two consecutive line numbers. If you have a line 12,
a line 13, and you need something in between, it is time to use RENUMBER.

The format for RENUMBER matches AUTO exactly:

RENUMBER line number, increment

It is very important to remember one thing when you are using the
RENUMBER command. It does not renumber any referenced line
numbers—that is to say, it will not keep track of changes in GOTO or GOSUB
commands. Later on in Simon’s Basic, we will build procedures and learn how
they can be used instead of GOTO and GOSUB commands, which are hard to
keep track of. But if you use them, then use RENUMBER, you will have to
change the referenced lines “by hand.”

N

PAUSE . Remember how we used a FOR-NEXT loop to cause a time delay in
’ earlier Basic graphics programs? Well Simon’s Basic allows us to create
pauses in a much simpler way. Simply type

PAUSE 5 |[RETURN

within the body of a program, and it will pause for 5 seconds. We shall be
using PAUSE quite a bit up ahead, so get used to it.

You can also insert a PRINT statement directly into a PAUSE command.
The format is as follows:

PAUSE “MORE IN TEN SECONDS”,10 [RETURN

Getting into Simon'’s Basic

M rrr v s e e e L R RN LR R AT RS DR DR DL DR VAR DL LR EL LR LR L LA L LLE L L LD LD LE Ll

ON ERROR:
GOTO

out

The PAUSE command saves us the trouble of adding a PRINT
statement. It lets us insert a message within the framework of the pause
command itself.

So the format for PAUSE is

PAUSE “optional string”, time

where:
optional string = message {may be omitted)
time = seconds for pause

One of the major oversights of the criginal Basic that ships in the C-64 is
its lack of error-trapping. This means that when a situation arises where an
error is detected, the program breaks, execution ceases, and the jig is up.
Once a program hits an error, it crashes. The ON ERROR:GOTO command
allows you to trap program errors—to actually use them to your advantage if
you care to.

ON ERROR:GOTO allows you to branch to a specified line of code
whenever an error is detected. The format for the command is

ON ERROR:GOTQ line number

where:
line number = line to branch to when error is detected

So what's the big deal about trapping errors? Well in this book we'll use
the command to keep screen graphics on the screen. You will think up your
own uses for the command before too long. Here’s a simple example:

REM PROGRAM 43

REM ON ERROR EXAMPLE

REM USE RUN/STOR TO END

R e o e o et st e e it i e
i@ X=@:0N ERROR:GOTO 1@@

2@ POKE S328@, X:POKE 53281, X+1:PRINT X
3B X=X+1:6070 Z@

122 PRINTYWHEN X)>254 THE ERROR IS5 TRAPPE
D. L)

e

The OUT command acts to disable the current ON ERROR:GOTO
statement—so you may continue with program execution. After you branch to
the line specified by ON ERROR:GOTQ, insert an OUT command to clear the
error code. Then when you head back into code that includes the original or a

65

Chapter 5

ULUTHTHT

SIMON MEETS
LOW-RES
GRAPHICS

SCRV and SCRID

66

new ON ERROR command, it won’t be triggered by an old error, which has
already been taken care of.

Here is another example of ON ERROR, this time roset by the command
OUT:

1 REM PROGRAM 44

2 REM ON ERROR EXAMPLE

2 REM WITH NO ERRDR RESET

4 REMm o e e e - —
1@ X=@0:0N ERROR:GOTO i1@@

<@ POKE S5328@, X : POKE w3281, X+1:PRINT X
38 X=X+1:60T0 20

122 PRINT"WHEN X)254 THE ERROR IS TRAPPE
D. "

112 NO ERROR:REM RESETS ERROR MODE

i1z@d PRINT"GOING BACK TO LODP AGAIN."
132 FOR Y=1 TOD 999:NEXT Y

149 GOTO 1@

We've taken an excursion through some commands that make
programming in Simon’s Basic much easier than in any other version of Basic,
for the Commodore or any other comparable machine. Now let's take a look at
what we can do with low-resolution graphics from Simon’s Basic.

Perhaps the most important low-res commands available from Simon’s
Basic are SCRSV and SCRLD. SCRSV stands for “screen save,” which allows
you to save a low-res screen. SCRLD, which stands for “screen load,” allows
you to load a screen saved with a SCRSV command.

Instead of having to go through the trouble of keying in a program to
load and save low-res screens, as we did from plain old Basic, Simon’s Basic
has dedicated commands to make the job simple for us. They can be used in
the direct or the deferred modes.

To save a screen to disk, you use the following command format:

SCRSV 2,8,2,“screen filename,S,W”

where:
screen filename = name you have chosen for screen
S,W = never change, enter as shown

The parameters other than the screen filename, which you will supply, will
always remain the same—these tell Simon’s Basic to open a file to disk, write
screen data to it sequentially, and then mark it with an end-of-file marker.

To load a screen that has been saved to disk, follow this format:

Geiting into Simon’s Basic

BCKGNDS

SCRLD 2,8,2,“screen filename”

It's just that simple. The screen you saved as that filename wilt appear
on the screen. Any low-res screens, even those in color and using special
graphics characters, can be saved in this manner. In this way you can
preserve your low-res works of art forever.

The BCKGNDS command stands for “backgrounds,” and allows you to
change the background color of a category of characters. BCKGNDS is used
to make text look bolder and more appealing. You may not get a feeling for
how neat multicolored BCKGNDed text looks until you give this command a
try.

One thing you should bear in mind is that the BCKGNDS command
cannot be used with graphics characters—only with text characters. So this
command is only used to enhance the looks of a specific letter, word, or
sentence.

The format for the command is

BCKGNDS screen color,background color 1,background color 2,background
color 3

where:

screen color = 0 — 15
background color 1 = 0 — 15
background color 2 = 0 — 15
background color 3 == 0 — 15

The parameter screen color defines the color of the background screen
itself. The next parameter, background color 1, determines what background
color is assigned to all SHIFTed characters. The parameter background color
2 determines the background color assigned to all REVERSE-FIELD
unSHIFTed characters. The final background parameter determines the
background color of REVERSE-FIELD SHIFTed characters.

Here is a good example of the BCKGNDS command at work in & text
program.

REM PROGRAM 45

REM BCKGNDS ALLOWS FOR COLOR

REM TEXT AND LOW-RES BACKGROUNDS

R M e e s o o e i
10 BOKGNDS 2,8,6,4

2@ PRINT:PRINT:PRINT:PRINT

3@ PRINT "IENOW EXPERIMENT TYPING WITH
THE SHIFT"

43 PRINTYKEY HELD DOWN, IN AND OUT OF
RVS MODE. "
5@ sTOPR

R O I

67

Chapter 5

FLASH and OFF Using the FLASH command is another good way to draw attention to the
screen itself or to certain words on the screen. It can take either of two
alternate formats:

FLASH color,speed

where:
color = 0 — 15
speed = 1 — 255

This command enables you to flash all characters in a single color, at a
rate of speed that is selectable. The speed range may be any number from 1
to 255—with 1 as the fastest flash rate and 255 the slowest.

Alternatively, you may use this format:

FLASH color

where:
color =0 — 15

This will flash a color at a default rate of every 4 seconds.

To stop flashing when you are ready to do so, simply use the command
OFF. The only trick to using the OFF command is to make sure to turn off the
flashing at a moment when the characters are visible—otherwise you could run
into problems with an invisible cursor.

As a remedy to off-timing FLASH, you could redefine cursor color after
using an OFF command.

Here are a couple of uses of FLASH:

1 REM PROGRAM 4¢
2 REM USING "FLASH"
= REM

12 PRINT:PRINT:PRINT:PRINT
@ PRINT "@EYOUR ATTENTIONM, PLEASE. »
38 FLASH 1, 50

1 REM PROGRAM 47
Z REM USING "FLASH"
3 REM IM MULTIPLE COLORS

68

Gefting into Simon'’s Basic

BFLASH

IS

FILL

18 PRINT:PRINTIPRINTIPRINT

28 PRINT * WPLEASE!”

3@ FLASH 7, 18B:FLASH 2,10

49 PRINT “HDON'TA TOUCH THAT DIAL."

If you really want to get flashy, you can resort to the BFLASH command.
This stands for “border flash,” and flashes the screen border color at a rate
you may stipulate. The format is as follows:

BFLASH speed, color 1,color 2

where:

speed = 1 — 255
color1 =0 — 15
color2 =0 — 15

The first parameter determines the rate of the flash, and the following
parameters determine which colors shall flash. To turn the flashing off, use the
command BFLASH 0 and everything will revert to normal once again. Here’s a
simple command trial:

i REM PROGRAM 48
2 REM USING "BFLASH"
3 REM

1@ PRINT:PRINT:PRINT:PRINT
2@ PRINT “A REAL ATTENTION-BETTER!"
30 BFLASH 3@,4,7

The command FILL allows you to fill a rectangular area of the screen (in
a size and location you choose) with text characters of a specific color and
type. Command format is as follows:

FILL row,column,width,length,character code,color

where:

row =0 — 24
column = 0 — 39
width= 1 — 24

69

Chapier 5

III.IIII--ll----u.l-----ll-----lllIIlI-llII-I-lIIII---IlI----llII--ll-l----l'nl.ll.-------------II-Il-IlII-lllllIIlllI--

MOVE

70

length= 1 — 39
character code= POKE code for selected text character
color= 0 - 15

The first four parameters in the FILL command define the area of the
screen to be FiLLed. Rows are numbered 0 to 24, and columns from 0 to 39.
The parameters row and column represent the top lefthand point of the FiLL,
and the parameters width and depth represent the size of the rectangular
shape to be filled. The next parameter, character code, is the POKE code
associated with the character that will comprise the fill.

The final parameter is the color of the FILL character you desire. Here is
one form that use of the FILL command might take:

1 REM PROGRAM 43

2 REM THE “FILL" COMMAND
3 REM AN EASY EXAMPLE

4 REMe s i m e e e e —
1@ FILL 5,3,15,17,65,4

MOVE is an extremely powerful and useful command that allows you to
copy a section of the screen and move it elsewhere on the screen. The
command format is as follows:

MOVE row,column,width,length,destination row,destination column

where:;

row =0 - 24

column = 0 — 39

width = 1 — 24

length = 1 — 39

destination row = 0 — 24
destination column = 0 — 39

The first four command parameters define the screen area you wish to
reproduce, starting with the upper lefthand corner, and defining the size of the
biock. The last two parameters specify the row and column coordinates of the
top lefthand corner of the area where the screen will be duplicated.

Be sure that the parameters you use do not resuit in a MOVE exceeding
the limits of the screen. This means that the depth of the screen area to be
duplicated added to the row number of the area into which the information is
to be reproduced must not exceed 25. It also means that the column number
of the area into which the data is to be reproduced must not be greater than
40. No MOVE command can execute if those parameters result in a BAD
MODE etror.

Gefting into Simon's Basic

Here are some examples of MOVE commands that work—at work:

1 REM PROGRAM 5@
2 REM THE "MOVE" COMMAND
3 REM

18 PRINT"frrrr"
2@ PRINTY ki "
2@ PRINT" F- "
4 PRINT® bt
sa MOVE ©,8,5,5, 1@, 12

1 REM PROGRAM 51

2 REM THE "MOVE" COMMAND
3 REM ANDTHER EXAMPLE
4

12 PRINT"@rrrr"

8@ PRINT" kit "

3D PRINT" - "

43 PRINTY widdoir

5@ MOVE 2,0,5,5,5,5

£& MOVE 5,5,5,5, 1@, 19
70 MOVE 1@,1@,5,5, 15, 15

1 REM PRODGRAM 52
Z REM THE "MOVE" COMMAND
3 REM YET ANOTHER EXAMPLE

1@ PRINT" e "

20 PRINT' ki

3@ PRINT' b4 "

42 PRINTY tebubaiet v

52 MOVE 2,0,5,5,5,5

E0 MOVE S,5,5,5, 1@, 1@
70 MOVE 1@,19,5,5, 15,15
82 MOVE @, @, 29, 20,5, 20

REM PROGRAM 53
REM THE "MOVE" COMMAND
REM MOVING PART DF THE ORIGINAL

N R O

i PRINT" &
=2 PRINT' b ™

71

Chapter 5

SCROLL

72

3@ PRINT" H-HH "
42 PRINT" tebobcimt

5@ MOVE 2,@,3,3,10, 1@

1 REM PROGRAM 54
EM THE "MOVE"
3 REM MOVING FOR ARTFUL EFFECT

£ R

PRINTY B
PRINT" KA
RPRINT 2
PRINT" il
PRINT "
PRINT " {63
PRINT "G
PRINT "G
PRINT"EE
PRINT"ER
PRINT"EE
PRINT"EER

COMMAND

MOVE @,@, 15,15, 12, 20
MOVE @, @, 5,5,7,7
MOVE 5,5,3,9, 1@, 12
MOVE 1@, 1@,5,5,9,0

Simon’s Basic provides a command to enable you to scroll {smoothly
move) specified areas of screen data in any one of four directions: LEFT,
RIGHT, UP, or DOWN. The power of the SCROLL command is formidable,
and makes low-res animation easy. The format for the SCROLL command is
as follows:

direction,scroll type,start row,start column,end column,end row

where:
direction = LEFT, RIGHT, UP, or DOWN

scroll type = Wor B
startrow = 0 — 24
start column = 0—38
end column = 0 — 39

endrow =0 — 24

The first parameter in the scrolling command specifies the direction in
which scrolling will take place. The second command parameter is either a W
or a B, to indicate “wrap-around” or “blanking.” If a section of the screen is

Gefting into Simon's Basic

scrolled with wrap-around, any characters within the specified screen area will
scroll off the edge of the area only to reappear at the opposite edge. When
you use blanking, data that scrolls off-screen will not reappear.

The parameters start row and start column in a scrolling command
define the row and column coordinates at the start of the area you wish to
scrolk.

Likewise, parameters end column and end row specify the column and
row coordinates of the end of the scroll area.

Scrolling commands may be combined in order to scrolt different areas
of the screen in different directions simultaneously. But bear in mind: the
maximum height and width of any scroll area cannot exceed 24 lines down or
23 characters across.

Bet you'd like to see some examples of SCROLL at work in programs.
Here you go:

1 REM PROGRAM 55

2 REM THE "SCROLL® COMMAND

I REM

L I o e o e e e e e e e -
1@ PRINT"SWrrrra"

2@ PRINT" k- "

320 PRINT" HHH"

4 PRINT" S-dwidb

S RIGHMTW 9,8, 39,5

&0 G0TO SO

1 REM PROGRAM 56

2 REM THE “SCROLL" COMMAND
3 REM IN TWO DIRECTIONS AT ONCE
4 REM-——w— -

1@ PRINT"@rrrra"

2@ PRINT" H~-H "

3@ PRINT" pd- "

40 PRINT' bb-i-ddn

S8 RIGHTW @,Q, 48,3

&0 DOWNW 2,0, 9,24

70 GOTO 5@

1 REM PROGRAM 57
2 REM THE “SCROLL™ COMMAND
% REM TWO SHAPES IN TWO DIRECTIONS

BRI M e e e e e o e e e e e e
1@ PRINT"frrrr AR
2@ PRINT® P
3@ PRINT" H-H kX0

73

Chapter

48 PRINT" i EE TN
52 LEFTW @,0, 40,5

&0 DOWNW @, 13,5, 24

7@ GOTO 5@

As you can see, low-res graphics need not be a second-class
operation—in some ways, the graphics potentials of low-res outclass even the
so-called “graphics” screens we are about to discover.

[T

HI-RES GRAPHICS Simon’s Basic puts the powers of high-resolution graphics at the
fingertips of the beginning programmer. With just a few simple commands, you
can build complex, multicolor pictures. Let's get right to it.

LT

LINE

Gefting into Simon’s Basic

So far we have done all our graphics from the low-resolution or text
mode. You can do a lot more than just text from the text mode, as we hope
you saw in the previous section. But the high-resolution mode allows you 0 do
even more. The HIRES command tells the computer to go into high-resolution
mode, and in what screen and plot color to do so. By plot color, we mean the
color the C-64 wilt use to draw on the hi-res background color when we get
around to drawing on it. The format is

HIRES screen color, plot color |RETURN

So if you type HIRES 0,7 you should see a hi-res screen in
yellow, with black as the plot color, right? Try it

What went wrong? There was just a flash, and then the text screen
returned. The reason for this is that unless we are in the process of doing
something on a hi-res screen, the C-64 will automatically return us to the text
mode. We can get around this by telling the computer not to come back.

1 REM PROGRAM 58
2 REM THE "HIRES" COMMAND

3 REM

4 REMeom e - e
12 HIRES @,7

&0 GOTO 2@

Here we wrote a program line to keep us in the hi-res mode. Big deal.
Looks like a plain yellow screen to me. But now let’s learn how to draw
shapes on the screen without using cumbersome character graphics.

The LINE comménd allows us to draw a line on the screen from one
point to another. The following program draws a diagonal line across the
screen:

10 HIRES 0.3
20 LINE EE|1‘-ID13IJD1ES'U1L

BUGOTOHF ; [Y
X X

The format for the LINE command is as follows:
LINE beg x, beg y, fin x, fin y, plot type

where beg x is the beginning x value of the line, beq y is the beginning y
value, fin x is the final x value, fin y is the final y value, and the plot type is set
to 0, 1 or 2. For now we will always use a plot type set to 1.

75

Chapter 5

At first you are bound to be confused by the placement of x and y plots
across the screen. The chart below may help give you a feel for the hi-res
screen:

Dimensions of the hi-res screen.

S

200 pixels

N

s o

320 pixels

Play around with the x and y values for line pliots. Before long you'lf get a

feeling for the hi-res screen.
Now let’s get a taste of the animation potential of Simon’s Basic in
hi-res. The next simple program allows you to create an animated line plot:

1 REM PROGRAM 59
& REM ANIMATED LINE PLOT
3 REM

12 HIRES @,7:Y=0
20 LINE @,@,3200,Y,1

3B Y=Y+4:IF Y)250 THEN 5@
4@ GOTO 2@

50 GOTO S@

We shall be building on this basic principle to create sophisticated moving
pictures. 1t is used simply here, but can be used in sophisticated ways as well.
As you can see from this listing, all you need to do is buitd a counter for
the x and y values, then set up a loop. Each time through the loop, the line
plots to the incremented x and y values. The result: an animated drawing.

76

Getfing into Simon’s Basic

REC

————=" 7 7 T\
- ““\' A ///
—'b-‘,’r,"".
.-f' /
_E__ -~ R
! % P S
5 . [

Any guess as to what the REC command allows us to draw on a hi-res
screen? You got it, a rectangle. As with LINE, it takes a while to get used to
the numbers you need to use with the rectangle command, but you can get
the hang of it with a bit of practice.

First you tell the computer where you want the top lefthand corner of the
rectangle to be. You do this by specifying X and Y coordinates. The only way
to really get a feel for these coordinates is to experiment.

Next you tell the computer how wide and how long you want the
rectangle to be. Again, it takes practice to see what numbers give you the
result you want.

Let's try one:

i REM PROGRAM &2
2 REM THE REC COMMAND

13 HIRES @,7
o@ REC 50,50, 188, 189, 1
3@ GOTO 32

77

Chapter

78

You can see where this set of coordinates places the rectangle. The
command is

REC beg x,beg y,width,length,plot type

where beg x and beg y are the coordinates of the top lefthand corner of the
rectangle, width is the horizontal width of the rectangle, and length is the
vertical length of the rectangle.
What about that strange number 1 tacked on the end of the expression?
Waell, it tells the computer that this is a normal plot. We will look at inverse and
clear plots just ahead. For now all you need to know about is plot type 1.
First, let's put the REC command to work for us in an animated plot.

1 REM PROGRAM &1
& REM ANIMATED REC PLOT
3 REM

Geffing into Simon's Basic

A Closer Look at
Plot Types

£ R Mmoo s i i o
5 X=1;Y=30:A=150:B=150

1@ HIRES @,7

2@ REC X,Y,R,B,1

3@ X=X+5:Y=Y+1:A=A-2:B=B-3

35 IF X)258 THEN S@

49 GOTO 2@

5@ BOTO S0

Pretty good result for just a wee bit of effort, wouldn’t you say? This
program is very easy to understand, once you get a grip on the REC
command. It is a loop, just like the ones we have set up before, and each time
through the loop it increments the corners of the rectangle. The top lefthand
corner moves down and to the right, while the bottom righthand corner moves
up and to the right. This gives us a three-dimensional effect. We stop plotting
when X gets to 251, so we won’t error out. We actually begin plotting the
entire figure again, but you can’t see it happen because it is plotting right over
itseif.

Let’s gain an understanding of plot types by playing with those from our
last example program. We'll change the plot type of the program by changing
the last value in the REC statement.

20 REC XY A.BA0

If we specify a plot type of 0, nothing gets plotted. If a plot type O
encounters a plotted line, it will actually erase it. This comes in handy for
“undrawing” animated shapes. The following program will provide an example.

1 REM PROGRAM &&

& REM UNDRAWING TO ANIMATE
3 REM

4 REM -~

1@ HIRES @, 7:X=5:Y=5

2@ REC X, Y, X+12, X+12, 1
30 FOR Z=1 TO 1@:NEXT Z
40 REC X, Y, X+1@,Y+1@,2
5@ X=X+11Y=Y+1

&@ IF X>90 THEN 10

7@ GOTO 2@

As we saw earlier, a plot type of 1 is a normal plot, drawing a shape in
the plot color across the background.

79

Chapter 5

MULTI-RES —
THE BEST OF
BOTH WORLDS

MULTI

80

A plot type of 2 “inverses” whatever it encounters. It turns a plot off if it
is on, and on if it is off. We can use a plot type of 2 to make our animated
rectangle change shape continuously:

1 REM PROGRAM &3

2 REM REC PLOT UNDRAWS 1TSELF
3 REM

4 REM -

5 HIRES 9,7

12 X=1:Y=32:A=150:B=150

28 REC X,Y,R, B, &

30 X=X+5:Y=Y+1:A=A~21B=0~3

35 IF X)25@ THEN 1@

4@ GOTO 29

We shall learn about more piot types after we have learned about the
multicolor mode. In the hi-res mode, 0, 1, and 2 are all the available plot
types. Play with them until you get a feel for what they do.

So far we have been looking at the hi-res mode, where we can plot one
plot color on top of one background color. Now get ready for the multi-res
mode, where we can plot in three plotting colors and, with a little sneaky
footwork, even more.

The multicolor mode, which we shall call multi-res, is a variant of the
hi-res mode—with half the horizontal resolution, but three times the color. It is
up to you to decide which resolution fo use with which graphics trade-offs.

The MULTI command, when used following a call to the HIRES
command, will cause all plotting to take place in multi-res. The format for the
command is

H!RES plot color,background color-MULTI color 1,color 2,color 3

where:

plot color = 0 — 15
background color = 0 — 15
color1 =0 — 15

color2 =0 — 15

color3 =0 — 15

Note that a MULTI command must always follow a HIRES command.
The three parameters following MULTI define the plot colors you wish to use.

Getting info Simon's Basic

Each plot color is selected by its MULTI command designation as the
plot type in a plotting command. We will clarify this just ahead. But here are
some examples of hi-res graphics transposed into multi-res:

i

LIV £

4

b

REM PROGRAM 64
REM ANIMATED REC PLOT
REM IN MULTI-RES

RE M o e e - e
HIRES @,2:MULTI &,4,6

1@ X=1:Y=1:A=90:B=180
2@ REC X,Y,A,B; 4

84

Chapter 5

pfiot Types in
Multi-Res

82

3B X=X+3:Y=Y+1:A=QR-1:B=6-2
35 1F X) 100 THEN 1@
4@ GOTO 2@

1 REM PROGRAM 65

2 REM ANIMATED LINE PLOT
3 REM IN MULTI-RES

F O —— e e
5 HIRES @, 1:MULTI 4,6,2
1R X=2@D:Y=03:2=1

2@ LINE @,@,%,Y,Z

30 X=X+8:Y=Y+3:1I=Z+]

42 IF Z=4 THEN Z=1

=3 IF Y)25@ THEN 5

&2 GOTO 28

1 REM PROGRAM &6

2 REM MORE MULTICOLORS
3 REM IN MULTI-RES
4

12 HIRES @, 7:MULTI 2,4,6
&0 REC 5,5,9@,9@,5

3@ REC 1@, 19,302, 32,1

4B REC 25,825, 40,40,3

5@ GOTO S0

in multi-res, each pixel is twice as wide as it appears in hi-res. As a
result, multi-res has half the horizontal resolution of hi-res. Still, multi-res has a
pretty respectable look, and the tradeoff results in the ability to put multicolors
on the screen.

Plot types work slightly differently in multi-res than they do in hi-res, to
account for the additional colors available. A plot type of 0 still functions to
clear a dot. A plot type of 1 plots a dot in color 1. A plot type of 2 plots in
color 2, and a plot type of 3 plots in color 3.

If you specify a plot type of 4, the plot will inverse the dot color in the
following fashion:

color 0 ¢changes to color 3
color 1 changes to color 2
color 2 changes to color 1
color 3 changes to color O

Getfing into Simon's Basic

This plot type can give us animated rainbow effects for a small

expenditure of code.
Creative use of plot types can make animation a cinch. Here are some

starting points:

{1 REM PRODGRAM &7
2 REM ANIMATION USING PLOT TYPE
% REM IN MULTI-RES

10 HIRES @, 1:MULTI 2,4,7
2@ X=10:Y=20

3@ REC X, Y, X+1@,Y+10,K
4% FOR Z=1 TO 1@:NEXT Z
S@ X=X+E1Y=Y+I1K=K+1

g&@ IF H=4 THEN K=1

72 IF Y)3@2 THEN 1@

an GOTO 39

i REM PROGRAM &8

o REM MORE ANIMATION USING PLOT TYPRE
2 REM IN THE MULTI-RES MODE
&

S HIRES @, 1:MULTI @,7,5
10 X=19@:Y=0

20 LINE @,2,X,Y,2

3@ X=X+8:Y=Y+3:1I=Z+1

40 IF I=4 THEN Z=1

=@ IF X)25@ THEN 1@

&2 GOTO 20

REM PROGRAM &9

REM STILL MORE ANIMATIOM

REM IN THE MULTI-RES MODE

MIRES 1,6:MULTI 4,1,6
X=1@

20 REC X, X+1@, X+15, X+29, 1

30 FOR Z=1 TO 1@:NEXT Z

4B REC X, X+1@, X+15, X+20, 3

5@ FOR Z=1 TO 1@:NEXT Z

6@ REC X, X+1@, X+15, X+2@, 2

7@ FOR Z=1 TO 1@:NEXT Z

8@ REC X, X+1@, X+15, X+22, 0

9@ X=X+1:IF X=72 THEN 18
122 B0TO 29

5 e
1)
m
=z

-
=

83

Chapter 5

[————————eparepnnprpapupepnpepepaperr T T TS T T T IR T N T L EE DLV L LA ELL D LA DL DL L Ll bbbttt

LOW COL

LOW COL enables you to specify a new and different set of graphics
plotting colors from those originally selected with the HIRES or MULTI
commands. The format for the command is

LOW COL color 1,color 2,color 3

where:

color1 =0 — 15
color2 =0 — 15
color3 =0 — 15

Note please that because only two colors are used in hi-res graphics
plotting, the third color in the LOW COL command will have no effect.
However, you must still specify three parameters, even when using LOW COL
for a hi-res application. Specify a third “dummy’” parameter for hi-res, even
though it will be inoperative. When working in multi-res, choose all three colors
available.

= S - e
e TR m
. - L o
A i (o %
— I T T 1T =T T 1T 1 1T
== : T
v — T
e — 1—1 T o
S T T
T _'_.:'__T_' . L T |
T I 1 - T T T 4‘;|
= T ————— | —
T = ? S——
= L —L
S = TN
. o N
n r =~z b)
g, e oy
v ANy LOWCUL .. N
7 3 Ly
I..’ 5. WCOL: -.
o T
5 e OW
L 3 <
y avar 1 4D, Of
s
WY P
i

84

Getting into Simon’s Basic

([

Hi COL

PLOT

HI COL allows you to revert to the originally selected plotting colors.
With it you can restore the original colors set up with a HIRES or MULTI

command, after a LO

W COL command has been invoked.

Here are examples of LOW COL and Hi COL in hi-res and multi-res
applications:

1 REM PROGRAM 7@
2 REM LOW COL AND HI COL
3

REM

13 HIRES @,7:MULTI ©,1,2

2@ REC
4@ REC
58 REC
&2 LOW
7a REC
a0 REC
99 REC

20, 2@, 3@, 32, 1
25, 25, 35, 35, 2
30, 3@, 40, 40, 3
CoL 3,4,5

25, 35, 45, 45, 1
4B, 4,50, 58,2
45, 45,55, 55, 3

99 G070 99

(LR R I L

REM—m——m e
X=10@:Y=0

REM PROGRAM 71
REM LOW COCL AND HI COL
REM ANOTHER EXAMPLE

1@ HIRES @, 1:MULTI 2,6,7
29 LINE @,@,X,Y,7

3P X=X +2:Y=Y+2:Z=Z+1
4@ IF Z=4 THEN Z=1
=@ IF Y)B8@ THEN LOW COL @,1,5
6@ IF Y)12@ THEN HI COL

72 IF Y)20@ THEN S
82 GOTD 20

PLOT very simply allows you to plot a dot. The format for the command
is as follows

PLOT x,y,plot type

85

Chapter 5

Ho-

]
W
\

You can use the PLOT command to draw a starfield or to plot a shape.
Here are examples of both.

{ REM PROGRAM 7&

2 REM THE PLOT COMMAND
3 REM

4 REMen oo oo e oo e
10 HIRES 1,@

15 PLOT 51,28, 1

2@ PLOT 96, 4@, 1

3@ PLOT 14@,72,1

42 PLOT 176,10@1,1

=@ PLOT 2286, 183, 1

60 PLOT 193,1%4,1

7o PLOT 1S3, 128, 1

39 GOTO 39

86

TEST

Gefting into Simon's Basic

1 REM PROGRAM 73

2 REM THE PLOT COMMAND
% REM ANDTHER EXAMPLE
4

1@ HIRES @,7:MULTI 2,4,6
20 X=10:Y=10

30 PLOT X,Y,1

4@ X=X+2iY=Y+1

S@ IF X (100 THEN 3@
6@ PLOT X,Y,1

70 Y=Y+E

8@ IF Y<142 THEN 6@
9@ PLOT X,Y,1

100 X=X-&

11@ IF X)1@2 THEN 9@
129 PLOT X,Y,1

132 Y=Y-&

142 IF Y)>1@ THEN 120
15 GOTO 152

The command TEST allows you to determine if a plot has been drawn at
a screen location where another plot exists. Using the command, you can
examine the status of a location on a graphics screen. The format is

variable= TEST {y)

where:

variable = legal variable named by user
x = legal x coordinate

y = legal y coordinate

The parameters x and y are the screen coordinates of the point being
tested. If a dot has been plotted at that point, the plot type of the dot is
returned. A value of 0 is returned if no dot is present. The dot may be any part
of a graphics shape, plotted in hi-res or multi-res.

The real value of the TEST command is to detect where one plot
intersects another. Here is an example of the command at work:

REM PROGRAM 74
REM THE TEST COMMAND
REM TO DETECT AN INTERSECTION

S U o

87

Chaptetr 5

i@
&
3@
4@
S
&
TR
aa
21
1
i1@
12@
13@
14@

HIRES 8, 1:MULTI 2,4,6
FOR X=20 TD 14@
PLOT X, 2@, 13 PLOT X, 60,1
NEXT: X=2@: Y=6@
IF TEST(X,Y)=@ THEN PLOT X,Y,2
X=X+1:Y=Y~1
IF TEST(X,Y)=0 THEN 5@
IF TEST(X,Y)=@ THEN PLOT X,Y,2
X=X+13Y=Y+1
IF TEST(X,Y)=0 THEN 8@
IF TEST(X,Y)=0 THEN PLOT X,Y,2
X=X+13Y=Y~-1
IF TEST(X,Y)=0 THEN 11@
GOTO 14@

CIRCLE

as

You've got it. CIRCLE draws a circular shape. The format for the
command is

Getting into Simon's Basic

CIRCLE cent x,cent y,x radius,y radius,plot type

The parameters cent x and cent y specify the center of the circle. The
parameters x radius and y radius indicate the horizontal and vertical radii of
the shape. By varying these radii, circles and ellipses of different sizes can be
drawn.

When you first begin plotting circles, you may find yourself somewhat
perplexed. Because screen pixels are somewhat wider than they are tall, equal
horizontal and vertical radii (x radius =y radius) will not result in a perfect
circle on the screen. In order to get a good circle in hi-res mode, the x radius
must be 1.4 times the y radius in length. In multi-res, the x radius must be 1.6
times the y radius to achieve a good-looking circle. Circular shapes that have
equal horizontal and vertical radii will plot as ellipses.

Here are some circles and ellipses o get you started.

1 REM PROGRAM 73
2 REM THE CIRCLE COMMAND

1@ HIRES @,7
2@ CIRCLE 159, 80, 7@,50, 1
32 GOTO 3@

1 REM PROGRAM 76

2 REM THE CIRCLE COMMAND

3 REM USED TO DRAW AN ELLIRSE
4 REM—— = -
1@ HIRES @,7

@ CIRCLE 1S®, 82,998,582, 1

Zo GOTO 30

1 REM PROGRAM 77

2 REM THE CIRCLE COMMAND

3 REM AND COLOR ANIMATION EFFECTS
4

-

5 MIRES @, 7:MULTI 2,5,6
19 X=6Q:Y=80:7=1

2@ CIRCLE 8@,80,X,Y,Z
2B X=X-3:1Y=VY=-3:1ZI=I+1

4@ 1 Z=4 THEN ZI=1

5@ IF X)y1i@d THEN 22

&G GOTO &@

89

Chapter 5

REM PROGRAM 76

REM THE CIRCLE COMMAND

REM USED FOR ANIMATED MOIRE DESIGN
RE M = om e e e -
HIRES @, 1

10 X=1Q0:Y=76

29 CIRCLE 13@,8@,X,Y,1

32 CIRCLE 15@, 10@,X,Y, 1

42 X=X~ZsY=Y-3

5@ IF Y)1@ THEN 2@

62 GOTO &2

W

ARC The ARC command allows you to draw part of the circumference of a
circular shape, without having to draw the entire circle and then trying to
erase. Format for the command is as follows:

ARC cent x,cent y,beg ang ,end ang,interval,x radius,y radius,plot type

The parameters cent x and cent y are the screen coordinates of the center of
the circular shape from which the arc is drawn. Parameters beg ang and end
ang define the start and end angles of the arc. To determine angles, use the
following chart:

Figuring the angles.

00
315° 45°
270 \\\\ Q90°
235° 135°
180°

90

ANGLE

Getting into Simon's Basic

The parameter interval specifies the plotting increment, in degrees
between each point on the arc. This determines whether the arc will be plotted
as a solid or jagged line. To obtain an arc drawn with a solid line, this value
should be set to 1. A larger value results in jagged lines of increasing distance
between dots.

Parameters x radius and y radius indicate the horizontal radius and
vertical radius of the circular shape of which the arc would be a part if the
entire circle were to be drawn.

Try these to get a feel for the ARC command:

i REM PROGRAM 73
2 REM THE ARC COMMAND
3 REM

19 HIRES @,7
2@ ARC 19@,8q,d,235, 1,60, 40,1
32 GOTO 3@

i REM PROGRAM 8@

2 REM THE "“ARC" COMMAND

3 REM ANOTHER EXAMPLE

4 REM R
1@ HIRES ©,7

20 ARC 152, 80, @, 270, 4@, 68, 49, 1

30 GOTO 3@

The command ANGLE allows you to draw the radius of a circle, without
having to display its circumference. This may seem exactly the same as
drawing a straight line, and at first glance it is. But the ANGLE command allows
you to plot multiple radii from a common center. This makes the design of star
shapes, pie charts, and spoked wheels quite simple.

The format of the command is

ANGL cent x,cent y,angle,x radius,y radius,plot type

The parameters cent x and cent y are, as usual, the screen coordinates
of the center of the circle. Angle is the angle, in degrees, at which the radius

91

Chapter 5

92

-
z
Z
: = 3
e
= - = =
= -~ \ —
= —
—
—
=
=

)

BRI

) Y/

\\\\\ "

—
D)

—_—

—
=
-/f!//

>

\ =

is depicted. Again, you may use the chart provided above to figure out angle
coordinates. Parameters x radius and y radius are again the horizontal and
vertical radii of the circle they would define, if we were to plot it.

Here are some examples.

i REM PROGRAM 81
2 REM THE ANGL COMMAND

2 REM

1@ HIRES @,7
20 ANGL 152, 8@, 2508, 6@, 6@, 1

30 ANGL. 150, 88, 98, 62, 6@, 1
42 GOTO 40

i REM PROGRAM 82
2 REM THE ANGL COMMAND

HURNENL

PAINT

Getting into Simon’s Basic

3 REM ANOTHER EXAMPLE

1@ HIRES @,7

20 X=0

3@ ANGL 15@, 8@, X, 62, 6@, 1
47 X=X+15

5p IF X{(360 THEN 30

6@ GOTO €@

1 REM PROGRAM 83
2 REM THE ANGL COMMAND
3 REM A MULTI-RES EXAMPLE

1@ MIRES @,7:MULTI 2,6,7
20 X=0:ZI=1

3@ ANGL 69, 8@, X, 6@, 50, Z
4B X=X+3:1Z=Z+1

s@ IF 2=4 THEN Z=1

60 IF X(36@ THEN 3@

7@ GOTD 79

PAINT is a very powerful command, and one you will be using often from the
hi-res and multi-res modes. Paint fills an enclosed area with color. Using the

93

Chapter 5

94

" PAINT command, you can get the stick-figure plots available from the graphics

mode to fill right out into solid shapes.

Please note one extremely important fact: the area to be colored in must
be completely enclosed or the fill will “spill out” into the background color.
The area to be painted is specified by the x and y coordinates of any point
within its closed boundaries.

The format for using the command is

PAINT x,y,plot type

In the hi-res mode, the same area may be painied only once. Trying to
paint over it will not result in any action. In multi-res, however, the same area
may be repainted as many times as you like.

The plot type in this command must be 0,1,2,0r 3 only. The color of the
fill is determined by the plot type. You can't fill a multi-res shape with inverse
color.

Here are some examples of PAINT:

i REM PROGRAM 84
2 REM THE PAINT COMMAND
3 REM

19 HIRES @,S:MULTI 2,6,4
2@ REC 12,5, 35,60, 1

32 CIRCLE 9@, 52, 35, 48,2
49 REC 20, 6@,72,92,3

58 PAINT 11,6,1

&2 PAINT 9@, 5@, &

7@ PAINT 21,66,3

99 GOTO 99

1 REM PROGRAM 835
2 REM THE PAINT COMMAND
3 REM ANOTHER EXAMPLE

1@ HIRES @,5:MULTI 5,6,7
2@ CIRCLE 9@, 5@, 5@, 40, 1

3@ CIRCLE 80, 6@,50, 40,2

4@ CIRCLE 7@,7@,50, 42,3

=@ CIRCLE €@, 8@, 50, 4@, 1

E@ REM PAINT 89,49, 1

7@ PAINT 73, 39,2

8a PAINT &3,29,3

92 PAINT 59, 2@, 1

122 PAINT 89,92, 1

BLOCK

Getting info Simon's Basic

112 PAINT 99, 10@,2
1@ PAINT 79,110,3
130 GOTO 13@

1 REM PROGRAM 86

= REM PAINTING OVER THE SAME ARERA

% REM HIT RUN/STOP-RESTORE TO STOP

4 REM - e
1@ HIRES @,1:MULTI 7,8,9

2@ REC 3@, 30,5@,7@,1

30 X=1i

4@ PAINT 31,31, X%

5@ X=X+1:IF X=4 THEN X=1

6@ GOTD 4@

BLOCK works very much like PAINT, but it allows you in one step to
draw a fully-shaded block of color. Using the BLOCK command is very similar
to using a REC command followed by a PAINT of the same color inside it.
BLOCK draws a rectangle and fills it with color at the same time. In the
BLOCK command the color of the rectangle and the fill color are always
exactly the same.

The format for the command is

BLOCK beg x,beg y, end x,end y,piot type

The BLOCK command is useful if you wish to create several adjacent
blocks of color without separating them by lines. The parameters beg x and
beg y specify the top left corner of the block, while end x and end y specify
the lower right corner.

Here is BLOCK at work:

1 REM PRODGRAM 87

& REM THE BLOCK COMMAND
3 REM

4 REM- - -
1@ HIRES 2,3:MULTI 3,4,5
20 X=10:Y=6@:Z=1

30 BLOCK X,X,Y,Y,Z

40 X=X+1@:Y=Y+1@:Z=Z+1
5@ IF Z=4 THEN Z=1

6@ IF Y(2@@ THEN 30

7@ GOTO 7@

95

Chapter 5

DRAW

96

) 7

1 REM PROGRAM 88

2 REM THE BLOCK COMMAND
2 REM ANOTHER EXAMPLE

4 REM e
1@ HIRES 2,3:MULTI 4,5,6
20 X=S:Y=150:Z=1

3@ BLOCK X,Y,Y,X,Z

4@ X=X+23Y=Y~211=Z+1

5@ IF Z=4 THEN Z=1

62 IF Y>3 THEN 30

70 GOTO 7@

The DRAW command allows you to design a shape, save it as a “string,”
and then display it on the screen in any of several ways. The shape is
designed in the same way as drawing a picture on a piece of paper—and in
fact resembles some aspects of LOGO turtle graphics quite closely.

Getting into Simon’s Basic

There are nine commands available to the pen in a draw command.
They are the following:

0—move 1 pixel to the right

1—move 1 pixel up

2—move 1 pixel down

3—move 1 pixel to the left

5—move 1 pixel to the right and plot a dot
6—move 1 pixe! up and plot a dot
7—move 1 pixel down and plot a dot
8—move 1 pixel to the left and piot a dot
9—stop drawing

The format for the DRAW command is

DRAW “pen commands”,x.y,plot type

Each number within quotes is a DRAW command number which tells the
computer what to draw and how to draw it. A maximum of 74 instructions can
be placed within the quotation marks on any one program line. You may,
however, add strings of instructions together up to a maximum of 255. To
continue the shape in a following command, a new origin must be specified
beginning where the old one ended off.

Using the DRAW command is a bit tricky at first and rather cumbersome
even after you have mastered the technique. Still, you can do some neat
things with shapes created using the DRAW command, as we shall see.

1 REM PROGRAM 89
2 REM THE "DRAW" COMMRND
3 REM YOU *MUST* USE ROT COMMAND TOO

12 HIRES @, 1:ROT @,&

22 DRAW nEEsSESSSSS777777777788888888886
EEREEEEEET, 160, 5@, 1

3@ 60TD 29

1 REM PRDGRAM J@
o REM ANIMATION WITH THE "DRAW" COMMAND

10 HIRES 1,@:ROT 2,1:X=20

o0 A$="S55555555577777777778888888888666
6666666

32 DRAW A%, X, 2@, 1

97

Chapter 5

ROT

98

S@ DRAW AS, X, 20,0
E@ X=X+1:1F X=25@ THEN X=2@
72 GOTO 38

1 REM PROBGRAM 91
& REM ARSTRACT ANIMATION WITH "DRAW"

3 REM

4 REM—m———mm— — -
12 HIRES 1,0:MULTI 2,4,6:ROT 1,4

20 A$="555555555S55559575555557777777777
7766666666666666665656565"

3@ X=0:Y=0

4% DRAW A%, X, Y, 1

S50 X=X+2:Y=Y+1:IF Y{1@@ THEN 42

55 X=0:Y=1@2:ROT 2,4

&2 DRAW A$, X,Y,2

72 X=X+2:Y=Y+1:IF Y{12@ THEN 6@

82 X=B:Y=S:ROT 3,4

92 DRAW A%, X,Y,3

10@ X=X+1:Y=Y+2:IF Y{(255 THEN 30

110 GOTO 110

The command ROT is short for “rotation” and allows you to display a
shape created by the DRAW command at a specified angle of rotation and in
a specified size. The command format is

ROT rot angle,size

The parameter rot angle specifies by how much the shape is to be rotated and
it uses the same angle notation as ARC and ANGLE. This value of rot angle
(range is limited to O through 7) defines the angle of rotation as shown in the
table below:

Rotation 0— 0 degrees
1— 45
2— 90
3—-135
4180
5225
6—270
7—315

Getiing into Simon’s Basic

The second parameter in the ROT command defines the size of the
shape you have designed. A “1” in this position indicates that the shape is to
be displayed at normal size: where each number in the DRAW command
represents a movement of one pixel. Increasing this nutnber results in an
increased figure size. A “2” in this position will move 2 pixels per DRAW
command, and so on.

Remember that a design will disappear from the screen if it is specified
to be too large. Keep the size of the DRAW figure within acceptable screen
limits.

1 REM PROGRAM 92

2 REM SPINNING ROT VALUES

3 REM

B -
1@ HIRES 1,@:MULTI By 3, 421 X=0

b=l n$=“6666666666666666655555555777779“
2@ ROT X, 1:DRAW A%, 70,99, 1:FOR Z=1 TO S
sNEXT Z

35 DRAW A%, 79,99,0

43 X=X+1:IF X=8 THEN X=@

=@ B80TO 3@

1 REM PROGRAM 93
2 REM ROT VALUES--ANOTHER EXAMPLE
3 REM

i@ HIRES 2,1

20 A$="S5E5555555757575757575"
32 ROT @, 1:DRAW A%, 20, 208,1

4@ ROT 1,Z2:DRAW A%, 4@, 30,1

=@ ROT 2,3:DRAW A%, 90,52, 1

62 ROT 3, 4:DRAW A%, 160, 70, 1

7@ ROT 4,5:DRAW A%, 190, 15,1
8y GOTO 8@

i REM PROGRAM 94

2 REM ROT VALUES-—AN ANIMATED EXAMPLE

2 REM

L R Mo om oo o e st e e e e
1@ HIRES 2, 1:MULTI @, 3, 4:X=20

20 ﬂ$="55557777555577778888777766667?776
£668888666655356666"

3@ ROT R, 1:DRAW A%, X,508,1

99

Chapter 5

DISPLAYING TEXT
IN HI-RES AND
MULTI-RES

CHAR

100

32 FOR I=1 TO S@:NEXT Z

3% ROT R, 1:DRAW A%, X, 50,0

40 X=X+S:R=R+1:IF R=8 THEN R=Q
5@ IF X) 152 THEN 1@

60 GOTO 32

When you are composing hi-res and multi-res screens, it is sometimes
desirable to print text alongside pictures. Simon's Basic has two commands
which allow you to do just that.

The CHAR command allows you to display a text character on a hi-res or
multicolor graphics screen. The format for the command is

CHAR x,y,character code,plot type,size

The parameters x and y specify the location of the character on the
screen. The next parameter in the command is the character code of the
character you wish to display (a list of character poke codes appears in the
Commodore Programmer’s Reference Guide).

The last parameter in this command specifies the height of the
character. A parameter of 1 will display text at its normal graphics size, which
is eight pixels high. Increasing the parameter acts just like the size parameter
in a ROT command, but for one difference: the characters expand only
vertically—their width cannot be varied.

1 REM PROGRAM 95

2 REM THE CHAR COMMAND

3 REM

G RE Mmoo o e e

1@ HIRES @,7
20 CHAR 3@,40,1,1,1
3@ GOTO 30

i REM PROGRAM 96

2 REM THE CHAR COMMAND

3 REM ANDTHER EXAMPLE

4 REM ——

19 HIRES 2, 1:MULTI 2,3, 4
1S REC 75, 6@, 80, 99, &

2@ CHAR 77,7@,11,1,&

3@ GOTD 3@

Getting info Simon’s Basic

TEXT

1 REM PROGRAM 97

2 REM THE CHAR COMMAND

3 REM ONE MORE EXAMPLE

b REMm oo e e -
1@ HIRES 2, 1:MULTI 2,3,4

2@ CHAR €0, 48,1,1,5

3@ CHAR 3@,%9,2,2,5

4@ CHAR 4@,6@,3,3,5

=@ GOTO S0

The TEXT command allows you to print character strings on graphics
screens. The format for use of the command is

TEXT xy," CTRL-A or CTRL-B character string”,plot type,size,spacing

The parameters x and y specify the screen coordinates of the first letter
of the string. The next parameter is the string itself.

The control character preceding the string, either CTRL-A or CTRL-B,
indicates whether the string is to be displayed in upper or lower case letters.
You can also mix upper and lower case letters in a single string expression.
Precede all upper,case_letters with CTRL-A, and all lower case letters with i
CTRL-B. B Pabl gk e E e S R ,itzs;‘if”--.a._,w -f-»-"";g,.&(k__ ﬁéf{ TE o f}ié?’ ‘{

The size parameter acts exactly as it does in the CHAR command. The 47~ 7
parameter spacing determines how much pixel space will be inserted between
characters in a string. Default for this value is 8. Increasing this parameter
increases the space between characters.

1 REM PROGRAM 98
2 REM THE "TEXT" COMMAND

12 HIRES 2,1:MULTI 2.3.4
20 YEXT 20,20, "¥HEY THERE!".1.2,7
38 GOTO 3@

1 REM PROGRAM 39
2 REM THE "TEXT* COMMAND
2 REM ANOTHER EXAMPLE

1@ HIRES 2,1:MILTI 2,8,7
2@ TEXT 5,60, "3HOW ARE THINGS GOING?*.2,1.,7
28 GOTO 34

104

Chapter 5

I

CSET

102

1 REM PROGRAM 10@
2 REM THE "TEXT" COMMAND
3 REM IN CONCERT WITH OTHER SHAPES

1@ HIRES 2,1:MULTI 2,6,7<
20 BLOCK 50,80,140,168,2
30 CIRCLE 5@,70,58,78,1 .7 "
4@ PAINT 21,21,4 _~ |
5@ PAINT 51,81;3 ;o
€8 TEXT 20,30,“@CIRCLE",3,1,7

7@ TEXT 70,158, "NRECTANGLE",3,1.,7

89 GOTQ 99

The command NRM stands for “normal” or “normal resolution mode,”
and allows you to return to a low-res or text screen from a graphics screen.
Since both screens reside separately in screen memory, the NRM command
will return to the low-res screen that existed before a HIRES command was
invoked.

The command CSET allows you to go in the other direction, recalling the
last graphics screen from the text mode. The format for the command is

CSET 2

1 REM PROGRAM 191
2 REM THE "“MNRM" COMMAND
2 REM

i@ HIRES 2,1:MULTI 9,12,15
2P BLOCK 50.88,.140,1€0,2

' 3@ CIRCLE 58,70,5@,78.1

6@ TEXT 20,390, "W IRCLE".2,1.7

70 TEXT 79.15@,"SRECTANGLE".,1.,1.7
8@ PAUSE 3:NRM

98 PRINT"NOW BACK TO THE TEXT PAGE."

1 REM PROGRAM 182
2 REM THE “CSET*" COMMAND
3 REM TO RETURN FROM A "NRM"

Getting into Simon’s Basic

i@ HIRES 2,1:MULTI 9,12.,15

7@ BLOCK 58,88,1480,168,2

3@ CIRCLE 5@,78,5@&,76,1

68 TEXT 28,38 ,":aCIRCLE".,2,1.,7

70 TEXT 70,158, "@RECTANGLE" ,1,1,7

80 PAUSE 3:NREM

9@ PRINT"WE INTERRUPT THIS PROGRAM..."
18@ PAUSE 3

ft1@ CSET2:MULTI 2.,5.7

120 GOTO 129

103

Q

SPRITES ARE
MOBS

MOBBiNG UP IN SiMON'S Basic

It would be tough for you to own a G-64 very long without knowing that your
machine can generate “sprites.” A sprite is a piece of color screen data that
can be controlled independently from the “norma!” screen display. The screen
data can be manipulated to move, change color, and even change shape
without the need to recaiculate backgrounds. Up to eight simultaneous and
independent sprite shapes can be programmed in a relatively straightforward
manner.

First of all, let's get one piece of terminology straight. In Simon’s Basic,
a sprite is not a sprite—it is a MOB: a movable object block. So get the word
“gprite” out of your head—it's MOB from here on in.

MOBs don’t care whether you display them on hi-res or low-res screens
(although you need to do a bit of extra work to get them to appear on hi-res
and multi-res screens). You can display a MOB in any single color in the hi-res
mode, and in up to three different colors in the multicotor mode. A hi-res MOB
is 24 pixels wide by 21 pixels deep. Remember that in multicolor mode pixels
are double width, so multicolor MOBs are 12 dots wide by 21 dots deep.

Before your enthusiasm takes you off the deep end, you should realize
that working with MOBs can be tricky. There are many things to keep track of
and dozens of ways to trip up.

On the bright side, it is much easier to deal with them from Simon’s
Basic than it is from plain old Basic. Simon’s Basic has many special
commands specifically designed to make working with MOBs as simple as
possible. There is no comparison between learning to handle MOBs from
Simon’s Basic and controlling “sprites” the hard way.

105

Chapter 6

.--.llllIIIIIIII-IIIII-IIIIIIIIIIIIIIIIIIIlIIIIIIIIIIll-I_IIIII-IIIIIII----IIIIIIIlIIIII-IIIIIIIII-II.IIIII-IIIIIIIIIII

The purpose of the DESIGN command is to allocate memory space for a
DESIGN MOB. Before you do much else, you must tell the computer what kind of
MOBs you are designing, and where they shall reside in memory. The format
for the DESIGN command is as follows:

DESIGN mob-res,address

where:
mob-res = 0 or 1
address = 2048 — 4095 (in multiples of 64)

XA .
'l’. /'/_-’

%

%

AN

\ “\v— >

106

MOBbing Up in Simon's Basic

The first parameter tells whether you are designing a hi-res or multi-res
MOB. If you specify 0 for this parameter, you are designing a hi-res MOB. If
you specify 1, you are designing a multi-res MOB. The second parameter telis
the computer where to look in memory to find this specific MOB shape.

Because each MOB uses up 64 bytes of memory, each block of
available MOB memory is 64 bytes long. MOB memory starts at memary
location 2048, and proceeds from there in blocks of 64. The table below
shows a MOB memory map.

MOB memory map.

o0 ~JONH Wi~ O

MOB Block Memory Location

32 2048 =2048
33 2045+64 =2112
34 2048+128 =2176
35 2048+192 =2240
36 2048+256 =2304

37 2048+256+64 =23608
38 2048+256+128 =2432
39 2048+256+192 =2490
40 2048+256+256 =2560

Things start to get a little sticky now, but try to hang on. There is a block
number associated with each block of MOB storage space. In the table above,
we can see that the block numbers start at 32, which is associated with the
block that begins at memory location 2048. Block 33 starts at location
2048+64, block 34 at 2048164 +64, and so on. To determine what block
number is associated with any given memory location, simply divide the
memory location by 64.

Let's answer a quick question probably now oceuring in many minds—if
only 8 MOBS can be displayed at a time, why designate so much room for
MOB addresses?

Well even though we are limited to displaying eight or fewer MOBs at a
time, we may want to define many more MOBs than that. Once we do, we can
change them on the fly—and this is how we animate MOBs. By switching
slightly different MOBs quickly, we can make a shape appear to move: we can
make a runner run and a jumper jump. Then when we move the MOBs while
flipping between them, we have a bona fide moving picture. That's just one

107

Chapter 6

@

108

reason why we sometimes keep lots more than eight MOBs defined in
memory.

Let's go back to the hard-to-digest MOB rules, which will only become
clear through experience with them.

It a MOB is to be used on a hi-res graphics screen, you must add a
graphics constant value of 49152 to the screen address figure. When
calculating a block number, do not take the 49152 graphics constant into
consideration. Merely work the calculation as usual—49152 is a flag that
allows the MOB to appear on a hi-res or multi-res screen. If you forget this
when putting a sprite on a hi-res or multi-res screen, you'll go nuts trying to
figure out why it's not working.

The @ command is the header that indicates a MOB design grid is to
follow. You will use a design grid to construct MOB shapes. The grid is 24
dots wide when you are designing a a hi-res mob, and 12 dots wide when you
are designing a multicolor mob.

Something else important: you should ensure that each line number for
the grid is the same length—for example, three digits or four digits. By doing
this, you will keep the indentation of points on the grid constant, and not
encounter problems during the MOB design process.

It is a good idea to keep design grid template files on disk for hi-res and
multi-res MOBs. Then, when it comes time to design a MOB, you can load the
table and proceed with your design.

Here are hi-res and multi-res MOB design grid tempiates:

1 REM PROGRAM 103
2 REM HIRES MOB TEMPLATE

100 B..csavenssnnnevecsnanannn
110 Biveenernnsannosssnunnnns
120 B..aorvssassnsrasnsanaann
120 B, .uwrasssssneuacnnnznss
148 Biuvvwcnansuvnnnansesannsn
I5@ @ ciccrvvuannumunmnnsssnna
160 B, . .iavsuassennsassnnavsnre
172 B, e.ussnesanvnranraasnns
180 B...vwsensnvuvusnnnnnnsnan
190 P..ucuvevnnoansnnsasnnnnus
p=d7, 7, I I A T I WA
21D B.uivusccesssnmenzvonnscan
=7 R E LR R

k—um BIIIIIIIIII-O-IIHCUHIIII.

2408 By .icescncnnssnsnuennnnven
ZEQ Pee.cesunasnnnnrannnansns
PED Boi.vascsmonssanuvrsssanunnns
B70 B .cscsnassannsnrnusenvus
28D M. .. uarssvsennnecanssunnn

MOBDing Up in Simon’s Basic

39@ @llllllIl‘.!!.IlI.l.llIll
3@@ @----Oal--snnl--..----.ll

1 REM PROGRAM 14
2 REM MULTI-RES MOB TEMPLATE
3 REM

110 Puvenasvranns
120 B o ucavavenan
13 B, s ecnanvaan
148 B .vnanasnans
150 Bewevnnnsonsa
168 @. .. newewasce
17 B cincnnewnea
180 @ vcnaanarenn
199 B...vsnnocuns
a7, v R
B10 B eeaiveonann
220 B . .icurnsann
230 B.u.vncanmans
240 B.ocinnenenen
28D Boovcennsrans
260 B ..covnvnnen
27D Bousnsnznnasna
280 @, ..iunanennn
290 Bircenrocanns
320 B...snsnanans

Creating multiple MOBs? No problem. Use the screen editor to change
the line numbers on blank design grids. In this way you can clone as many
new grids as you need in any simple program—using one grid template from
disk.

When you are designing a monochrome MOB in the hi-res mode, the
color code character to use when “filling in the blanks” is B. That will be the
color assigned in the MOB SET command, which we’'ll learn about just up
ahead. So the @ grid for a hi-res MOB might take the following form:

1 REM PROGRAM 105

2 REM HIRES MOB EXAMPLE

3 REM

4 REM —

109 Boocuceccvonsaananussnnns

11@ @----.n-l----.u---.ulItil

IEQ @ll.--lnllllnnulnllIlu!--

109

Chapler 6

130 P, cucunevsonnnsnvannannmny
14 ®....2..«BBBBBB..covevasn
159 @,.... BBEERBEBBBBB.
16@ @...RB.BBEEBEBBEB.BB.....
17@ @®..BREB. BRRBBBBB. BBBB. ...
182 ®. BERRBR. BBERBB. BBEBBEBB. ..
{9¢ ®.BBBREBEE. BBRER. BEBBBEB. ..
20@ @.SBEBBRB. BBEB. BEBBBEB. ..
#1Q &.BBRREEBB. BBEBR. BEBBBBB. ..
2z @.BBRBBB. BBEBBB. BBEBBB. ..
#3232 @..RBEB. BEEBEBBR. BEBE....
242 ®...BB.BEBBRBBEBB.BB.....
25@ @,.... BBEERBEBBBBB. « ...«
6@ ®e.awase--BBBBBB.svuacnve-e
27H B sucesrsnansnscsnesrvovan
2O B...cuaurnununmsnunsnncoe

;.:39@ @l-l.lll-llll.llllIII.-.I

39@ @-In----anututlsncuulnunu

In this way you can get some idea of what your MOB will look like. The
entire process of designing a MOB in Simon’s Basic takes place on the @
grid.

L LTS

CMOB The command CMOB stands for “color MOB” and allows you to define
two additional colors that will be used in the designation of a multi-res MOEB.
The format for the command is very simply

CMOB color 1,color 2

where:
color1 =0 — 15
color2 =0 — 15

These two parameters are the two additional colors you desire. The
primary MOB color is designated in the MOB SET statement just as it is in
hi-res MOB design.

When designing a multi-res MOB on an @ grid, the characters B, G, and
D are used. Note that the color assignment codes don’t work the way you
might expect them to in multi-res: the B character now represents the first
parameter of the CMOB command, the C character represents the color
assigned in the MOB SET command, and the D character represents color 2 in
the CMOB command. So a multicolor @ grid might take the following form:

REM PROGRAM 106
REM MULTI-RES MOB EXAMPLEE
REM

o 0 e

110

MOBbing Up in Simon’s Basic

102 B ivecuanncns
11@ @...BBBBEB...
i?@ ®...BBBBEB...
132 @...BBBBEB...
149 @..RBBPBBBBEE..
152 ®,...CCCOCC. ..
162 @...CCCCCC. ..
172 ®...,.CCCC, ...
189 ®.....C0C. 0.0
i9a @...DDDDPDD. ..
2@ @, . DDDDDLDLD. .
1@ @,.DDDDDDDD..
ze@ @..DDDDRDDD..
#32 @.C.DDDDDD.C.
z4@ @...DDDDDD. ..
252 ®..DDD.DDD...
26@ @..DDD..DDD..
&7@ 3. .DDD. . DDD. .
28@ @..DDD..DDD..
#9@ @..DDD..DDD..
322 =, BEBE..BBEB.

111

Chapter 6

MOB SET The MOB SET command allows you to set the stage and lift the curtain

on a MOB. It performs the initialization process for any designated MOB. The
format for the command is

MOB SET mob priority,memory block,cotor,screen priority,resolution

where:

mob priority = 0 — 8

memory block= MOB indentifier
color =0 — 15

screen priority = 0 or 1
resolution = 0 or 1

The parameter priority specifies the number of the MOB you are setting
up. This number must be unique for each MOB. The lower the MOB number,
the greater its priority over other MOBs. If two or more MOBs are traveling

412

MOBbing Up in Simon’s Basic

MOBS IN
MOTION

LT

MMOB

across the screen, a MOB with a lower number passes over a MOB with a
higher number.

The second parameter of the MOB SET command, memory block,
defines the memory block from which the MOB shape data will be taken. Use
the MOB number of the block to fill this parameter. The next parameter, color,
defines the main MOB color. As explained above, the main MOB color is
assigned to each mob drawn with a B in the hi-res mode or a C in the
multi-res mode.

The next parameter, screen priority, specifies the priority of the MOB
over screen data it may encounter. Here you indicate whether you wish the
MOB to pass over or under other characters or non-MOB shapes on the
screen. A O in this position gives the MOB priority over screen data, while a 1
gives screen data priority over MOBs.

The last parameter in the MOB SET command, resolution, indicates
whether the MOB was created in multicolor or hi-res mode. A 0 in this position
indicates hi-res. A 1 defines multi-res.

The MMOB command means “‘move’ or *manifest MOB.” It allows you to
display a MOB at one point on the screen and then, if you wish, move it to
another location. The format for the command is

MMOB mob number,beg x,beg y, end x.end y,expansion,speed

where:

mob number = 0 — 8

beg x = legal x value for MOB size
beg y = legal y value for MOB size
end x = legal x value for MOB size
end y = legal y value for MOB size
expansion = 0 — 3

speed = 1 — 265

The first parameter, mob number, specifies the number of the MOB you
wish to display and move. Make sure this number matches the number of the
MOB you set in the MOB SET command. The parameters beg x and beg y are
the coordinates of the point on the screen where the MOB will be displayed
pefore it is moved. Parameters end x and end y indicate where to finally place
the MOB after movement. If you do not wish to move a MOB but just want to
display it, use the same values for both start and end screen locations.

113

Chapter 6

Expansion means the size of the MOB when it is displayed. The
expansion humbers and resulting display sizes are shown on the table below:

0—MOB is displayed normal size.

1—MOB is displayed at double width, normal height.
2__MOB is displayed double height, normal width.
3MOB is displayed double width and double height.

The final parameter is speed. This sets the speed of movement of the
MOB, and can be a number from 1 to 255. A parameter of 1 is the fastest
speed, and 255 is the slowest movement speed attainable.

114

MOBbing Up in Simon's Basic

LU

RLOCMOB

ra!
//’

/7%
50

The command RLOCMOB stands for “relocate MOB,” and enables you
to move an already displayed MOB 1o a different location on the screen.
Format for the command is much the same as that of MMOB, except the
starting position of the MOB is already known:

RLOCMOB mob number, end x, end v, expansion, speed

The parameters end x and end y are the screen coordinates of the point
to which the MOB will be moved. All other parameters are the same as
encountered in the MMOB command.

115

Chapter 6

MOB OFF The command MOB OFF does just that—it turns off display of a MOB.
The format for the command is

MOB OFF mob number

where:
mob number = 0 — 8

The mob number is the number of the MOB you wish to clear from the screen.

DETECT and The commands DETECT and GHECK work together to test for the

CHECK “collision” of two MOBs or between a MOB and some bit of screen data.
There is a bit of a trick to using DETECT and CHECK, but it isn't too tough to
master.

116

MOBbing Up in Simon’s Basic

Format for the DETECT command is

DETECT collision type

where:
collision type = O or 1

A value of 0 assigned to the collision type parameter causes the C-64 to
detect collision between two MOBs. A value of 1 causes the C-64 to detect
collision between a MOB and screen data.

The important thing to remember about the DETECT command is that it
must be used twice in order to work properly. The first time it is used, it clears
the collision register in order that no collision should be detected before it
actually occurs. The next time the command is invoked, accurate collision
detection will take place.

To effect the detection of an actual collision, the CHECK command is
used following the second use of DETECT. The format for the command is

IF CHECK(mob number 1,mcb number 2)=0 THEN command

where:

mob number 1 =0 — 8

mob number 2 =0 - 8

command = following program statement

The mobs on which you wish to conduct collision tests are the
parameters mob number 1 and mob number 2. Follow the THEN with the
programming command you want to have take place when collision is
detected.

Another format for the command is

IF CHECK(0)=0 THEN command

Use this format to check for collision between any MOB and screen data.
Remember to DETECT 1 twice before using this variant.

By now you probably feel buried under tons of commands, few of which
make any immediate sense to you. Well, here are some programs to help you
get a grip. Play with them, change them, see what makes them work and what
makes them stop working. Design your own MOBs to replace the ones used
here. Make them collide and detect the collisions. Look at each of the
commands, and remind yourself of what each does.

When you get discouraged, take a look at a sprite how-to book working
from plain old Basic. Then thank your lucky stars you have Simon's Basic.

The following programs have been designed not for sophistication of
effect, but ease of understanding. Play with them until you catch on.

117

Chapter 6

IIIIII-IIII-IIIIII-IIII.IIII--IIlII-lIIIIIII-'IlIIII-IIII‘I-IIII-tl.I'IllIlI--IIIIl-lIIIIIIIIllIIIIIIIIIIIIIIIIIIIII-II

1 REM PROGRAM 1@7

= REM MOVING MOBS-—R BEGINNING EXAMPLE
3 REM

4 REM—m—— e
1@ DESIGN @,8192

10@ #BEERBEBBEEREBREBEBBBEBBE
112 @, BREBEERBREEERBBREBBBEB.
122 . . BEBEEBEBEBEERRBEBBER. .
132 ®,..5BBEBSBEBEBERRBBBE. ..
140 @B..,BEBBEB. ccvraarnennnns
150 ®...EBEEBB. cveaarcsvannns
160 oo .BE.BBBeueesanrncannas
173 @...BB..BBucsssssccvnnnce
180 BoosPBeuoBeveanansunannns
190BB. e BB ccscusnnnnnnn
@@ .. BBuev.BBBusuwesrcoonnan
210 @...BB...BEBB.c.cvoruanas
SF2 @, ..BB...BBBBB. aveccanans
230 @...BB...BBBBBE. . caaernon
4@ @, ..BB...BEEBBBE. cvconan-
S%5@ ®...BB...BBEBBEBB..-
6@ ®...FBB...BBEEBBEBB.......
279 ®BBBRERERBHBEBBBBBRBEBBEEB
789 @HFPRKRBREBEBERBEBBRBBBBBE
297 2BERBLBBBBREPEBBBEBRBEBBEB
30@ PREREBEBRRREEBBBBBBBBEBBE
31@ MOB SET @, 138,2,2,0

32@ MMOE @, @, 9, 280, 7@, 1, 7@
332 MMOER @, 220, 79, 29, 99, 2, 58
340 MMOE @, 20, 90, 229, 190, 3, 20
35@ PAUSE 1:60T0 320

1 REM PROGRAM 128

2 REM FOLLOW THE BOUNCING BALL.
3 REM
4 REM
12 DESIGN @,8192

18D Buuavsunosnssnvsnannsuunun
110 B. . ueeansnsnsnnrecennnssn
12@ (B vsccensvsnnencsnnnnsnnse
130 B, . v.cnesnsunsnasncsscsuan
149 @,BEREBBBR. ... cccu.
159 ®.....5BBBBBBBBBBE. .. 4. ..
162 @, ..BR. BERBBEBBEE. BB.
17® @..BBBE. RBBEBEREB. BBBB.. ..
182 @. BEEREE. BEBBBB. BEBBBE. . .
i3@ @.BBEEREB. BEBB. BEBBBBB. ..

118

MOBbing Up in Simon’s Basic

-ap @.BEFBBEER. BEBE. BEBBRBE. . .
=1p (, BEBBEBB. BEREB. BBEEBEB. ..
2@ @, BRBBEDR. BERBEE, BBBBBE. . .
2@ @, ., REB. BBREEEBE. BBEB. . ..
Z44 @, ..BE, RREBBERBEEB. BE.
=53 @.....3BBBBEBBEBBEB. -« v
SED Bovevore BEBBEB. ..0cvauns
D7D Bereceusnanevonsanssonsnas
SEB Beeoennecenecsenasnnaann
SO B uvenccnunnnncrsrnnnonne
TOD Boveveenaenonnnnnsnonanss
31@ MDB SET ©,128,11,0,0

z28 MMOE @, 132, 5@, 130, 160, 2,20
233 MMOE @, 130, 168, 130,50, @, 30
249 GOTO 320

REM PROGRAM 109

REM MULTI-RES MOB ANIMATION
REM

REMem o e e
1@ DESIGN 1,8192

100 @eneenmvanuen

11@ @...BEBBBB...

129 @...BEBERB. ..

13@ @...BBEBBB. ..

149 . .BBEREEBEE. .

152 @...CBCCBC. ..

160 B...CCCCEC. ..

17® @....CBEC....

18@ @.uveaCCearuans

132 @,..DDDDDD. ..

@@ @, CDDDDDDDDC.

i@ @, CDDDDDDDDC.

=&@ @. CDDDDDDDDC.

232 @, C.DDDDDD. C.

249 BCC. DDDDDD. CC

o=@ @, . DDD.DDD. ..

26@ @, .DDD..DDD. .

=79 @®..DDD..DDD..

£8@ @, .DDD..DDD. .

232 @..DDD..DDD..

3@ #. BRBE. . BEBB.

313 MOB SET @, 128, 18,0,1

32 CMOB @, 6

530 MMOE @, 20, 90,250, 90,2, 110
349 GOTO 330

Eo A

119

Chapler 6

1 REM PROGRAM 11@

& REM MULTIPLE MODE ANIMATION
3 REM

4 REM———— -
1@ DESIGN 1,8192
102 Besnrnnnenn-
11® @...BBBEEE. ..
12® @...BEEEEE. ..
13@ ®...BEBEBE. ..
14@ ®..BBREREEE. .
15@ @, ..CBCCEC. ..
16@ ®...CCCCCC. ..
17@ @....CBBC. ...
180 ®..... CCunues
199 @...DDDDDD. ..
2e@ @, CODDDDDDDC,
21@ @.CDDDDDDDDC.
220 @, CDDDDDDDDC.
230 &. C.DDDDDD. C.
243 BCC. DDDDDD. CC
2%@ @..DDD. DDD. ..
26€@ @..DDD..DDD..
27@ @..DDD..DDD..
£28@ @..DDD..DDD. .
293 @..DDD..DDD..
30@ . BEBE. . BRER,
301 DESIGN 1,B19&+64
303 ©...EEBEEB. ..
210 @...EBBEEBE. ..
320 @...BEBEEE. ..
332 &, . BREBEEER, .
340 ®....CCCC. ..~
350 BCC.CECCORC, OO
36@ ®.C.COCCCe. C.
370 ®.C..CEBC..C.
382 &.C...CC...C.
39@ @.C.DDDDDD. C.
49@ 13, CDDDDDDDDE.
41¢ @..DDDDDDDD. .
42@ @, .DDDDDDDD. .
43@ ®...DDDDDD. ..
442 @, ..DDDDDD. ..
45@ ®..DDD.DDD. ..
463 @, .DDD.DDD. ..
47@ @BDDD....DDDE
48@ GEDD......DDE
499 #BD........DH
SO BE...eavann- B
522 CMOE @,6

120

MOBbing Up in Simon's Basic

525 MOB SET @, 188, 12,2,1

539 MMOB ©, 172, 192,170, 199,8, 12:PAUSE &
540 MOB OFF @

545 MOB SET 1, 189, 19,9, 1

552 MMOE 1, 17@, 199, 17@, 1608, &, 30

S6@ MMOE 1, 17@, 160, 17@, 192, 2, 30

572 MOB OFF 1

580 GOTO S&S

i REM PROGRAM 111

2 REM MORE MOE ANIMATION

3 REM

4 REM~——m- -~ —
S COLOUR @,@

1D HIRES @,@:MULTI 7,2,@
2@ CIRCLE 7@,90,32, 4@, 1
3@ PAINT 71,91,1

99 DESIGN 1,8132+43152

iea
112
iza
138
142
159
16@
178
180
19@
20a
21&
o=l
230
248
Fder
269
27
2882
230
ea
301
3a3
319
3z
330
340
35¢
368
370

Beacealanvune
B....00C....
- JURR] o
B....BBB...v«
@ ...BBEB.....
®. ...BBB.....
@, ..BBBEB. ...
@,..BBBBB.. ..
#.. BHBER....
#. . BEBBEEB. . .
@, . BEBEEER. . .
@, . BBBEBER. ..
®. . BERBERE. ..
&, CCCBRRECCC. .

BLCCCBBRBLCCCC.
BCCC. ... CCC.
-1 R ¥
B s s mersuanrn
@ -------- L3 -
@‘ ----------
@----l--..-.‘
DESIGN 1,8192+64+49152

Byvaealoavunn
Bo...CCC..uwn
B, ...C000C. ..
B, ...BBR.....
@ ...BBE.....

@, ..BBEEE. ...
®,..BBBBRE....

121

Chapter &

122

S8a
390
42
419
420
4382
G
45
46
479
48Q
498
Sl
Sza
5ed
532
S48
545
a5
a7@
Sea

®. . BBBEE....

@®. . BREEEEE. ..

@. . BEBBERE. . .

@. . BREBREE. . .

®. . EBBEEEE. . -

®. CCCRERCCT. .
@CCCCRBECCEC.
BCCC. . D. . COC.
#CC. D. DDD. CC.
®...DD..D....

@ ...DDDu e
®..D..D..D...
BaweDewDevuno

CMOB 6, 2

MOE SET 2, 1i28,1,0,1
MMOE @, 17@, 232, 172, 13, 2, 190
MOE OFF @

MOB SET 1, 129,1,@,1
MMOE 1, 17@, 199, 170, 12, &, 120
MOB OFF 1

BOTO 525

1 REM PROGRAM 112
2 REM OVER THE ROUNDING MAIN
3 REM

i@ HIRES 3,7
2@ PRINT"':PLOCKE 3,50, 320,218, 1
9% DESIGN @, 8192+49152

120
110
17
1.3@
142
15@
le@
17a
18&
199
Z20a
210
e
230
240
258
260
27

Bewannnan T R
®.....BEBB.EBB.
E....BBBEEBEB.BBBE. v v s v v
@....BERBEB. BEBEE. -
®...BRBEREE BEEBE........ .
®...BEBBBEBE.BEBE. . - - .
#. .. BPEBEEBER. BEBB. ¢ v 0 s = a ¥ s
®,. ..FBRBEBEE. BREB. . . s u s v v

®...BREBEERE. BEREE. .« v o v v v s
@, ,.BBBBBRE. BEBEB.B.
@, . BERRBREER. BEBE. BE.
@, . BBEBEEBRE. BREE. BEEBB. .. .
#. . REEERBEB. BRREER. BREE. . ..
@, . BEEBREBE. BERE. BEER. . . -
BovvueneasBeneBiBanauias
#RERBREEBEEEREBRRERREEEEREER
EFEEBBEERRERREBEEEEBEREBEEE. . .
@, BEREBRERERBERERBRER. . ..

MOBbing Up in Simon's Basic

SB@ Basennnoncananaaainnnenan
B0 B wrenvnasnasnnascnnsann
e B AR
310 MOB SET @, 128,@,90,1@

330 MMOB @, @, 75,319, 75, 3, 200
342 GOTO 330

123

SIMON’S SOUND
COMMANDS

VvOL

WAVE

5
‘ \\\\\
: S
o
&
&
N

Simon's Basic isn’t as strong at constructing sound as it is in constructing
graphics. Still, it is a far cry from the cryptic POKE commands required to get
a peep out of your C-64 from plain old Basic. At least in Simon's Basic you
have some powerful sound commands at your disposal.

Before we begin our programming examples, let's complete an overview
of the sound commands, and what they can do for us.

The VOL command stands for volume, and lets us tell the computer how
loud to play a note or sound. The format for the command is

VOL volume

where:
volume =0 — 15

A volume of 0 means no sound at all, while a volume level of 15 is the loudest
that it can be played. And until a new VOL level is stipulated, the volume
remains where it was set.

It is not easy to explain just what WAVE means without first launching into a
lecture on the physics of sound. Let’s just say say that the G-64 can output
basically four different types of sound, and these types of sound correspond to
the shapes of certain electronic waveforms.

Using the WAVE command, we tell the Commodore 64 what kind of

125

Chapter 7

126

*“twang’ we want cur sound to have, and whether we want it to be “noise” as
opposed 1o a pure tone.

The WAVE command includes a lot of compressed information, but you
can get the hang of its parameters if you don’t panic. The format for the
command is

WAVE voice, control byte

where:
voice =1 — 3
control byte = 00000000 — 11111111

The parameter voice indicates which of the Commodore’s three voices
this WAVE command shall control. The control byte consists of eight single-
digit numbers side-by-side, and each must be eithera O or a 1.

Whenever you encounter mathematics where the only two numbers used
are 0 and 1, you're using a binary numbering system. It is this system which is
the crux of your computer's operation. But there is no theory to learn or
mathematics to do here. You may think of the WAVE control byte simply as a
bank of eight light switches which must be set in a certain order.

Binary control of the WAVE command.

The first four switches are the only ones with which we shall concern
ourselves. Explanations of the others are beyond the scope of this book. (See
your Simon’s Basic documentation for more information on these bit
parameters.)

S0 dealing with the last four switches is easy: for our purposes, we will
always set them to 0.

Sound from Simon’s Basic

Noise Waveform

Our concern is with the first four switches. When we choose a
waveform, we set just one of these switches, and leave the others off, or in
other words set to 0. Let’s run through each waveform possibility, and look at
the control byte for each of them.

To set up a noise waveform, we set the first switch on while leaving all
the rest off. Instead of coming up with any sort of musical tone, this control bit
results in “pink noise,” which can be used to create sound effects or the
percussion voice in music.

The control byte for a noise waveform is as follows:

10000000

C-64 waveform shapes.

/\ /\ /\ / Trianguiar
/| /

Sawtooth

A

Square

Square
Waveform

Noise

The next switch setting is for a square wave, which has a sound much
like you might expect a computer to sound. It is that flat, pure tone that comes
from an L-edged square wave.

To effect a square wave, use the control byte

glyoooo000

127

Chapter 7

AN S AENSAASEEEISEEANENTANEEESEESSY AN NSNS AN N RN NG E NN N RN NN NSNS A NI N NS SNG4 AN NN EN SN AU E AR BTN

Sawtooth A sawiooth waveform has a warm, brassy sound. The control byte for a
Waveform sawtooth wave looks like this:

ooyo00oo0
HIHnmn
Triangular The triangular waveform has a smooth, reed-like, woodwind quality. It
Waveform sounds like a low flute or recorder.

To call up a triangular waveform from the wave command, we need to
set a value of 1 into the fourth switch (or fouth bit) of the control byte. The
result is

oocioooo

ENVELOPE The ENVELOPE command allows us to define the “shape” of the tone
we wish to play. It works something like the pedals on a piano.
The format for the command is

ENVELOPE voice, attack, decay, sustain, release

where:

voice = 1 — 3
attack = 0 — 15
decay = 0 — 15
sustain = 0 — 15
release = 0 — 15

In order to learn about the parameters of the ENVELOPE command, we
need to define these terms.

Voice indicates which of the Commodore’s three voices we are setting
with the ENVELOPE command.

Attack determines how quickly from its onset a sound reaches its
maximum volume. When a guitar string is plucked, it achieves a maximum
volume very quickly. A saxophone might have a much greater affack rate.

128

Sound from Simon'’s Basic

lIII---llI-!llIl-u--ll-l--Il-ll-----lllIIl-l-I-l--lItlllllIIl'lII----llIllll-a---ll----IIIIIIIIIllIllIl--l-I--nnlllI.--

Decay indicates the rate at which the volume of a note trails off in
volume from its maximum to its midrange. When a piano key is struck, the
sound may first sound quite loudly and then trail to a lower midrange,
indicating a large decay rate. On a flute, it remains quite constant. This
indicates a quick decay.

Sustain tells the computer what volume to use following decay—during
the mid-range duration of the note.

Release determines the rate between the midrange sustain volume and
zero volume (meaning the note has finished).

If you were to draw a diagram of the sounding of a note, it might look
like this:

Defining a sound envelope.

iy
[d
s
T E NP,
R T kTS
Priieisle i
R
L
FaEatrditnisd 2
prolziFerses g
Prrs S ds o i
et XYy 3 G
ul, . -1
e, Fuglagle [g-
iy 0ty By, . =}
Palagfednl . l--:
Rt Lo
aigaiyutatynty - o=, -

T veer o] it .T

Note begins Note ends

Certainly you will want to experiment with different rates for each of these
parameters. All you need to know is that 0 indicates the quickest rate and that

15 indicates the slowest rate.

[LT
MUSIC The command MUSIC is the one we use to teach the computer how to
play a certain tune or create a certain sound effect. We use it to create a

“music string” which is our tune or effect.
The format for the MUSIC command is

MUSIC duration, “command string”

129

Chapter 7

where:

duration = 1 — 255

command string = list consisting of voice code, then beat
duration followed by note, for each note

The first parameter in the MUSIC command indicates how long you want
one beat of music to be played. Contrary to what you may think, 1 is the
longest duration in a MUSIC command, and 255 the shortest.

The next parameter in the MUSIC command is a string of information. It
can be represented in the MUSIC command between quotation marks, or an
equivalent string. In fact the only way to play long passages of music is to use
multiple strings. We will show you some examples up ahead.

The information represented in the command string must take a very
certain form. First you must indicate which voice the data pertains to. You do
this by making the very first character in the command string an inverse heart
(by pressing SHIFT-CLR), then typing the voice to which you want the
following data to pertain. Don’t worry if you're becoming a bit confused here.
The examples up ahead will make things clear to you.

You can follow the inverse heart and voice assignment with the music
data itself. This also takes a very specific format. You first indicate the value of
each note by pressing a function key. Each function key represents a note
value to the MUSIC command. Here is a function/value chart:

Transiating note values to function keys.

sixteenth & fi (]
eighth - {3 {3l
gquarter m 15 {3
half M 1?7 {7
fulleat & f2 SHIFT —{fi]
two beats B 14 {SHIFT3)
four beats ® 16 {SHIFTHS
eight beats M 18 SHIFTF{f7

After indicating a single note value, you then indicate the note pitch. This
is entered in standard letter format (A-G) and is followed by a number from 1

130

PLAY

Sound from Simon’s Basic

to 8 to indicate which octave the note is in. So a sample command string
might look like this

10 A%="U1ZECSEESICSED 7SIk

At the conclusion of a MUSIC command string, you should insert another
inverse heart, followed by a G. This triggers the release of the last note in the
command string.

Piano to C-64 pitch conversion.

The PLAY command does just that. It plays the music you have composed, or
the sound effect you have created. It takes the simple format

PLAY mode
where:
mode =0 — 2

The mode parameter sets the PLAY command one of three possible
ways. A 0 in this position turns music off. A 1 plays the music and waits for it

131

Chapter 7

LIS T IT R E L S NI NIRRT TSN AN A AN AN TN LY LT EEEEEEEEEEEw MEEPEEEENERE NS GAE NN NN SN EE NN N AN

to end before proceeding with the program. A 2 plays the music and continues
executing the program, provided you remain in the low-res mode. A parameter
of 2 cannot be used in conjunction with hi-res or multi screens.

Confused? Well don’t get too frustrated. The examples below are
assembled in ascending order of sophistication, and by studying thern you
should be able to get a grip on sound from Simon’s Basic in an hour or so.
Experiment with these programs. Use them to plug in values of your own and
see what you come up with. But most of all, have fun.

1 REM PROGRAM 113
2 REM S0OUND FROM BIMON'S BASIC
= REM TRAIN

10 VOL. B
20 WAVE 1, 10000020

30 ENVELORE 1,2,7,7,2
4@ MUSIC 3, "miDam

S0 PLAY 1

6@ GOTO S@

1 REM PROGRAM 114

2 REM SOUND FROM SIMON'S BASIC

3 REM EUROPEAN SIREN

4 REM ———
ia VOL 8

2@ WAVE 1, 001i2@2d

3@ ENVELOPE 1,28,7,7,1@

4@ MUSIC 4, "G@iCAMIF4m"

9@ PLAY 1

60 GOTO S@

i REM PROGRAM 115

2 REM MUSIC FROM SIMON'S BASIC
3 REM A LITTLE BIT OF BACH

4 REM

18,05 B4R B4R R B4R B4R ELRA o pom

15 AS=A$+" 1 D4MIELNIF4ML 4N A4 ML G4MLELMLC
4M1B3M1C4M1D4M1 GIM B3Mi D4MI F4 M1 E4M D4N"
20 VOL 8:WAVE 1, 00100000

30 ENVELOPE 1,2,7,7,1@

4@ MUSIC 2,A$

5@ PLAY 1

60 GOTO S0

132

Sound from Simon's Basic

1 REM PROGRAM 1l6&
2 REM MUSIC FROM SIMON'S BASIC
3 REM A LITTLE BIT OF BEATLES

{R.AEcoHt 4N R Q4T RAMBARL AGEH BT ° 7

15 AS=A%+" 1F4MLG4 M Z4MFAMIF4M1G4MLA4L WG
491 740"

20 VOL 8:WAVE 1, 20100202

3@ ENVELOPE 1,2,7,7,10

4@ MUSIC 3,A%

5@ PLAY 1

&2 GBOTO 5@

1 REM PROGRAM 117

2 REM MULTIPLE MOB ANIMATION
3 REM WITH SOUND EFFECTS
P T3 I e e
1@ DESIGN 1,81%92

1P2 Bevueennncesa
112 @...BEEBBEBE...
120 ®...BEBBEB. ..
132 @...BEBEBB...
14@ @..BBBEEEER. .
iS@ @, ..CBCCBC. ..
16@ @...CCCCCC. ..
17@ ®....CEEC....
180 F.veeaCluve-u
19@ @...DDDDDD. ..
2@9 @.CDDDDDDDDC.
210 @.CDDDDDDDDC.
220 @.CDDDDDDDDE.
232 ®.C.DDDDDD.C.
249 ®CC.DDDDDD. CC
25@ @..DDD.DDD. ..
26@ @..DDD..DDD..
272 @..DDD..DDD..
28@ @..DDD..DDD..
£92 @..DDD..DDD..
3@@ @.BBRB..EHBER,
301 DESIGBN 1,8193+64
303 B, ..BEBEEE. ..
31@ @...BEEEBE. ..
320 @...BBBBEE. ..
330 @..BBEBEBER..
340 ®....CCCC.. ..
352 @CC.CRBCCEC.CC
360 @.C.CCCECC. C.

133

Chapter 7

379 B.C..CBEC..C.
388 P.C...CC...C.
39@a @&, C. DhDEDD. C.
4@@ @, CDDDDDDDLC.
41@ B, .DDDDDEDD. .
429 @, .DDDDDDDD. .
433 ®,..DDDDDD. ..
449 @, ,.DDDDDD. ..
452 @, .DDD.DDD. ..
460 @, , DDD. DDD. ..
479 @BBDDD....DDDE

488 ®BDD...... DD

490 EED .. ovens Dg

bir]7: 172 B T - SO P I

512 VOL 8:WAVE 1, 0A122220: ENVELOPE 1,&8,7
!7!'—

Se@ CMOB @, 6

525 MOB SET @, 1268, 10,@, 1

S53@ MMOR @, 170, 19@, 172, 192, 2, 12: PAUSE
S48 MOB OFF @

S45 MOB SET 1, 129, 10,0, 1

S5 MMOBR 1, 172, 192, 170, 160, 2, 99

555 MUSIC 1, "idl DaRl E4wlF4ml G4@" : PLAYS 1
S6@ MMOB 1,172, 160, 172, 198, 2, 9@

S6S MUSIC 1, "l GoMlF26l EcElD2@" : PLAY™S 1
570 MOB OFF 1

=80 GOTO 525

ny

134

ATHnm

APPENDIX

LGN

Other Sound

and Graphics ’<>‘
Products for the
Commodore 64

tuETN
GRAPHICS
PACKAGES

L LU TUTEL

KoalaPad

Flexidraw Light Pen

N
Tech Sketch Light Pen

Appendix

)
o

I

There is a lot of hardware and software now available to painlessly introduce the
sophisticated graphics and sound potential of the C-64 to the novice user. Although you
have learned many programming tricks in this book, using a graphics tablet or a music
program can bring even more enjoyment into your relationship with your computer.

Literally dozens of packages on the market today are designed to ease graphics and
music production on the Commodore 64. Some are designed as purely software, others
as software combined with a special piece of hardware. Cost is generally quite
reasonable when compared to the capabilities these products make available.

it would be impossible to provide a list here of all the packages that are currently
available—new packages debut almost every day. What we have done here though, is
to compile a list of the very best packages to help give you a start in your shopping.

Simon’s Basic is in itself a powerful graphics tool—probably the most powerful
graphics programming tool around. But using the keyboard to input graphics can be
tedious. What is really fun is to draw on the screen as if it were a canvas.

The two tools that are best at doing this on the C-84 are the graphics tablet and the
light pen. Each has its own advantages and disadvantages, but each gives you a direct
graphics potential you can never achieve from a keyboard. If you want your C-64 to
deliver the maximum graphics potential, you should think about purchasing one of the
foilowing systems:

Koala Technologies Corporation
3100 Patrick Henry Drive
Santa Clara, CA 95050
The KoalaPad graphics tablet and its accompanying software, KoalaPainter, is an
inexpensive way to make your C-64 into an electronic canvas. Using a stylus, you draw
on a special tablet and watch your work appear on your television or monitor.
The software provides sophisticated graphics capabilities, including free-hand drawing
in all sixteen colors, mirroring functions, zoom magnification, and the design of pictures
that can be stored to disk.

inkwell Systems
7770 Vickers Street
San Diego, CA 92138

With a light pen, the process of computerized drawing feels very much like ordinary
drawing—you hold a special electronic pen right up 1o the TV or monitor screen. This
can be a little hard on the arm if you don’t rest your elbow, but there is no more
immediate way to create graphics on your C-64.

The Flexidraw system includes software that makes the Commodore 64 behave
almost like an Apple Macintosh. That is, its monochrome graphics capabilities are
superlative. After you have created a monochrome picture, you can color it in using
another software utility.

Tech Sketch, Inc.

26 Just Road

Fairfield, NJ 07006

The Tech Sketch Light Pen is an inexpensive system with a lot of capability. Its

software is nearly identical to that of the KoalaPad, but is of course light-pen driven.
The pen itself is not of the same quality as the Flexidraw system, but it is much less
expensive and works quite well. The software package, Microillustrator, is among the
easiest-to-use packages around. Everything is menu-driven, and you use the pen itself
to point to and choose your functions.

135

Appendix

LELLALI D LELL DL L LL LD LD DL DL Pl LTI Y I L PR L P Y P P T R R P LYY R Y L P R Y I Y T gl

Edumate Light Pen

SOUND
PACKAGES

THIIHINN
Music Construction Set

SN
MusiCalc

136

N

I
i-‘qmrehousa Inc.
P-O. Box 3470
Chapel Hifl, NC 27514
The Edumate pen has features quite similar to the Tech Sketch pen’s, and though its
software is not quite as polished as Microlllustrator’s, it is very good. What's more, the
entire hardware and software system costs only $60. That is a tough price to beat!

The software for the Edumate system, Peripheral Vision, allows you to choose from
thirty-five different fill textures or to design your own. You can copy and move shapes
around the screen and place text alongside graphics.

Many other fine graphics packages are on their way. Keep an eye out for the best of
them:

For some reason or other, there are not as many high-quality music and sound
packages as there are high-quality graphics packages for the G-64. Frankly, most of the
music programs released so far leave much to be desired. This is a shame, since the
Commaodore 64 has incredible music-synthesizing capabilities. Two packages, however,
have a lot of capabilities and are not difficult to learn to use.

Electronic Arts

2755 Campus Drive

San Mateo, CA 84403

Music Construction Set was the first software tool to transform the C-64 into a

serious music machine. Using it, you can compose and play back music, and while it's
playing back you can watch the notes dance across the screen. Music Construction Set
is nhot only an entertaining program; it can help you learn musical notation and theory
as well. Instantaneous playback of your work lets you know where you've made
mistakes.

The package makes use of “point-and-click”” technology, much like the Macintosh.
This makes working with Music Construction Set simple and rewarding.

Waveform Corporation
1812 Bonita Way
Berkeley, CA 94704

MusiCalc is as close to a “dream” piece of sound software as we are likely to see
for the Commodore 64 for some time to come. It transforms the computer into a
sophisticated music synthesizer.

Using prepackaged software templates. you can get your C-64 to pump out African
rhythms or New Wave technobeat. MusiCalc even allows the typewriter keyboard to
become a synthesizer keyboard: you can jam along with preset patterns in real time.
MusiCalc is easy and fun to use, and shows off the sound capabilities of the
Commodore 64 to their full potential.

QO

