
r

COMPUTE!'s First Book of
COMMODORE

Applications, utilities, tutorials,
and general information for users of the

Commodore 64' home computer.

A COMPUTE! Books Publication $12.95

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

,r:::-- -
(\

~

~

~

I"'i

~

(i

(i

('I

(i

(')

(i

(i

{i

(i

(i

(i

(i

(i

(i

(i

(i

()
(i

~

(i

(i

(i

(i
(i

(i
(i

(i

'0

COMPUTEl's First Book of
COMMODORE

22Me~J!tEublications/lnc·e
Greensboro"North Carolina

Commodore 64 Is a trademark of Commodore Electronics, Ltd.

The following article was originally published in COMPUTE! Magazine, copyright 1982,
Small System Services, Inc.:
"Commodore 64 Memory Map" (October)
The following articles were originally published in COMPUTE! Magazine, copyright
1983, Small System Services, Inc.:
"Commodore 64 Architecture" Oanuary)
"All About WAIT Instruction" Oanuary)
"REM Revealed" Oanuary)
"Perfect INPUTs" Oanuary)
"Joysticks and Sprites" (February)
"Data Storage" (March)
"The Confusing Catalog" (March)
'~utomatic Program Selector" (March)
"Data Searcher" Oune)
"Soft-16" Oune)
The following articles were originally published in COMPUTE! Magazine, copyright
1983, COMPUTE! Publications, Inc.:
"Backup 1540/1541 Disks" Ouly)
"Programmer's Alarm Clock" Ouly)
The following article was originally published in COMPUTEt's Gazette, copyright 1983,
COMPUTE! Publications, Inc.:
'~lfabug" Ouly)
The following article was originally published in COMPUTE! Magazine, copyright 1983,
Jim Butterfield:
"Commodore 64 Video - A Guided Tour, .Parts I-VII"

Copyright 1983, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by Sections
107 and 108 of the United States Copyright Act without permission of the copyright
owner is unlawful.

Printed in the United States of America

ISBN 0-942386-20-5

10 9 8 7 6 5 4 3 2

COMPUTE! Publications, Inc. Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is a subsidiary of American Broadcasting Companies, Inc. and is not associated
with any manufacturer of personal computers. Commodore 64 is a trademark of
Commodore Electronics, Ltd.

ii

"" U

U
-

U

U

U

o
u
"' U

o
u
u
u
u
.-

U

U

U

U

U
-
U

U

U

U

U

U

U

U

U

u
U

U

U

U

U

U

u
0\

-
('J

~

~

~

!'"'"\

!'"'"\

(i

!'"'"\

(")

(i

(i

(i

(")

(i

ri

(")

(")

(i

~

ri

(i

(i

(i

(i

r'1

r'1

r'1
(i

("\

(i

(i

("\

(i
(i

(i

(1

Contents
Foreword v

Chapter 1: Starting Out. 1
More Than Just Another Computer

Sheldon Leemon . 3
Making the Computer Do What You Want

Orson Scott Card .. 11

Chapter 2: BASIC Programming , 37
All About the WAIT Instruction

wuis F. Sander and Doug Ferguson .. 39
REM Revealed

John L. Darling .. 44
From IFs to ANDs

Stephen D. Eitelman .. 49
Menumaker

Richard L. Witkover .. 54
Data Storage

Ron Gunn .. 61

Chapter 3: Commodore 64 Video. .. 67
An Introduction to the 6566 Video Chip

Jim Butterfield .. 69
The 6566 Video Chip

Jim Butterfield .. 75
Sprites

Jim Butterfield , 80
Program Design

Jim Butterfield .. 86
The Lunar Lander: The 64 in Action

Jim Butterfield .. 91
Split Screens

Jim Butterfield .. 96
Son of Split Screens

Jim Butterfield '.' .. 100

Chapter 4: Creating Games 105
Joysticks and Sprites

Sheldon Leemon ... 107
Alfabug

Michael Wasilenko , 115

Chapter 5: Peripherals 119
The Confusing Catalog

Jim Butterfield 121
Automatic Program Selector

Steven A. Smith .. 126

iii

64 DOSmaker
Charley Kozarski . 135

Backup 1540/1541 Disks
Hanley B. Herman . .. 137

Using the User Port
John Heilborn ... 143

Chapter 6: Utilities ... 157
Data Searcher

Jerry Sturdivant . .. 159
Music Keyboard

Bryan Kattwinkle .. 161
Programmer's Alarm Oock

Bruce Jaeger. 166

Chapter 7: Memory 169
A Wmdow on Memory

Gregg Peele . .. 171
Commodore 64 Architecture

Jim Butterfield 178
Commodore 64 Memory Map

Compiled by Jim Butterfield 183
_ Soft-16

Douglas D. Nicoll . 191

Chapter 8: Advanced Memory ; .. 195
Assembler in BASIC

RDnald Thibault . .. 197
Decoding BASIC Statements

John Heilborn ... 210
Micromon-64

Bill)fe ..••........ 217

Appendix A: Using the Machine Language
Editor:MLX

Charles Brannon 245

Appendix B: A Beginner's Guide to Typing
In Programs . .. 255

Appendix C: How To Type In Programs 259

Index .. 263

iv

v
u
~-

U

U

U

o
U

U

o
o
- '
U

V

U

o
U

u
u
V

U

V

V
-

U
.-

U

U
-
U

U

U

U

u
U

U

U

U

u
u
o

-
()

rj

rj

rj

rj

rj

rj

r'i

ri
rj

(i

(i

(')

rj

(i

r.
(i

()

rj

rj

(i

rj

()

(i

('i

(i
(i

r.
(')

(')

(i

(i

('\

(i

(i

('\

Foreword
The Commodore 64 computer was introduced in the fall of 1982,
and immediately became the first choice of hundreds of thou
sands of new and experienced computer users. Its music, sound,
and graphics capabilities are remarkable, and its price tag brought
it within the reach of many first time buyers.

COMPUTE! Books is ready to help you make the most of it.
COMPUTEt's First Book of Commodore 64 offers something for
computer users at every level of expertise, from the beginner to
the expert. And as you gain experience and move from one level
to the next, you'll find that this book can provide the key to each
level of computer knowledge.

For beginners, the "Starting Out" section offers an introduc
tion to the Commodore 64 and the step-by-step creation of a
simple program.

H you're interested in graphics, Jim Butterfield's seven-part
"Commodore 64 Vided' is the ideal introduction.

Do you use joysticks, printers, disks, cassettes? There are
articles and programs to help you.

To learn your computer from the inside out, the "Memory"
section shows you where everything is - and provides ''A Win
dow on Memory" which lets you scroll through all64K and see
what is happening to memory while the computer is running.

And if you program in machine language, this book includes
a complete monitor, ''Micromon-64:' and a complete assembler
program, written in BASIC.

Of the articles in this book which originally appeared in
COMPUTE! Magazine or COMPUTEt's Gazette for Commodore,
many have been enhanced since their original publication. Many
other articles and programs, however, are appearing here for the
first time anywhere.

v

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

(1

t""'i

t"i

~

t""'i

t""'i

t""'i

~

t""'i

~

t""'i

t""'i

~

t""'i

t""'i

~

ti

r'i

ti

t""1

r'i

r'i

r'i

t""1

ti

r'i

~

~

I"")

r-,

~

(i

r-,

r-,

t"i

~

MoreThan
Just Another
computer
Sheldon Leemon

Starting 1
out

Don't let its outward resemblance to the VIC fool you. Inside, the
Commodore 64 is full of brand-new technology. While it retains
certain features of older Commodore computers, the 64 extends
many of those features and at the same time introduces new ones.

The New Chip
Let's start with the microprocessor, the "computer on a chiP" that
forms the heart of the system. Every Commodore machine from
the original PET through the VIC has been built around the 6502
chip. The 64, however, uses a 6510 microprocessor. This chip uses
the same machine instructions as the 6502, which aids in software
compatibility, but adds a built-in Input/Output (110) Port. The 64
uses this port to manage addressing space.

As its name indicates, the 64 comes with 64K RAM standard.
But it also has an 8K BASIC Interpreter ROM, an 8K Operating
System Kernal ROM, a 4K Character Generator ROM, a 6581
Sound Interface Device (SID), a 6566 Video Interface Controller
(VIC-II), and two 6526 Complex Interface Adapter chips, which
along with the other 110 chips require 4K of addressing space for
their hardware registers. That adds up to 88K, 24K more than the
6510 chip can address at once.

In order to allocate resources, the 110 port allows the user to
determine which segments of RAM and ROM will be addressed
at anyone time. The standard configuration allocates 40K of con
secutive RAM for BASIC programming (about 2K of which is
taken up by screen memory and system workspace); 8K to the
BASIC ROM; 4K for addressing graphics, sound, and 110 chips;
8K for the Operating System Kernal ROM, which includes the
screen editor and housekeeping software; with 4K of spare RAM

3

1 Starting
Out

left over for "safe" memory, which can be used for machine lan
guage programs, an 110 buffer, etc.

This default memory allocation can be easily changed by the
user to one of seven other possible memory maps. Any of the
programs in ROM may be switched out and replaced by RAM.
That means a program like a word processor, which needs as
large a storage area as possible, could simply switch out the
BASIC ROM and gain access to 8K more RAM space. As a matter
of fact, all64K of RAM could be used at once (although some por
tion would have to be devoted to 110 driver routines, like a screen
editor, and the 110 devices would have to be switched back in for
communication with peripherals).

Memory addressing space can be allocated not only between
internal RAM and ROM, but between external ROM cartridges as
well. These cartridges (which are not compatible with those de
signed for the VIC) can hold up to 16K of ROM and can be made
to operate either in place of the BASIC ROM or along with it to ex
tend its set of commands.

The same BASIC
The BASIC used in the 64 is the familiar Commodore BASIC 2,
and the Operating System Kernal is generally patterned after its
predecessors. This somewhat represents a compromise. On the
one hand, it allows a high degree of compatibility with the large
body of software currently available for Commodore computers.

Most of the nongraphics type of software, including much
business and educational software, can easily be converted, and
indeed much of it already has been converted for use on the 64. In
fact, Commodore offers a PET emulator program which will allow
the user to run a very high percentage of PET programs on the 64
virtually unchanged.

It would, however, have been nice to have software built-in
that was better adapted to the tremendous new graphics and
sound capabilities of this computer. As it stands, the user must
PEEK and POKE quite a bit more than a user-friendly system
should require. It is some consolation, however, that the system
ROMs can be easily switched out and a whole new Operating
System loaded in from disk, should an easier method for using 64
graphics and sound be developed in the future.

Better Craphics
What makes the 64's color graphics so extraordinary is a separate

4

u
u
u
u
u
u
u
u -u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
U

u
u

starting 1
Out

integrated circuit chip which processes the video display informa
tion. Just as the VIC has its Video Interface Controller chip (for
which it was named), the 64 has a VIC, too - or to be more exact,
a VIC-II. The 6566 video chip supports a wide range of character
graphics, bitmapped graphics, and sprite graphics. Let's examine.
what each of these types of graphics has to offer.

Character Crap hies
Character graphics includes the ordinary text characters that ap
pear on the screen when you turn the computer on. The text dis
play consists of 25 lines, each having 40 characters. These charac
ters are formed from data stored in the Character Generator
ROM, which holds the two standard Commodore character sets,
regular and inverse video. One set contains uppercase letters and
graphics characters, and the other has both upper- and lowercase.

However, the user is not limited to the standard character set
stored in ROM. User-defined characters, up to 256 at anyone
time, may be displayed from RAM, allowing the programmer to
display foreign language alphabets, math symbols, or custom
graphics characters. Like the VIC, one area of memory on the 64
is set aside for the characters to be displayed, while a separate
area holds the color information for each character. This means
that the user can individually select one of 16 different foreground
colors for each of the 1000 characters that appears on the screen.

Besides the standard character display, there are two other
more specialized text modes. The first is a multicolor character
mode, similar to those found on the VIC and the Atari computers.
In this mode, each character is made up of eight rows, each four
dots across. The color of each dot may be selected from one of two
color registers or from the value stored in color memory for that
particular character, so that each character may display up to
three colors at once, in addition to the background color.
Although the standard character ROM is not set up to accom
modate such characters, by using custom graphics characters the
programmer can take advantage of this feature to create colorful
graphics displays that are easily animated.

To aid in this animation, the 64 has fine-scrolling registers,
which allow both the horizontal and vertical position of charac
ters to be changed one increment at a time, so that they may be
moved smoothly across the screen. In order to create a ''buffer''
area for new information to enter the screen as the old informa
tion scrolls off it, the screen size may be shrunk to 24 rows of 38
characters each.

5

1 starting
Out

One interesting feature of this mode is that when it is
enabled, only those characters whose color codes are above a cer
tain number will be displayed as multicolored. All other charac
ters will be displayed normally. Thus, multicolor characters may
be mixed freely with normal, high-resolution characters on the
same screen.

The other special mode is the extended background color mode.
When this mode is enabled, only 64 characters may be displayed
at anyone time, but the user not only can choose the foreground
color for each letter but may select the background color from one
of four color registers as well. These registers may be set to any of
the 16 colors available on the 64. This allows the screen to be di
vided into different colored "windows:' for a split-screen display,
for example. Extended-color mode cannot be combined with
multicolor mode or bitmap mode.

Bitmap Craphics
-Bitmap graphics enables the high-resolution plotting of 320 dots
horizontally by 200 dots vertically. As on the VIC, the display
data, or bitmap, is set up in the same format as character graphics.
Each byte of information has eight bits, each of which represents a
horizontal dot. Each group of eight bytes has its rows of dots
stacked one on top of the other, so that the groups of eight bytes
form an 8 x 8 grid. This makes plotting individual points a little
more difficult than a sequential arrangement would, but it also
makes it easier to intermix character data into a bitmap display.

As in the character modes, the foreground color of each 8 x 8
grid may be individually selected. Bitmap mode requires 8K of
memory for screen data and another 1K for a color memory. The
multicolor option is also available in bitmap mode. Although the
resolution is reduced to 160 dots horizontally, this mode offers the
widest variety of color selection, as it allows each dot within a 4 x 8
grid to be one of three individually selectable colors.

Sprite craphics
Sprite graphics is a feature which aids in the animation of
graphics characters, or sprites. It really comprises a completely
separate system for displaying graphics, in addition to the more
normal character or bitmap graphics. A sprite is a special graphics
character whose shape is defined by 63 bytes of data, laid out in a
24 x 21 dot array. This means that each sprite is approximately
three text characters wide by two-artd-a-half characters tall. Up to

6

u
u
u
u
u
u
u
u
U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

~

tj

tj

tj

~

tj

tj

tj

tj

('\

tj

tj

tj

tj

tj

tj

tj

tj

tj

('\

tj

tj

tj

('\

tj

tj

tj

tj

tj

tj

tj

tj

tj

tj

tj

itj
I

Starting 1
Out

eight of these sprites may be displayed on any horizontal line.
Sprites have many interesting attributes that make them use

ful in games and animation. The 16K display area of memory can
hold up to 256 blocks of 64 bytes of sprite data. The shape to be
displayed is indicated by a register which points to the block
number to be used. Changing this number instantly changes the
shape of the sprite. This makes animation as easy as stepping
through a number of shapes. Each sprite has an individual color
register, so that its color may be chosen from one of the 16 stan
dard colors. A multicolor sprite mode, similar to multicolor char
acter and bitmap modes, is available. It reduces the horizontal
resolution to 12 dots across, but allows each sprite to display two
colors from shared multicolor registers, as well as its unique sprite
color. Horizontal and vertical placement of sprites is accom
plished by changing the value of the X and Y position registers.
Movement will occur instantly upon such a change. Each sprite
may be enlarged to double size in either the horizontal or vertical
plane, or both at once. When a sprite is moved to a spot on the
screen already occupied by regular graphics, a priority register
determines which will be displayed. Thus, each sprite may be
selected to move either in front of or behind other screen graphics.
There is also a system of collision detection to let the user know
when a sprite is positioned in the same spot as character or bit
map graphics, or when two sprites overlap. By checking these
registers, a game program, for example, can tell when an explo
sion is in order.

More Featuresl
Much more could be said about the VIC-IT chip. For instance,
though it can address only 16K of memory at a time, any of four
banks of 16K can be selected. Within a 16K bank, the placement of
the screen display may be easily selected, allowing two or more
screen areas to be set up in memory at once and rapidly alter
nated, a procedure known as page flipping. Even if the 16K bank
chosen is one in which the 6510 addresses ROM memory, the
VIC-IT can address the RAM which shares its memory space, thus
allowing the same memory location to do double duty. Likewise,
the VIC-IT can address the character ROM as if it were in RAM,
even though the 6510 cannot tell that it is tl}ere. The VIC-IT also
provides support for input from a light pen. Of great interest to
machine language programmers is the system of raster interrupts.
The VIC-IT can generate an interrupt request in synchronization

7

1 Starting
Out

with the raster scan display. This means that the more advanced
programmer can change any of the VIC registers partway down
the screen, so that two or more character sets can be displayed on
different parts of the screen simultaneously, or that the same
sprite can appear at two different vertical locations at once, there
by increasing the total number of sprites that can be shown.

A MUsic Chip: SID
Owners of the 64 will be glad to discover that their VIC has a
brother, SID (Sound Interface Device). SID is a musician on a
chip, capable of easily producing sounds more often associated
with expensive keyboard synthesizers than with home com
puters. SID provides a wide range of controls over three musical
voices, including high-resolution control over pitch (frequency),
tone color (timbre), and dynamics (volume). It can even be
used to filter external signals that are fed into its audio input!
Although briefly explaining these features is no substitute for
hearing the effects they produce, it may give you some idea of the
range of sounds available.

The frequency of each voice is controlled by a 16-bit register,
which means that the pitch can be changed in 65536 steps, cover
ing over eight octaves. While pitch is a concept most of us readily
understand, there are other, more subtle sound components
which SID can control. One of these is waveform. Each voice can
be set to one of four waveforms. The Triangle waveform output is
low in harmonics and has a mellow, flute-like quality. The Saw
tooth waveform is rich in even and odd harmonics and has a
bright, brassy quality. The Pulse waveform has a harmonic con
tent that can be adjusted by the Pulse Width registers and can
produce tone qualities ranging from bright, hollow square waves
to a nasal, reedy pulse. And the Noise waveform produces a ran
dom signal which can be varied from a low rumbling to hissing
white noise. This waveform is good for creating explosions, wind,
snare drums, engine noises, etc.

Another important control is the volume shaping of the
Attack/Decay/Sustain/Release (ADSR) registers. These registers
control the sound envelope. This term describes how the sounds
produced by different types of instruments build to peak (attack),
drop to an intermediate level (decay), hold that level for a time
(sustain), and finally fade away (release). Each type ofinstrument
has its own distinct pattern. When a drum is hit, the sound
reaches full volume and decays rapidly to zero volume, while on

8

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
U

u
u
u
u
u
u
u
u
u
u
u
u
u
u

n
t'i

t'i

t'i

t'i

t'i

t'i

t'i

f""',

f""',

f""',

f""',

n
t'i

f""',

f""',

f""',

f""',

n
n
f""',

n
f""',

~

~

~

~

~

~

~

~

~

n
r-...
f""',

f""',

Starting 1
Out

. string instruments the note may be sustained for a long time. The
ADSR controls of the SID chip allow it not only to imitate the
sounds of a wide range of instruments, but to synthesize patterns
not found on any existing musical instrument.

There are a number of other controls as well. A Sync control
synchronizes the fundamental frequency of two oscillators, pro
ducing "hard sync" effects. A Ring Modulation control allows the
creation of bell or gong sounds. Individually selected Highpass,
Lowpass, and Bandpass filters are available for all three voices
and can be used singly or in combination.

Though not sound related, this chip also controls the reading
of paddle controllers.

H reading about SID's capabilities doesn't excite you, hearing
them certainly will. The only drawback to all of this power is that
there are no BASIC commands to allow easy access to 64 sound.
After setting up volume and ADSR levels, each note will require
that you POKE at a minimum two frequency bytes and one wave
form byte.

Communicating with the outside
To round out its complement of support chips, the 64 has two
6526 Complex Interface Adapter (CIA) chips. These chips each
have two 8-bit 110 ports, which are used for reading the keyboard
and joystick ports, as well as for communicating with external
parallel and serial devices over the User Port and the Serial Bus.
In addition, each has two independent, linkable 16-bit interval
timers, which can also count external pulses or measure fre
quency, pulse width, and delay times of external signals. Each
chip also has a 24-hour, time-of-day clock with programmable
alarm.

The 64 can use the same 1541 disk drive and 1525 printer as
the VIC, or with an IEEE cartridge it can use the same wide range
of dot-matrix and letter-quality printers, and floppy and hard
disk systems available for the CBM line.

A lot of software is available for the 64, and many vendors of
Commodore software have made their offerings 64-compatible.
Major producers of arcade-type games have 64 translations com
pleted or in the works. Commodore itself already has or is ready
ing a number of arcade games for release, as well as utilities such
as the VSP cartridge to add graphics and sound commands to
BASIC. The best news of all is that most software for the 64 is be
ing priced well below comparable titles for the older CBM line.

9

1 startIng
Out

This stands to reason, for even with 64K of RAM and full
blown color graphics and sound capabilities, the Commodore 64
is one of the least expensive computers currently on the market.
With its introduction, the group of people who can afford to own
a powerful computer has suddenly grown much, much larger.

10

~

U

U

U

U

u

U
-~-

V
.--,

U

U

u
V

U

U

V

U

V

U

V

U

u
V

V

V
--,

V

U

U

U

U

u
-,

U

U

U

U

V

U

Starting 1
out

Making the
computer DO
What YOU want
Orson Scott Card

Just how do you write a program? Here is an organized method of design
ing and writing a program from the idea to the finished product. Along
the way, both beginners and intermediate programmers willieam some
new techniques - and a great deal about 64 sound.

What's the hardest thing about programming?
It's not really that hard to learn the commands and what they

do. The words are mostly English, and the rules pretty much
make sense. You had a much harder time with high school Span
ish or French than you'll ever have learning 64 BASIC.

But when you sit down to write your first serious program,
you might run right into a brick wall.

Where do you start? What do you say? With foreign language
study you had dialogues to teach you speech patterns, but you
don't have any ~emorized dialogues to teach you that you begin
with ''Buenos dias, Senor 64:' You don't have a friendly partner
who is willing to try to understand what you're saying despite
your accent. The computer won't prompt you and say, "OK,
you've given me the variables. Now you need to start a loop:' The
structure, the shape of the program, depends entirely on you.
And if the computer doesn't understand you, too bad.

A program'from the Cround up
One of the best ways to learn programming techniques is to do it
with someone else who explains what each line or technique is
for. That's what the rest of this article is for. 111 create a program, a
simple utility, and describe what I'm doing as I do it. Now, I'm not
an expert on the 64 or any other computer, but I have written a
few fairly complex programs that actually worked, and some
things I've picked up might be useful to you.

11

1 starting
Out

Designing the program
As long as you're going to create a program, you might as well
create something useful. One of the most interesting features of
the 64 is the way it controls and produces sound. More than any
other home computer, this one puts the power of a synthesizer
into your hands. Unfortunately, the sound commands aren't very
easy to use - it takes a lot of different commands to make even
the simplest sounds. So this program will be a simple utility to
allow you to test sounds, changing them as much as you want,
until you find the right one.

The first step in programming is to decide what you want the
program to do. Here's a list of features I think this sound utility
ought to include:

1. The sound should repeat, over and over, while users can
change the sound right from the keyboard.

2. The computer should report to the users all the numbers
needed to exactly reproduce the sounds that they hear.

3. Users should be able to change all the features of the
sound: waveform, pulse width, pitch, attack, decay, sustain, re
lease, and duration.

4. Users should be able to do all this whether they under
stand anything about sound or not - in other words, their ears
should tell them what they're doing, leaving them free to
experiment.

5. Almost as important as what the program will do is what
the program won't do. It won't use more than one voice at a time.
It won't allow the creation of tunes. It won't directly store the
sound parameters on tape or disk or list them to a printer. And it
won't be fast. All those features, if we had them, would make a
fantastic program, but we're after something simple right now.

A Few WOrds on 64 Sound
The best way for you to learn what the different sound features of
the 64 do is to have you type in this program, RUN it, and hear
what each different effect sounds like.

But the numbers in this program won't make any sense to
you without a basic understanding of what the 64 is doing to
create sound. There are eight locations in memory that you need
to change in order to produce a sound for one voice. In this utility
program, I'm going to assign the address of each of these loca
tions to a variable name, so let's use the variable names from the
start:

12

u
u
u
u
u
u
~-

U

U

U

U

u
U

U

U

U

U

U

U

U

U

U

U

U

U
~.

U

V

U

U

U

U

u
u
u
u
u
u

starting 1
Out

P1 and P2. These are the "high frequency byte" and "low fre
quency byte:' The addresses for voice 1 are 54273 (Pl) and 54272
(P2). What they control is the pitch of voice 1-how high or low
the note is on the musical scale. The higher the number, the high
er the note. P1 is the broad control, like the channel seleCtor on
your TV. P2 is fine tuning.

VL. This is the general volume setting for all three voices in
the 64. It can be set from 0 to 15: 0 is off; 15 is maximum. We are
going to set it once, at the beginning of the program, and leave it
alone - there are much better volume controls later in the pro
gram. The address is 54296.

AD. Attack and decay are the first two parts of the sound en
velope, often referred to as ADSR envelope - Attack/Decay/
Sustain/Release. Attack is how quickly the sound gets to full
volume. Decay is how quickly it drops off. Sustain is how loud it
is through the rest of the note. Release is how long it takes for the
sound to die away when the note is stopped. I won't even attempt
to describe the effects of different sound envelopes to you - the
program will do it much better.

Attack and decay are controlled from the same location in
memory: 54277. There are 15 possible levels for attack, and 15 pos
sible levels for decay. And there are eight bits in the number
stored at 54277. Attack is controlled by the four highest bits (the
"high nybble"), and decay by the four lowest. If you don't know
what bits are, don't worry. It's enough to know that the meaning
ful values for attack are multiples of 16, from 16 to 240, while the
meaningful values for decay are the numbers from 1 to 15. To set
up both attack and decay, you choose the numbers you want for
each, add them together, and POKE them in. In other words,

POKE AD,ATTACK+DECAY

SR. The same system works for sustain and release. Sustain
uses the high nybble and release uses the low nybble. The loca
tion in memory is 54278.

WF. Waveform is controlled at 54276. There are four options,
represented by the numbers 17, 33, 65, and 129. The lowest num
ber is a fairly pure tone; the highest is noise. You have to hear the
others.

SW. The square waveform, number 65, has another signifi
cant controlling number, the pulse width, controlled at locations
54274 and 54275. In our program, we'll store 8 in 54275 and allow
the user to modify the number at SW.

13

1 starting
out

organizing the program
All the program really has to do is find out what values the user
wants to use and POKE them into the right memory locations.
This is the point where careful programming makes the differ
ence between useful programs and confusing software that is
more trouble than it's worth.

For instance, we could simply have a program like this:

1I1J POKE 54296,15
2g FOR 1=54272 TO 54278:1NPUT N:POKE 1,N:

NEXT 1
3g FOR 1=1 TO 25g: NEXT l:POKE 54276,254:

GOTO 2g

There it is. A complete program. Nothing could be simpler. RUN
it, and it will prompt you to put in a number. It will take each
memory address in numerical order, take whatever you type in,
and make the sound. Then it will ask you for another.

Sounds great - until you try to use it. Then you have to re
member the right order for the numbers you type in. If you make
a mistake, there's no way of checking to see what you did wrong.
If you forget where you are, you might as well press RUN/STOP
and start over.

This is not what you would call"user-friendly:' One mistake
and the whole thing crashes down around your ears. You can't
tell what's going on, it makes each sound only once, and even if
you do produce a sound you like, there's no guarantee that you
can remember how to make it again!

User-friendly programming. The principles of user-friendly
programming are simple enough:

1. Tell users what they need to do.
2. Protect them from mistakes.
3. Do something useful.
4. Tell them what they did.
When users sit down to run your program, they shouldn't

face a blank screen with a single question mark on it. They should
have a clear explanation of what to do. If they push the wrong
button or enter the wrong value, it shouldn't hurt a thing. And
when they get a result - in this case, a sound - they should hear
it over and over; and while it is playing they should see the
numbers that are being POKEd for each function, so that they can
jot them down and use them later in a program.

14

u
u
u
u
--
U
--
U

U

U

U

U

U

U

U

U

U

U

U

U
,

U
--,
U

-,

U

U

U

U

U

U

U

U

U

U

U
--,

U

U

U

U

U

starting 1
Out

Most of the numbers to be POKEd have only a few valid
choices. Why should the user have to remember what those
choices are? Instead of using raw INPUT statements, let's create
some toggles, so that by pushing a single button, the user can
switch from one option to another. For instance, with WF (wave
form) the only valid numbers are 17, 33, 65, and 129. In our pro
gram, the space bar will be the toggle. Each time the user presses
the space bar, the program will POKE the next higher value into
WF. If the last value was 129, then pressing the space bar will
make the program start over at 17.

Let's think through how we would like the program to work
- from the user's point of view. Let's say you sit down at the com
puter, load the program from tape or disk, and type RUN. The
screen should display a menu of choices - what result will come
from pushing a certain key.

Keyboard use. The keys we'll use will be the function keys on
the right side of the keyboard, in combination with the shift key.
We can also use the cursor keys (CRSR left/right and CRSR
up/down), the space bar, the RETURN key, and perhaps the up
arrow key.

Why these keys, instead of letter keys? As long as the choices
are fairly few, the function keys and the major, powerful keys on
the keyboard like RETURN, the space bar, SHIFT, COMMO
DORE, and the cursor keys arethe most memorable. If there are
eight or fewer choices, the joystick is even better.

If you have large numbers of functions, however, the letter
keys might be best, especially if you can choose letter keys that
help the user remember what the function is - Wfor waveform,
for instance, A for attack, D for decay, and so on. (If you prefer
that method, you11 have no trouble altering this program to fit
your needs.)

Communication
There are two displays this program will need. First, there should
be a continuous display of what key to press in order to change
each value. Second, there should be a display showing what
values are being POKEd to make the sound the user is hearing.
This display needs to be updated every time a value is changed.

Menus. The display of optional choices and how to select
them is the menu. Especially when your'program uses toggles,
there must be a display to show what the toggles are. A simple
program, in which there are only a few choices, usually gets by

15

1 starting
Out

with a simple menu - all the possible choices displayed at once.
Really complex programs, like word-processing programs,

use nested menus. This means that they are given one menu of a
few choices. Then, when they make a choice, a new menu is dis
played showing further options. Think of it as a shopping mall.
There are many stores to choose from when you first come in.
Once you choose a store - department store, for instance - you
have many departments to choose from. And once you choose a
department, you still have many items on racks or shelves to
select from. Figure 1 is a diagram of nested menus.

Another menu concept is chained menus. After you make a
choice at your first menu, you are presented with a second menu
that was not affected in any way by the first choice. A third,
fourth, and fifth menu may follow in order. Think of it as going
along a cafeteria line. You can select from the salad display, but
then you must move on to the vegetables, and then the main
courses, and then the beverages, always in the same order.
Initialization routines to set up complex software usually use
chained menus. Figure 2 is a diagram of chained menus.

Figure 1. Nested Menus

16

u
u
u
u

u
u
u
u
v
u
u

u

v
u
u
u

u

u
u
u

u
u
u

u
u

u

u

u
u

u
u
u

u
u

u

~

~

~

~

~

~

,-,
~

,-,
~

~

~

~

~

~

~

,-,
,-,
~

~

,-,
~

~

,-,
,-"

,-,
~

,-,
~

,-,
~

,-,
~

~

,-,
~

starting 1
out

Figure 2. Chained Menus

You can see that your choice of simple, nested, or chained
menus depends on, the needs of the program.

If your program has only a few choices and will return to the
main program after completing each chosen task, then a simple
menu is all you will need.

If your program has many, many choices, you will probably
want to group the choices into meaningful categories. A main
menu will let users choose a category, and the menu for that cate
gory will let them choose which specific item they want. A benefit
of the nested menus is that you can use the same toggles in each
different menu, but the meaning of each toggle will be changed.

If your program goes through a setup phase, or always does
things in a certain order, then you11 want to progress from step to
step, offering users certain choices at each step, and then proceed
ing to the next step. If the choices at each step of a chained menu
system are similar, it's a good idea to have the toggles carry similar
meanings. For instance, if several menus have the option ''Enter a
new filename;' then it's a good idea to have the same key activate
that choice each time. If E chooses that option on the first menu,
but Fis the toggle for that choice on the next, the user will have a
perfect right to be annoyed at you.

17

1 Starting
Out

Feedback. Just as important as telling users what they can do
is telling them what they did. With really complex programs,
where after a setup the program will take some time performing
several actions, it's not a bad idea to stop and show users exactly
what they chose and give them a chance to go back and make
changes. And when a program will perform irrevocable opera
tions, like wiping out a disk or permanently changing a data file,
it isn't optional any more - you must give them a chance to
double-check.

The sound program I'm going to write will have only'a simple
menu. Each choice will cause an operation to be performed, and
the program will return to the menu for another selection. There
is no setup, and we don't have enough choices to justify nesting.

And as for feedback, it will be a simple matter to maintain a
display of the current selections being POKEd in to create the cur
rent sound. Each time a change is made, the "current selections"
display will be refreshed. But the menu will always be the same -
it should be printed once and stay on the screen. It would be a
waste of time to print it again and again. That means that part of
the screen will always be the same, and part will be changed from
time to time. Since we have so few choices, it will be a simple mat
ter to keep all the information on the same screen display.

I wouldn't be surprised if a third of the program ended up be
ing devoted to displays. They're so vital to making a program
usable that it's rarely a good idea to scrimp in that area.

Plan for Revision
Every program, no matter how useful, is going to be changed
someday. Even if you think it's perfect for your needs, someone
else might use it and want to make an alteration. It helps you and
it helps future adapters if you plan your program so that it's easy
to figure out what's going on in it. There are some habits that are
almost universal.

Foi'instance, most programmers begin their program with
assignment of variables. Even though the variable won't be used un
til later, if every variable in a program is assigned right at the be
ginning, it's far easier to make sure you don't use the same name
twice to mean different things, or assign a variable to carry a value
that is already held by another variable. .

Most programmers also put their initialization steps into one
area of the program, so it's easy to follow the initial setup.

18

u
u
u
V
u
-
U

U

U

U

u
V

U

U

U

U

u
u
u
u
u
u
u
u
u
u
.-,

U

U

U

U

U

U

U

U

U

U

r--,

~

~

~

~

~

~

r--,

~

r--,

~

r--,

~

,-.
~

~.

~

~

,-.
~

~

,-.

~

~

,-.
("'.,

~

,-.
,-.
,-.
,-.
("1

,-.
("1

,-.

starting 1
out

Programs that involve repeated user input are usually con
structed around a main loop, which gets information from the user
over and over again and then branches to subroutines in order to
carry out the user's commands.

And, finally, most programs have an escape sequence, so that
when the user chooses to quit the program, the operating system
of the computer is restored to normal before the program ends.

outlining the program
If you take computer programming classes, you will probably
learn a complex system of diagramming programs, with squares,
circles, diamonds, and other shapes carrying definite meanings.
Most of the time, though, I find that a simpler format is good
enough for what I'm doing.

What shape should the program take?

1. Assigning variables
Here are the first two lines of our program:

10 P1=54273:P2=54272:VL=54296:AD=54277:S
R=54278:WF=54276:SW=54274

20 SC=653:KD=197

The variables in line 10 should look familiar - they assign the
addresses of the sound memory locations to the variables that we
already discussed.

Keyboard codes. However, line 20 has a few new things. SC,
with the value 653, is the location that the operating system uses
to store the SHIFT and COMMODORE key values. If the value at
653 is zero, neither key is pressed. If the value is 1, the SHIFT key
is pressed. If the value is 2, the COMMODORE key is pressed.

KD, with the value 197, is the location where the operating
system stores the code for the key that is currently being pressed.
This is not the ASCII code, and it is not the internal character code
- it is a keyboard code that reports on the key, not the character.
The operating system takes the information at 197 and combines it
with the information at 653 in order to translate the keyboard
code into ASCII and internal character codes.

Something you might want to try right now is a simple pro
gram that will let you see the code for individual keys. Just type
this in without a line number, in direct mode. When you press
the RETURN key, the program will run.

19

1 starting
out

FOR I=0 TO 10000:PRINT PEEK(197),PEEK(653
) : NEXT I

As long as you aren't pressing any key, the screen will report
values of 64 and O. Pressing keys will change the values. Notice
that a regular key will return the same code number whether the
SHIFT key is pressed or not. Press the function and cursor keys -
they return the lowest numbers of all, and their codes are all in se
quence. That will be convenient for us later.

2. Initialization
The values of the variables assigned so far will never change -
they are permanent. Now, however, we begin to initialize vari
ables that will change. We initialize them so that when the pro
gram begins, it will immediately start creating a sound, and so
that each variable holds a valid value. This will enable our change
routines to work properly from the start.

25 POKE 54275,8:POKE VL,15
30 Sl=22:S2=53:ATTACK=16:DECAY=8:SUSTAIN

=16:RELEASE=8:SQUARE=128
35 WAVE=35:DUR=100:0FF=254:TEN=10

Line 25 POKEs 54275 with the value 8. This is part of the pulse
width assignment, but we won't be changing it in our program.
The same with the volume assignment, POKE VL,15. This sets
the volume at its loudest. The ADSR envelope will make particu
lar changes within the range of possible volumes, however, so
you'll almost never want to set your volume at anything less.

Line 30 initializes the variables that will change. 51 and 52 are
the pitch values that will be POKEd into locations P1 and P2.
ATTACK is the attack value, and it will be added to DECAY to be
POKEd into address AD. SUSTAIN and RELEASE will be added
together to be POKEd into SR. SQUARE is the square wave pulse
width, and it will be POKEd into location SW.

WAVE is the value of the waveform, and it will be POKEd into
WF to start the sound. OFF will also be POKEd into WF, but only
at the end of the sound, to turn it off. The value of OFF will al
ways be 254. DUR is the duration of the timing loop. It will not be
POKEd anywhere; it will be used as the counter in a FOR-NEXT
loop to decide how long each note will last .

Line 35 has a variable named TEN. This is a toggle that will
have a value of either 10 or 1. Our program will check the value of

20

v
u
u
u
v
u
V

V

V

U

U

V

U

U

U

U

U

U

U

U

U

U

U

U

V

U

U

U

V

U

V

U

U

U

U

U

r-,

i)

tl

i)

tl

tl

r-,

i)

i)

i)

i)

i)

~

,-,
,-,
i)

i)

tl

r"i

~

r"i

r"i

r"i

r"i

r"i

r"i

tl

i)

i)

tl

i)

r"i

tl

~

r--,

startIng 1
out

TEN to see whether to change pitch values by ones or tens. This is
because there are 255 possible values for each of the two pitches,
and cycling through those values one at a time will get awfully
tedious, unless there's a way to do it faster. Our program will let
the user choose between fast (by 10) and slow (by 1) stepping
through the pitches.

Notice that I have chosen to use variable names that mean
something - ATTACK, WAVE, DECAY, OUR, TEN. The com
puter doesn't care. It only pays attention to the first two characters
of the variable name - ATTACK looks just like ATTILA and
ATROCIOU5 to the computer. The reason for using whole words
is that it's much easier for you to remember what the variable
names are while you're programming, and it's easier for someone
coming afterward to figure out what each variable stands for. Just
be careful that you don't accidentally give two variables names
that the computer thinks are the same. 1£, instead of 51 and 52,
we had used 50UNDl and 50UND2, the computer would see
only 50 and treat them as if they were the same variable. We defi
nitely wouldn't get the results we planned on.

3. Menu and current value Display
Putting up the display. The last step in initialization is put

ting up the display - the menu and the feedback. We'll do it this
way:

40 GOSUB 300

With this G05UB, the program will jump to line 300, which
begins a routine that puts up the menu and the display of values
currently being POKEd. How did I choose line 300? B~cause I
knew I wanted the main loop to begin at line 100 and figured that
it would finish well before 300. I like to begin my main subrou
tines on even-hundred lines - it's easier to find them again that

wayAs long as we're planning the display subroutine, let's do it
now.

300 PRINT CHR$(147)"F1/2{6 SPACES}= HIGH
FRE DOWN/UP"

310 PRINT "F3/4{6 SPACES}= LOW FRE DOWN/
UP"

320 PRINT "FS/6{6 SPACES}= ATTACK/DECAY"
330 PRINT "F7/S{6 SPACES}= SUSTAIN/RELEA

SE"

21

"1 starting
out

340 PRINT "SPACE BAR = CHANGE WAVEFORM"
350 PRINT "CRSR U/D{2 SPACES}= DURATION

MORE/LESS"
355 PRINT "CRSR L/R{2 SPACES}= SQUARE WA

VE WIDTH"
360 PRINT "UP-ARROW{2 SPACES}= PI'rCH INT

ERVAL TOGGLE":PRINT "RETURN
{4 SPACES}= STOP"

365 POKE 214,10:POKE 211,0:PRINT
370 PRINT "HIGH FRE="STR$(S1)"{2 SPACES}

"TAB(20)"LOW FRE="STR$(S2)"
{2 SPACES}"

380 PRINT "ATTACK="STR$(ATTACK)" "TAB(20
):"DECAY="STR$(DECAY)" "

390 PRINT "SUSTAIN="STR$(SUSTAIN)" "TAB (
20):"RELEASE="STR$(RELEASE)" "

400 PRINT "WAVEFORM="STR$(WAVE)" "TAB(20
)"DUR="STR$(DUR)" "

410 PRINT "SQUAREWAVE WIDTH="STR$(SQUARE
)" ":RETURN

Lines 300 through 360 show all the possible choices. But first, in
line 300, the statement PRINT CHR$(l47) clears the screen.

What do those cryptic menu entries mean? Fl/2 means that
pressing Fl (function key 1) will give you the first result, and F2
(Fl shifted) will give you the second result. The first result is high
frequency down; shifted, it is high frequency up. F5/6 means that
pressing F5, unshifted, will change the attack; pressing F6,
shifted, will change the decay.

The layout is reasonably consistent. Whenever a choice in
cludes a down/up option, the unshifted key means down and the
shifted key means up. The ADSR envelope choices are together,
in their proper order - attack, decay, sustain, release - and one
key always controls both halves of a two-nybble choice. The space
bar is used to change the waveform, which has the largest single
effect on the sound. The up/down cursor key controls, not the
quality of the sound, but its duration; the left/right cursor key
controls the most rarely used function, the pulse width of the
square wave. The up-arrow key controls the TEN toggle. And the
RETURN key allows the user to stop the program.

Why provide a key to stop the program? All the user needs to
do is press RUN/SIDP and the program will end, won't it? Yes,

22

u
u
u
U

U

U

U

v
u
V

U

V
-

U

U

V

U

U

U

V

U

U

U

U

V

U

U

U

U

u'
U

U

V

U

U

U

U

Starting 1
Out

but RUN/SlOP won't turn off the sound! If you happen to press it
during the middle of a note, the note will keep on sounding for
ever. Pressing RETURN will provide an orderly, quiet end for the
program.

Positioning the cursor. Line 365 is the line that enables us to
leave the menu on the screen without ever having to print it
again, even though we will be updating the rest of the display
with every change. If we wanted to start in the upper-left-hand
corner each time, we could replace line 365 with PRINT
CHR$(l47). But we don't want to wipe out the menu. So instead
we will tell the cursor to PRINT everything that follows starting at
line 10, column zero. POKEing 10 into location 214 tells the operat
ing system to begin the next PRINT statement on that line; POKE
ing a 0 into location 211 tells the operating system to skip that
many spaces before beginning the PRINT. Once you get the
whole program typed in and saved, you may want to change
these values and see what it does to the display.

Skipping over spaces on a line. Lines 370 through 410 dis
play the current values. Since certain values belong together -
the two pitches, attack and decay, sustain and release - it made
sense to layout this display with two items on a line. However,
since the length of each entry will change, it wouldn't work to
simply type in a certain number of spaces, the way we did in the
menu to skip from the left-hand column to the right-hand col
umn. After all, sometimes the value of 51 will have three digits,
and sometimes only one - as the value changed, the right-hand
column would keep shifting.

So instead, we use the TAB function. Instead of printing
blank spaces between one entry and the next, the TAB function
skips over a number of columns and begins PRINTing everything
after it in the column specified in parentheses. On our display, we
will begin each second entry at the twentieth column - TAB(20).
Everything befvrethe TAB column will be left alone.

leading and trailing spaces. There's another problem with
displaying numbers that change, however. The 64 automatically
skips a space before and after a number whenever you PRINT a
variable. The leading space leaves room for the minus sign before
negative numbers. The trailing space is provided so that if you
print several variables in a row, you can see where one leaves off
and the next begins. The trouble is, we don't want those spaces
this time. Because of skipping a space after the number, when we

23

1 starting
out

change the value of WAVE from 129 to 17, it will look like we
changed it from 129 to 179. The 9 will be left hanging.

And it doesn't help just to put a blank space - 1/ 1/ - after the
variable name. That blank space will simply begin after the trail
ing space. The 9 will still be left hanging.

. The STR$ solution. The solution, then, is to print the vari-
ables, not as numerical variables, but as string variables. And 64
BASIC has a built-in function, STR$, that does it very nicely. In
stead of PRINT WAVE, we say PRINT STR$(WAVE). What STR$
does is evaluate the value of WAVE and turn it into the ASCII
string that expresses that value. It's a trivial difference to human
beings - it comes out looking like the same number to us. But to
the computer, they are not the same thing at all.

One result of that difference is that the computer doesn't skip
leading and trailing spaces when it PRINTs strings. When we
change the value of WAVE from 129 to 17 in the statement

PRINT "WAVEFORM="STR$(WAVE)"{2 SPACES}"

the result, on our screen, is not 129 followed by 179; it is 129 fol
lowed by 17, which is exactly what we want.

Double use of a subroutine. Line 410 ends with the RETURN
statement, which causes the program to jump back to the state
ment after the GOSUB in line 40. You may wonder why the menu
(lines 300-360), which is printed only once, is included as part of
the subroutine that prints the current value display (lines .
365-410), which will be updated and rePRINTed often.

It didn't have to be that way. I could have put the menu be
tween lines 40 and 100 and included only 365-410 in the subrou
tine. I did it to show you a technique that you may want to use.
Later in the program, we will reuse that subroutine, but not in a
statement that says GOSUB 300. Instead, the statement will say
GOSUB 365. It will begin executing the subroutine at line 365,
which positions the cursor, and then flow through to line 410,
which RETURNs.

When you have a routine that sometimes includes several
statements and sometimes doesn't, one of the simplest things to
do is group those statements at the beginning of the subroutine,
and then sometimes use an entry point before those statements,
and sometimes use an entry point after them.

There are dangers, though, to having a subroutine do double
duty. Once again, we need to think of revisions. What if you were

24

u
u
u
u
u
u
u
U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

u
u
u
u
u
u
u
u
u
u
u
u
u
u

,,-..

starting 1
out

doing revisions in a part of the program that entered the subrou
tine at line 300, and you discovered something you wanted to add
to the subroutine. If the program were very complex, or you
hadn't worked on it in a long time, you might forget that other
parts of the program also enter the subroutine at 365. Suppose
that you then made a change at line 380 that will work just fine for
the routines that enter at 300 - but ruin everything for the rou
tines that enter at 365.

In a small program like this one, that sort of thing is pretty
unlikely, and multiple entry points can save time; but the safest
thing is to create each subroutine with one and only one entry
point and one and only one RETURN point. This is one of the
principles of "structured" programming.

4. The Main LOOp
Here is the main loop of the program, the things that will be re
peated, over and over, until the program is ended:

100 SH=PEEK(SC):KEY=PEEK(KD):IF KEY<>64
THEN GOSUB 500:GOSUB 365

105 IF KEY=255 THEN 200
110 POKE P1,S1:POKE P2,S2
120 POKE AD,ATTACK+DECAY:POKE SR,SUSTAIN

+RELEASE:POKE WF,WAVE:POKE SW,SQUARE
130 FOR 1=0 TO DUR:NEXT I
140 POKE WF,WAVE AND OFF
150 FOR 1=0 TO 75:NEXT I
160 GOTO 100

Read the keyboard. Line 100 finds out what key, if any, the ,
user has pressed. The computer finds out the value stored at SC
and assigns it to the variable SH. This will be a 1 if the SHIFT key
is pressed, 2 if the COMMODORE key is pressed, or a 0 if neither
is pressed. Then KD is PEEKed and the value is placed in KEY,
which tells which key has been pressed.

If KEY does not contain a 64, then a key has been pressed,
and we will want the program to do certain things. First, the pro
gram will jump to the subroutine at 500. This is the Change Value
Subroutine that finds out which key was pressed and makes
changes accordingly. Then the program will GOSUB to 365 and
update the current value display - this is the second entry point
to that subroutine, which you've already seen.

25

1 starting
out

Everything after THEN. Remember that everything that ap
pears on a line after the THEN statement will be executed if the
condition is true, and none of it will be executed if the statement is
false. In other words, if KEY equals 64 (meaning that no key was
pressed), the program jumps right to line 105, ignoring every
thing else on line 100.

Internal flag. Line 105 is deceptive. It looks as though it is do
ing part of the job that the subroutine at 500 will do - checking to
see what key was pressed. Actually, however, the keyboard can
not possibly return a value of 255. The "nly way that KEY can
equal 255 is if the program changes it to 255. This serves as a flag.
There is only one way that KEY can ever equal 255, so testing for
255 finds out if that condition has been met. If that flag is set, then
the program will branch to line 200 - and line 200 ends the
program!

Making the sound. Lines 110 and 120 actually make the
sound. Line 110 POKEs the correct values into the frequency con
trollocations. Line 120 POKEs the correct values into the ADSR
and waveform locations. Every time this loop repeats, this action
is performed and a sound begins, whether the values have been
changed or not. This is why the sound repeats over and over, re
gardless of whether the user presses a key.

Repeating without waiting. This is why we wrote the pro
gram to get the user's choices by reading KD and SC rather than
using INPUT statements. When you use an INPUT statement, the
program stops and waits until the user enters something, then
presses RETURN. That would make it difficult to make the sound
repeat over and over.

The disadvantage of reading KD and SC, however, is that
there is no regular mathematical relationship between the key
board codes and the characters they stand for. If you actually had
to be able to understand all the possible combinations of SHIFT,
CONTROL, and keys using the keyboard codes, your program
would be terribly slow and unwieldy. This method works best
when only a few keys are meaningful, and it's important not to
stop and wait for input.

Delay loops. Line 130 and line 150 are both delay loops, or
empty loops. They make the computer do nothing ov~r and over
again, for as long as we tell it to. The loop in 130 decides how long
the sound will last, and its duration is controlled by the value of
the variable DUR. If DUR is a low number, the sound will be
short; if it is a high number, the sound will be long. The user can

26

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
v
u
U

U

U
-
U

change this value while the program is running.

starting 1
out

The loop in line 150, however, is a constant length. This is be
cause it is the time between notes. Why have any delay at all? Be
cause the release step in the ADSR envelope happens after the
note ends - it decides how quickly the sound dies down at the
end of the note. If we went straight from the end of one sound to
start a new one, there wouldn't be time for the user to hear the
effect of using different release values. .

Notice that both empty loops use the same counter variable,
1. This works fine because the one loop closes before the next be
gins. However, if you nest two loops, one inside the other, you
must use different counter variables or the program will become
completely confused.

Turning off the sound. Line 140 POKEs the value of OFF into
location WF. This turns off the sound we just produced. Why do
we AND the value of OFF with the value of WAVE? To turn off the

Figure 3. Bitwise AND

Notice that ANDing any number with 254 will turn off o.!!!y the
rightmost (least significant) bit. All other on bits will stay on.

sound, we must make the least significant (lowest-numbered) bit
at WF be a o. We could just POKE a 0 into WF, but that is like using
a sledgehammer to push a needle.

What does AND do? When you use AND with a number in
stead of a logical expression (''bitwise AND" instead of ''logical''

27

1 starting
out

or "Boolean AND"), the computer compares the bits in both
numbers. Any bit that is on (has a value of 1) in both numbers will
be on (1) in the result. But any number that is off (0) in eithernum
ber will be off (0) in the result. OFF has a value of 254, and in the
number 254 every single bit is on exceptthe least significant bit.
Therefore, no matter what the other number is, that least signifi
cant bit will be a 0 in the result. Any other bit that is on, however,
will stay on, because it will find a match in the number 254. Figure
3 shows how bitwise AND works in the expression WAVE AND
OFF.

Close the loop. Line 160 closes the main loop by sending the
program back to 100. It will keep doing this forever if the user
never ends the program. That's why a loop made with a GOIO is
called an endless loop.

5. EXit ROutine
Line 200 is very simple - it exits from the program. But it does it
cleanly. First, you can get to this line only when the sound is off.
Every time through the main loop, the sound is off after line 140
and does not tum on again until the loop repeats and reaches line
110. The command that can send us to the exit routine is in line
105. Therefore, you can only reach this routine when the sound is
off.

200 POKE 198,0:END

What is POKE 198,0 doing? Every time you press a key on the
64, the value of the key you pressed is automatically put into a
keyboard buffer. This happens even during a program like this
one, where we aren't accessing the keyboard buffer. Location 198
contains the number of characters stored in the buffer. If we didn't
POKE a 0 there, the values of the keys you had last pressed would
be stored there, and when the program ended, those characters
would be printed on the screen. It wouldn't cause any harm, but
it looks funny and forces the user to move down a line or erase
those characters. 50 POKE 198,0 just tidies up a bit at the end of
the program.

6. EValuate KEY
In lines 500 through 530, the program evaluates the value of KEY
and 5H and figures out what subroutine to branch to.

28

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u
u
u
u
u
ul

Starting 1
out

500 IF KEY=! THEN KEY=255:RETURN
505 IF KEY=54 THEN TEN=!-9*(TEN<>!0)
5!0 IF KEY=60 THEN 600
520 IF KEY<2 OR KEY>7 THEN RETURN
530 KEY=KEY-!:ON KEY GOSUB 540,550,560,5

70,580,590:RETURN

Exit flag set. Line 500 checks to see if RETURN was pressed.
If so, it changes KEY to 255 and RETURNs. But why not just end
the program right at line 500? We could enter this line:

500 IF KEY=! THEN POKE !98,0:END

That line would work just fine. The program would end, and be
cause we can't reach line 500 unless the sound is off, we would be
ending very neatly. If you use this line, you can delete line 105 and
line 200. The program is shorter and runs faster.

I simply have a personal aversion to ending programs in the
middle of an unresolved subroutine. We executed a GOSUB to
get to line 500, and I don't like to end unless the program has exe
cuted a RETURN. It's just a quirk of mine. I like to be neat. This is
the sort of thing that programmers do because they feel like it.
That's why if you assign two programmers to do the identical
task, they will come back with very different programs. People do
things differently.

Toggling TEN. Line 505 checks to see if the key pressed was
the up-arrow key. If it was, then TEN will be changed. If it was 1,
it will become 10; if it was 10, it will become 1.

Look carefully at the expression after the equal sign (=) in
line 505. Let's evaluate that expression the way the computer
would, and see what's going on.

We start inside the parentheses, with the expression
TEN <> 10. If this expression is false, then it will return a value of o.
If it is true, it will return a value of -1. This is very important! True
expressions equal negative one (-1), and false expressions equal
zero (0). Knowing this can help you make your programs run fast
er, with fewer IF statements. In this case, if TEN does not equal 10,
then the expression is true, and returns a value of -1. If TEN does
equal 10, then the expression is false, and returns a value of o.

The next step is to multiply the result of TEN < > 10 by 9. If the
expression was false, or 0, then the result of this operation is o. If it
was true, then the result is -9.

29

1 starting
Out

Now we subtract that value from 1. If the value was 0, then
1-0 = 1. TEN will equal 1. If the value was -9, then 1- (-9) is the same
thing as 1 + 9, or 10.

See how it worked? If TEN was already equal to 10, then it
will end up equal to 1. If TEN was already equal to 1, then it will
end up equal to 10. We are simply switching back and forth.

Another way of doing this would have taken two lines and
two IF statements. Please don't enter these lines - they're just an
example:

505 IF KEY=54 AND TEN=1 THEN TEN=10:GOTO
510

506 IF KEY=54 AND TEN=10 THEN TEN=1

Why is the GOIO statement at the end of line 505? Remember
that at the end of the operation in line 505, TEN will be equal to 10
no matter what. If it wasn't already equal to 10, the line changed it.
Then, if it goes right on to 506, TEN will be changed right back to
1. From then on, TEN would always be 1, regardless of whether
the user tried to toggle the value or not. We would add a GOIO at
. the end of 505, so that if the value was changed in line 505, it will
skip over 506 and not get changed back. .

The way we have it in the program, with a single line, is much
better.

Line 510 checks to see if the space bar was pressed. If it was,
the program jumps to line 600.

Then, in line 520, the program checks to see if the value of
KEY is between 2 and 7. If it isn't, the program RETURNs from the
subroutine and does nothing more. This means that if the user
presses a key that means nothing, the program will simply ignore
it and go back to the main loop.

SeHing up a valid ON statement. A quirk of the keyboard
code is very helpful to us right now. It just happens that the two
cursor keys and the four function keys are all in numerical order,
from 2 to 7. And it also happens that an ON statement is the
simplest way to have multiple branches.

We have six possible branches. ON evaluates the expression
. that follows it. If the expression has a value of 1, the program will
branch to the first line number following the expression. If ON
finds a value of 2, it will branch to the second line number, and
soon.

But ON is very fussy. It stops the program with an error state
ment if the expression is not an integer, if it is not a positive num-

30

u
u
u
u
u
u
u
u
V

U

U

U

U

V

U

U

U

U

U

U

V

U

U

U

U

U

V

V

U

V

U

V

V

U

U

U

starting 1
Out

ber, if it is a zero, or if there is no line number to correspond with
the value. In order to use ON effe~vely, you have to keep tight
control of the expression following ON.

In our program, it's easy. We have already screened out every
possible value of KEY except the numbers from 2 to 7. Now all we
do is subtract 1 from KEY, and it will consist of a number from 1 to
6. If we make sure we have six line numbers following the
GOSUB command, we're safe. We just have to make sure that the
line numbers are the right ones, and the rest of our choices are
taken care of. (By the way, KEY = KEY -1 isn't really necessary. The
statement could begin 530 ON KEY-1 GOSUB ... and it would
work just as well. Better, in fact, because it would take up less
space and run a bit faster.)

7. value Change Subroutines
Lines 540 and 545 change the value of SQUARE. Lines 550 and
555 control RELEASE and SUSTAIN, depending on whether the
SHIFT key is pressed. Line 560 controls 51, and 570 controls 52.
Lines 580 and 585 change the values of DECAY and ATTACK. 590
and 595 control DUR. 600 and 610 control WAVE.

540 SQUARE=SQUARE-TEN+2*TEN*ABS(SH=1)
545 SQUARE=SQUARE-256*(ABS(SQUARE>255)-A

BS(SQUARE<0»:RETURN
550 IF SH=l THEN RELEASE=RELEASE+1-15*AB

S(RELEASE=15):RETURN
555 SUSTAIN=SUSTAIN+16-240*ABS(SUSTAIN=2

40) : RETURN
560 Sl=Sl-TEN+2*TEN*ABS(SH=1):Sl=Sl-256*

(ABS(Sl>255)-ABS(Sl<0»:RETURN
570 S2=S2-TEN+2*TEN*ABS(SH=1):S2=S2-256*

(ABS(S2>255)-ABS(S2<0»:RETURN
580 IF SH=l THEN DECAY=DECAY+1-15*ABS(DE

CAY=15):RETURN
585 ATTACK=ATTACK+16-240*ABS(ATTACK=240)

: RETURN
590 DUR=DUR-25*(ABS(SH=0)-ABS(SH=1}}:IF

DUR<25 THEN DUR=25
595 RETURN •
600 WAVE=WAVE+16*(INT(WAVE/16}):IF WAVE>

129 THEN WAVE=17
610 RETURN

31

1 starting
out

The best way to figure out what is going on in each of these
lines is to carry out the operations exactly the way the computer
does - the way we did when we evaluated line 505. Always exe
cute the expression inside the innermost parentheses first.
Always multiply and divide before adding and subtracting.

There are several things you want to look for. First, wherever
the value of SH is tested or used, the program is deciding how to
act depending on whether the SIDFT key is pressed or not. A
similar test occurs wherever you see the program testing to see if a
value is greater than 255 or less than O. Since numbers outside the
range of 0 to 255 cannot be POKEd, it is essential that they be
changed to legal numbers. The simplest method is subtracting
256 from numbers greater than 255, and adding 256 to numbers
less than O.

Second, notice how TEN and other numbers are used to see
to it that only the correct values result from the operations.
ATTACK, for instance, in line 585, can only end up with a value
that is a multiple of 16. The program sees to this by adding 16 to
the old value of ATfACK. This works every time except when
ATTACK had a previous value of 240 - then the new value is 256,
which is not a legal value. So whenever ATTACK starts out (before
adding 16) at 240, the program adds 16 but then subtracts 240, re
sulting in a value of 16 for ATfACK. From there, the cycle begins
again.

Third, notice the use of the ABS function. Remember that
when an expression is true, it returns a value of -1. But it is often
more useful to turn this into a positive number. There are several
ways to do it. One is simply to put a minus sign in front of the ex
pression: -(-1) is equal to positive 1. Another way is to subtract the
true expression in a situation where you really want to add it. But
I prefer to use ABS, because it's foolproof. If a number is positive
or zero, ABS leaves it alone. If a number is negative, however,
ABS turns it positive.

In all of these, keep in mind the fact that if the expression is
false, its value is O. So if you add or subtract the result of the ex
pression, a false will have no effect. But if you multiply the result
of an expression, a false will always give you a zero product.

Notice that lines 595 a~d 610 .consist of a single RETURN
statement. Why weren't these RETURNs put on the end of the
line before, the way it is done in 570 and 580 and others? Because
both of these lines end with an IF statement, so that a RETURN
on the same line would be executed only if the condition is true.

32

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
V

U

U

U

U

U

U

U

U

U

U

U

t)

t)

r--.
r--.
~

r-,

~

t)

t)

~

t)

t)

~

t)

t)

t)

t)

t)

t)

~

~

t)

t)

t)

t)

t)

r--.
t)

t)

t)

r--.
t)

t)

t)

,-,
t)

starting 1
out

So even if there were a RETURN on the end of the line, the pro
gram would still need to have a RETURN on the next line to end
the subroutine in case the result is false. Since nothing else but
the RETURN will happen on that line, why type in an extra
RETURN? The one will be enough to end each subroutine.

However, in cases like 550 and 555, where we never want both
lines to execute, we need to have a RETURN at the end of each
line so it can't "fall through" and execute the wrong line. Perhaps
the easiest way to see the result of allowing the program to fall
through is to remove one of the RETURNs and then see what
happens to the values when you press the keys - you get more
than you bargained for.

Does this seem like an awful lot to think about every time you
program? Actually, you have to make about as many decisions
whenever you drive a car. It's just a matter of habit. Once you're
used to thinking this way, it won't occur to you that you're even
doing something difficult. And it won't be very long before you
look back at this program and think, ''Is this all?"

Well, it isn't all- it never is. Because once you're comfortable
with my version of the program, you11 start to think of features
you want to add and slow places that you can speed up. It
wouldn't be hard to have three voices going at once and to use the
COMMODORE key to cycle from one voice to the next. Or to
make the screen change colors every time the waveform is
changed. Or to allow direct keyboard entry of certain pitches in
stead of having to rotate through them 1 or 10 values at a time.
When you start customizing programs like that, you've got it.

The following program repeats what has been given, in parts,
throughout this chapter.

64 Sound
Ie PI=54273:P2=54272:VL=54296:AD=54277:S

R=54278:WF=54276:SW=54274
2e SC=653:KD=197
25 POKE 54275,8:POKE VL,15
3e SI=22:S2=53:ATTACK=16:DECAY=8:SUSTAIN

=16:RELEASE=8:S0UARE=128
35 WAVE=35:DUR=lee:OFF=254:TEN=le
4e GOSUB 3ee
lee SH=PEEK(SC):KEY=PEEK(KD):IF KEY<>64

THEN GOSUB 5ee:GOSUB 365
le5 IF KEY=255 THEN 2ee
lIe POKE PI,Sl:POKE P2,S2

33

1 startIng
out

12e POKE AD,ATTACK+DECAY:POKE SR,SUSTAIN
+RELEASE:POKE WF,WAVE:POKE SW,SQUARE

13e FOR I=e TO DUR:NEXT I
14e POKE WF,WAVE AND OFF
150 FOR I=e TO 75:NEXT I
16e GOTO 10e
20e POKE 19S,e:END
3e0 PRINT CHR$(l47) "F1/2{6 SPACES}= HIGH

FRE DOWN/UP"
3le PRINT "F3/4{6 SPACES}= LOW FRE DOWN/

UP"
32e PRINT "F5/6{6 SPACES}= ATTACK/DECAY"
330 PRINT "F7/S{6 SPACES}= SUSTAIN/RELEA

SE"
34e PRINT "SPACE BAR = CHANGE WAVEFORM"
35e PRINT "CRSR U/D{2 SPACES}= DURATION

MORE/LESS"
355 PRINT "CRSR L/R{2 SPACES}= SQUARE WA

VE WIDTH"
36e PRINT "UP-ARROW{2 SPACES}= PITCH INT

ERVAL TOGGLE":PRINT "RETURN
{4 SPACES}= STOP"

365 POKE 214,le:POKE 211,0:PRINT
370 PRINT "HIGH FRE="STR$(Sl)"{2 SPACES}

"TAB(20) "LOW FRE="STR$(S2)"
{2 SPACES}"

3Se PRINT "ATTACK="STR$(ATTACK)" "TAB(2e
)7"DECAY="STR$(DECAY)" "

3ge PRINT "SUSTAIN="STR$(SUSTAIN)" "TAB (
2e)7"RELEASE="STR$(RELEASE)" "

4ee PRINT "WAVEFORM="STR$(WAVE)" "TAB(2e
)"DUR="STR$(DUR)" "

4le PRINT "SQUAREWAVE WIDTH="STR$(SQUARE
)" ":RETURN

see IF KEY=l THEN KEY=255:RETURN
5e5 IF KEY=54 THEN TEN=1-9*(TEN<>le)
510 IF KEY=6e THEN 6ee
52e IF KEY<2 OR KEY>7 THEN RETURN
530 KEY=KEY-1:0N KEY GOSUB 54e,550,56e,5

7e,5se,5ge:RETURN
54e SQUARE=SQUARE-TEN+2*TEN*ABS(SH=1)
545 SQUARE=SQUARE-256*(ABS(SQUARE>255)-A

BS(SQUARE<e»:RETURN
sse IF SH=l THEN RELEASE=RELEASE+1-15*AB

S(RELEASE=15):RETURN
555 SUSTAIN=SUSTAIN+16-240*ABS(SUSTAIN=2

4e) : RETURN
560 Sl=Sl-TEN+2*TEN*ABS(SH=1):Sl=Sl-256*

(ABS(Sl>255)-ABS(Sl<e»:RETURN

34

f~

U

U

U

v
u
v
u
u
V

u
u

v
u
V

u
u
--
V

U

U

U

U

v
u
u
u
u

u
U

570 S2=S2-TEN+2*TEN*ABS(SH=1):S2=S2-256*
(ABS(S2>255)-ABS(S2<0»:RETURN

580 IF SH=1 THEN DECAY=DECAY+1-15*ABS(DE
CAY=15):RETURN

585 ATTACK=ATTACK+16-240*ABS(ATTACK=240)
: RETURN

590 DUR=DUR-25*(ABS(SH=0)-ABS(SH=1»:IF
DUR<25 THEN DUR=25

595 RETURN
600 WAVE=WAVE+16*(INT(WAVE/16»:IF WAVE>

129 THEN WAVE=17
610 RETURN

StartIng 1
Out

35

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

BASIC 2
programming

AlIAboutthe
WAIT InStruction
Louis F. Sander and Doug Ferguson

MIT is one of Comniod(Jre BASIC's most mysterious instructions -
seldom seen in programs, rarely mentioned in magazines, and nearly im
possible to understand in manuals. To find out hmv helpful it can be for
all kinds of applications (program debugging, single-stepping, even a
superior form of the common pause GET K$: IF K$= ""THEN), read on.

WAIT allows a BASIC program to communicate with hardware
and with certain software external to itself. It causes the computer
to suspend all apparent activity on receipt of a signal from the
keyboard, an external device, or the computer's internal timers.
Normal activity resumes when the signal is removed. Thus,
WAIT provides a simple means of pausing until a key is pressed,
an interval ends, or contacts open or close. We'll soon get to some
useful examples.

When executed, WAIT examines a selected memory location
and halts the program if the location contains a specified ~'trigger
value:' The program continues if, or as soon as, any other value
appears in the selected location. Optionally, WAIT can be made to
ignore some of the bits in the location it is testing.

In other words, WAIT halts a program if, and for as long as,
selected bits in a chosen location have one specific pattern. Note
carefully: the program waits if a specific pattern exists, not for a
specific pattern to appear.

WAIT's format is:
WAIT ADDR, MASK, TRIG

ADDR, MASK, and TRIG can be any numeric constants, expres
sions, or variables in the range 0-65535 for ADDR, and 0-255 for
MASK and TRIG. TRIG and its leading comma may be left out of
the statement if desired, in which case TRIG defaults to zero.

Technically speaking, the WAIT statement reads the status of
memory location ADDR, exclusive-DRs it with TRIG, then ANDs
the result with MASK, repeating these steps until a nonzero re-

39

2 BASIC
programming

sult is obtained. Practically speaking, few human minds can follow
such logic, let alone comprehend its effect on their programs. If
you prefer simplicity, think of WAIT as saying this: "Pause if the
MASK bits in the contents of ADDR are the same as those in
TRIG. Otherwise, continue:' But let's illustrate some of its specific
uses.

ADDR is the address of the memory location to be tested.
WAIT halts the program if ADDR contains a preselected trigger
value, resuming execution if and when ADDR's contents change.
It follows that ADDR must be a location whose contents can
change independently of the program, or there will be no way to
resume program execution. Relatively few memory locations
meet this criterion - mainly they are associated with the key
board, the user and serial ports, and the computer's internal
timers. Table 1 is a partial listing of such locations.

MASK determines whether WAIT tests all, or only some, of
the bits in ADDR. If a given bit in MASK is set to one, the corre
sponding bit in ADDR will be tested. Otherwise, the bit will be
ignored. If the entire contents of ADDR are to be tested, MASK
must equal 255; any lower number will cause WAIT to ignore one
or more bits. The various powers of two are often used in MASK
to monitor a single bit for a one or a zero. Zero is a legal value for
MASK, but should never be used, since it always causes an end
less halt. (Any number AND zero equals zero.)

TRIG is the value that triggers a halt. If WAIT is executed
when ADDR contains TRIG, the program will stop until TRIG is
replaced by another value. Of course, if MASK is blocking out
one or more bits, any number whose unblocked bits are identical
to those in TRIG will have the same effect as TRIG and will cause

40

v
u
V

U

U

V

U

V

V

V

V

V

U

V

V

V

V

V

V

V

V

V

V

V

V

U

V

u
u
V

V

V

U

U

U

V

BASIC 2
programming

the program to halt. TRIG's default value is zero, so when TRIG
is omitted from the WAIT statement, a halt occurs whenever all
the unblocked bits are zero.

WAIT has three other notable properties. First, just as PRINT
can be abbreviated as "?'~ WAIT can be abbreviated as 'W shifted
X'. You can use this property to save keystroke~ and line space.
Second, the SlOP key will not terminate a WAIT. That can only
be done by satisfying the logical conditions in the argument or
by using the RUN/SIOP-RESIORE combination. So as soon as
you put a WAIT statement into a program, SAVE a copy on tape
or disk; that will save you if you've made an error. Finally, WAIT
does not affect the jiffy clock - TI and TI$ continue counting
during WAITs, even though the computer and the SlOP key are
ostensibly dead. So by using the memory locations of the jiffy
clock, you can precisely control WAIT's pauses.

Real WOrld Applications
End-of-the-program questions are well suited for the WAIT com
mand. To replay or not to replay is hardly a menu of choices. With
WAIT, the computer "waits" for the replay signal. Even if tlJe
player wants to quit, he can always RUN/SIOP-RESIORE or turn
off the power.

Try these three short demos to see the possibilities.

10 FOR X=1 TO 20:NEXT X:REM KILL SOME TI
ME

20 WAIT 197,64,64:REM WAITS FOR YOU TO P
RESS A KEY TO MOVE ON

30 PRINT "YOU PRESSED A KEYlllTHANKS"
40 POKE 198,0:REM CLEARS THE KEYBOARD BU

FFER

10 REM WHEN YOU RUN THIS SHORT PROGRAM H
OLD THE <RETURN> KEY DOWN TO WAIT

20 WAIT 197,64:REM WAITS FOR YOU TO TAKE
YOUR FINGER OFF THE KEYBOARD

30 PRINT "YOU TOOK YOUR FINGER OFF THE K
EYBOARD"

40 POKE 198,0:REM CLEARS THE KEYBOARD BU
FFER

41

2 BASIC
programming

6121121121 PRINT "YOU WIN11":PRINT "PRESS FIRE
-BUTTON TO PLAY AGAIN"

612110 WAIT 145,16:REM IN CASE BUTTON IS A
LSO USED IN THE GAME ITSELF

61212121 WAIT 145,16,16
61213121 PRINT:RUN
61214121 REM PRESS STOP/RUN AND RESTORE TO S

TOP THIS DEMO

Here is a table showing the specific test values for the
joysticks.

This table assumes you want to test if the joystick is pressed a cer
tain way. If you want to test that a certain position is not pressed,
just leave off the last number.

Tracing with WAIT
Another way to use WAIT is in FOR/NEXT loops in either pro
gram or direct mode. For example, to examine the contents of the
ROM memory containing BASIC, type in the following program:

1121121 FOR X=ll21 * 412196 TO X + 8191: PRINT X
,PEEK(X)

11121 WAIT 197,64
12121 NEXT

or the direct statement:

FOR X = 10*4096 TO X+8191: PRINT X,PEEK(X
): WAIT 197,64: NEXT

A list of memory addresses and contents will begin to scroll
by. To stop printing, press any key (except RESlORE, SHIFf,
CTRL, or the COMMODORE key). Printing resumes when the
key is released. If the WAIT is changed to WAIT 653,1,1, the

42

u
u
u
u
u
u
u
u
u
\..)

u
u
u
u
u
u
u
u
u
u
u
u
u
U

U

U

U

U

U

U

U

U

U

U

U

U

I'i

I'i

I'i

I'i

I'i

I'i

I'i.

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

I'i

r-"I

I'i

BASIC 2
programming

SHIFT key alone becomes the control key. This has the advantage
of providing a "hands off' pause by using the SIDFf WCK key.

It is also possible to single-step (go through a program line by
line) using the WAIT command. Simply change the WAIT to

WAIT 19'7,64: WAIT 19'7,64,64

for "any key" control or
WAIT 653,1,1: WAIT 653,1

for SHIFT key control, although the SHIff WCK is of no conse
quence when single-stepping.

Escape from examining memory by hitting the RUN/SlOP
key.

There are, of course, many other ways to use the WAIT com
mand. A good way to learn is to experiment. The information
contained here should be only a beginning.

43

2SASiC
programming

REM Revealed
John L. Darling

Did you know that you can prevent someone from easily LISTing your
program? This is one of several hidden secrets of the REM statement. Did
you ever try putting shifted or reverse video characters behind a REM?
The results you get when you LIST may come as a surprise. Try these ex
periments to learn about the tricks you can play with REMs.

There are quite a few hidden surprises in the REM statement.
Many are just plain fun, but a few can be put to good use. Let's go
exploring.

The REM statement was designed to provide a way to add re
marks or comments in a program. During execution of the pro
gram, all the characters on a line following the REM are ignored.
Thus, the only time the remarks are seen is when the program is
USTed.

Also note that, for program operation, it doesn't make any
difference whether the characters following the REM are enclosed
in quote marks or not, but it sure can change the results you get
when you UST the program. First, let's look at the REM when
quotes are not used. The results you get when the program is
USTed will be determined by the following rules:

1. Nonshifted characters appear as typed in.
2. Shifted characters are converted to BASIC commands if the

ASCII code for the character is equivalent to a BASIC command
token.

3. Reverse fields are stripped from any character.

Before we examine these rules, you should put your com
puter into lowercase mode by hitting the shift-COMMODORE
key. It is easier to discuss upper- and lowercase letters than it is to
describe graphic symbols. Reverse video characters are turned on
with CTRL-9 and turned off with CTRL-O.

To illustrate these rules, type in the following four lines and
thenUST.

44

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

U

U

U

U

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

t""'.

BASIC 2
programming

10 rem abc d e f
20 rem ABC D E F
30 rem {RVS}a bed e f{OFF}
40 rem {RVS}A BCD E F{OFF}

list

10 rem a b c d e f
20 rem atn peek len str$ val asc
30 rem a b c d e f
40 rem atn peek len str$ val asc

Line 10 demonstrates Rule 1. All the characters are LISTed just
as they were entered. This is the normal effect that we're all used
to.

Line 20 doesn't look much like the original, does it? It il
lustrates Rule 2: the shifted letters are interpreted as BASIC com
mand tokens.

Lines 30 and 40 show Rule 3 in action. They look just like
lines 10 and 20 because the reverse field was stripped when the
lines were entered.

UST Blocking
Now we get to the question of how to prevent someone from
easily L1STmg your program. Let's examine Rule 2 a little more
closely. Certain characters become "tokens" which cause unusual
effects. One will cause the LIST operation to terminate with a
"syntax error" message when it is encountered. These tokens are
equivalent to a shifted-L.

This can be verified by the following line.
10 rem L

When you attempt to list the line, the result will be:
to rem
?syntax error
ready.

Up to now, it's just been fun, but there is a reason you might
want to use this line. If this special REM line is the first line in a
program, it prevents a normal LISTing. Let's assume that the first
line in a large program is line 100. Inserting this special REM line
ahead of the program causes the LIST operation to terminate as
soon as it encounters the special shifted character. However, LIST

45

2 BASIC
programming

100- will allow the program to be displayed normally.
Consider the following situation. A quiz program has the

answers in DATA statements at the end of the program listing. In
serting the special REM line just ahead of these DATA statements
will prevent the answers from being displayed during a LIST.
Don't forget that REM statements are ignored during program
execution, so they won't affect the actual program operation.

OuoteMode
Now, let's examine the quote mode. A new set of rules applies
when the REM characters are enclosed in quotes:

1. Shifted and nonshifted characters LIST as they were typed
in.

2. Reverse video characters are preserved when inside quotes
(they are not stripped, as is the case in the nonquote mode).

3. Some reverse video characters and combinations of charac
ters behave as print control commands when LISTed.

Rules 1 and 2 produce results that you would normally expect
during the LIST operation. They LIST exactly as typed in. No ex
amples are provided for these rules, but try a few experiments to
verify this for yourself.

Here are some interesting examples of Rule 3 in action. (The
comments in brackets are the resultant action produced during
LIST.)

rem "0 [insert]
rem "[:J [return]
rem 'I:J [shifted return] = * rem 1m * + [home]
rem ~ * + [clear screen]
rem I:m * + [cursor down]
rem I:m' * + (cursor up]
rem IaI * + (cut-sor right]
rem IaI * + [cursor 1 ef t]

When these characters are inside a REM" statement, strange
things are going to happen.

To enter the following tests, first type the line number, the
REM, the quote symbol, and then RETURN. Next, edit the line by
positioning the cursor past the quote mark, press the RVS ON
key (CTRL-9) and then the letters. This allows you to put the re
verse video characters on the screen line.

46

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u
u
u
u
u

~

r'I

r'I

~

~

~

~

~

~

~

.~

~

~

~

~

~

~

~

~

~

~

~

. BASIC 2
programming

1 Q, rem It h e 1 p ! liiiiliilii

1 i st

l~j :--em"he

The four reverse t characters achieve the same thing that
would occur if the DEL key was pressed during an edit operation,
deleting the last four characters. Adding more reverse t characters
(15 total) on the rest line will cause the entire line to disappear after
it is LISTed on the screen.

Notice that many of the cursor controls shown require the M
(shifted RETURN) character to be the first character. This is im
portant, for without the shifted RETURN most of the cursor con
trols or special control codes will not be executed. As soon as this
character is encountered, a shifted RETURN will be generated.
All characters following the shifted-M will be printed as if they
were in a PRINT statement, rather than in a REM. Consequently,
if any of these characters are cursor controls, they will produce a
cursor control action as if they were inside the quotes following a
PRINT statement.

If the reverse t's in the previous example were replaced with
reverse MS characters, then the LIST operation would list that
line up to the! and then the cursor will go to the top of the screen
since MS is interpreted as a HOME command. If this was listed to
a Commodore printer and the paging mode was on, the printer
would eject a page after LISTmg that line.

A program Within a program
Let's try one final example to illustrate how the reverse field
shifted-M works in combination with other characters. To avoid
errors, here is a complete key sequence that will produce the fol
lowing line:

1, el, SPACE;, R, E ,M, " , " , DEL, RVS, SHIFT-M,
SHIFT-S,Q,Q,Q,Q,OFF,I,SPACE,T,H,I,N,K,
SPACE,I,SPACE,A,M,SPACE,S,RVS,Q,OFF,I
RVS,Q,OFF,C,RVS,Q,OFF,K,RVS,S,OFF,",
SHIFT-L

10 rem ",:a#l4GC:USb. think i am smiG=::Jld~"
L

47

2 BASIC
programming

Can you guess the results? If you type the line correctly, the
following will happen after you UST:

1. 10 REM" will be printed.
2. A CLEAR SCREEN will be printed, blanking the screen

and also the previous 10 REM" .
3. Four cursor-downs will be printed.
4. The message I THINK I AM SICK will be printed with the

I,C,K characters on different lines.
5. A cursor-home will occur.
6. "@ will be printed on the top line followed by a ?SYNTAX

ERROR message on the next line. (Note that the special shifted
character is no longer enclosed in quotes.)

7. Finally, the READY message will appear with the cursor
above the I THINK I AM S line.

The above line could be inserted in most programs, and it will
not affect the program execution performance in the least. You
just can't get a normal USTing of the program.

There are a lot more combinations to try, so have fun. It's like
having a program inside another program. The second program
requires a UST command for execution instead of a RUN
command.

48

u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

~

~

r-,

~

~

~

r-,

~

~

~

r-,

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

r-,

BASIC 2
programming

From IFs to ANDS
Stephen D. Eitelman

Presented here are some efficient ways to program for joysticks.

The Commodore 64 User's Guide is strangely lacking in information
on programming the joysticks. In "Commodore 64 Memory Map"
(see Chapter 7), Jim Butterfield shows the memory locations for
the joysticks: 56320 and 56321. With this data, a simple program
PEEK to the appropriate location should permit a determination
of the memory contents versus stick direction. With a joystick
plugged into port 1 (plug in the joystick with the power off for
safety), try this program:

10 PRINT PEEK (56321)
20 GOTO 10

Line 10 prints the contents of memory location 56321. Line 20
creates an endless loop to allow viewing of different joystick posi
tions just by moving the joystick. When the program is RUN, a
column of 255s scrolling upward should appear. Now move the
joystick to the north (up). The number should now read 254.
Moving the joystick to the northeast should produce 246. Table 1
gives the values produced at each joystick position.

A similar table can be generated for port 2. Plug a joystick in
to port 2, change the memory location in line 10 from 56321 to
56320, and RUN the program. Going around the compass again
produces the data as indicated in Table 2.

49

2SASiC
programming

The 64 Sketchpad
With this data, a simple program can be written that moves a
graphics symbol around the screen under control of the joystick
(Program 1). (Be sure to save this program; we will use it again
later.) Pressing the fire button clears the screen and starts a "fresh
page:'The lines in this program perform the following actions:
Line Action
5 Gear screen.
7 Brown border: black background.
10 Variable JM (Joystick Memory) set for port 2.
20 Set Screen Location and Screen Color to center of screen.
30,40 Put a ball in center and color it green.
50,60 Set variables for No Joystick and directions using Table 2.
70-150 Test JM for direction, set X and Y increment.
155 If Fire Button pressed, erase and start over.
160 No motion; start JM test sequence again.
170 SetnewSL.
175,177 Keep SL within limits of screen memory.
180 Set new Sc.
185,187 Keep SC within limits of screen color memory.
190 Draw a ball at new SL.
200 Color ball green at new S1..
205 Slow it all down.
210 Begin another loop to find next location.

There'S an EVen Better way!
Lines 50-155, while pretty straightforward, seem unnecessarily
long. Jim Butterfield gives a better way in an article entitled ''VIC
Sticks" in COMPUTE!'s Second Book of VIC. Although this article
deals (very properly) with VIC-20 joystick programming, there
are some valuable lessons worth investigating for applicability to
the 64 joysticks. The first is that horizontal and vertical increments
can be generated in one-line statements using the SGN function
and some logic if the directions have nonoverlapping binary
values. The second lesson is that diagonals are the sum of the

50

u
u
u
U
--

U

U

U

U
-~

U

U
--

U

U

U

U

U

U

U
--

U

U

U

U

U

U

U

U
-

U

U

U

U

U

U

U

U

U
- ,

U

U

BASIC 2
programming

vertical and horizontal values on either side, so that it is unneces
sary to treat diagonals separately. The third lesson is that the
binary values of joystick directions are inverted (bits are set to zero
instead of one when a given direction switch is activated).
Butterfield inverts the values with the logical Nor statement to
convert to "positive" logic. To see if these tricks will work with the
64, try the following modification to the short program at the be
ginning of this chapter (joystick in port 2):

10 PRINT (NOT PEEK(56320»+128
20 GO TO 20

The addition of 128 in line 10 is a "fudge factor" to force the
joystick center position to be zero after the inversion. Going
around the compass again produces results very similar to those
for the VIC-20 as seen in Table 3.

From this table, you can see that the major points of the com
pass have nonoverlapping binary values and that the diagonals
are the sum of the vertical and horizontal values on either side.
Thus it should be possible to adapt Butterfield's one-line VIC hor
izontal and vertical incrementers to the 64.

Direction D =(NOf PEEK(56320» +128
Horizontal H =East - West; H =0, +1, -1 only

H =SGN(D AND 8)-SGN(D AND 4)
Vertical V =-North + South; V =0, +1, -1 only

V =SGN(D AND 2)-SGN(D AND 1)

Saving Memory
Our sketchpad program can now be shortened considerably with

51

2SASIC
programming

this far more elegant approach. First eliminate lines 50-160 inclu
sive from Program 1. Then add the following lines:

50 D=(NOT PEEK(56320»+128:REM INVERT DI
RECTION BYTES

55 IF D=16 THEN 5:REM FIRE BUTTON.START
OVER

60 H=SGN(D AND 8)-SGN(D AND 4)
70 V=SGN(D AND 2)-SGN(D AND 1)

In lines 170 and 180, substitute H for X and V for Y. The pro
gram should perform the same as before with a net saving of nine
lines.

A similar investigation for port 1 reveals that the inverted
directions are the same as for port 2. The only difference is in the
PEEK statement. Substitute the following:

D=(NOT PEEK(56321»+256

Now the Sketchpad program will work for port 1. The Modified
Sketchpad is Program 2.

program 1. 64 Sketchpad

5 PRINT "{CLR}"
7 POKE532B~,9:POKE532Bl,~
1~ JM=5632~:REM JOYSTICK MEMORY,PORT 2
2~ SL=1524:SC=55796:REM SCREEN LOCATION

& PIXEL COLOR. START IN MID SCREEN
3~ POKE SL,81:REM BALL IN MIDDLE OF SCRE

EN
4~ POKE Sc,5:REM GREEN BALL
5~ NJ=127:N=126:NE=IIB:E=119:SE=117
6~ S=125:SW=121:W=123:NW=122:FB=111
7~ IF PEEK(JM)=NJ THEN X=~:Y=~
8~ IF PEEK(JM)=N THEN X=~:Y=-1
9~ IF PEEK (JM)=NE THEN X=I:Y=-1
1~~ IF PEEK (JM)=E THEN X=I:Y=~
110 IF PEEK (JM)=SE THEN X=I:Y=1
12~ IF PEEK (JM)=S THEN X=~:Y=1
13~ IF PEEK (JM)=SW THEN X=-I:Y=1
14~ IF PEEK (JM)=W THEN X=-I:Y=~
15~ IF PEEK (JM)=NW THEN X=-I:Y=-1
155 IF PEEK(JM)=FB THEN GOTO 5
16~ IF X=~ AND Y=~ THEN 7~:REM NO MOTION
17~ SL=SL+X+4~*Y:REM NEW LOCATION

52

u
u
u
u
u
u

--
U
--,

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
,,",

U

U

U

U

U

U

U

U

BASIC 2
programming

175 IF SL>=2023 THEN SL=2023
177 IF SL<=1024 THEN SL=1024
180 SC=SC+X+40*Y:REM COLOR @ NEW LOC'N
185 IF SC>=56295 THEN SC=56295
187 IF SC<=55296 THEN SC=55296
190 POKE SL,81:REM BALL @ NEW LOC'N
200 POKE SC,5:REM GREEN BALL
205 FOR DL= 1 TO 50:NEXT DL:REM DELAY
210 GOTO 70:REM DO NEXT BALL LOCATION
220 END

program 2. Modified sketchpad

5 PRINT U{CLR}U
7 POKE53280,9:POKE53281,0
10 JM=56320:REM JOYSTICK MEMORY,PORT 2
20 SL=1524:SC=55796:REM SCREEN LOCATION

& PIXEL COLOR. START IN MID SCREEN
30 POKE SL,81:REM BALL IN MIDDLE OF SCRE

EN
40 POKE Sc,5:REM GREEN BALL
50 D=(NOT PEEK(56320»+128:REM INVERT DI

RECTION BYTES
55 IF D=16 THEN 5:REM FIRE BUTTON.START

OVER
60 H=SGN(D AND 8)-SGN(D AND 4)
70 V=SGN(D AND 2)-SGN(D AND 1)
170 SL=SL+H+40*V:REM NEW LOCATION
175 IF SL>=2023 THeN SL=2023
177 IF SL<=1024 THEN SL=1024
180 SC=SC+H+40*V:REM COLOR @ NEW LOC'N
185 IF SC>=56295 THEN SC=56295
187 IF SC<=55296 THEN SC=55296
190 POKE SL,81:REM BALL @ NEW LOC'N
200 POKE Sc,5:REM GREEN BALL
205 FOR DL= 1 TO 50:NEXT DL:REM DELAY
210 GOTO 50:REM DO NEXT BALL LOCATION
220 END

53

2lBAS1C programming

Menumaker
Richard L. Witkover

This easy-to-use utility will help you create attractive, well-formatted
display-screens.

Your newest programming masterpiece is finally done. Itching to
show it off, you find someone to try it out on. Eagerly, you seat
him at the terminal and stand back anticipating his reaction. He
glances at the screen, looks at the keyboard, looks at the screen
again, and then just sits. Finally, he asks, ''What am I supposed to
do?"

"Oh;' you say, "just hit RETURN to activate the laser discom
bobulator, and use the I, J, K, and M keys to control up or down _.
and right or left. The %-key creates a new Zippity and -." By this
time your victim's eyes are glassy, but he recovers enough to say,
"Let me know when you finish it; I'll try it then:'

Crestfallen, you are about to say, ''It is finished;' but catch
yourself and only mumble, ''Yeah, I've got to add a few extra mes
sages:' You sulk for a while but finally have to admit that even
though your new program is the greatest game in the world, it is
no good unless people know how to play it.

The second act of this little scenario shows the programmer
busily typing in a few options such as " ... which do you choose, 1,
2, or 3?" We have all done this as beginners, but you can be sure
that the pros would never be satisfied with that.

The Menu
The answer, of course, is a simple, informational display on the
screen. ''Menumaker'' is a utility that will print a display starting
at any row or column, or will center the text by row, column, or
both. After the longest line, the program will print a dash. All
shorter lines will be filled with dashes to this point. The last col
umn is used to draw an array of cursor boxes which, along with
the flashing cursor, will move. To allow only a single key to con
trol its motion, the cursor has a wraparound feature. Selection is
made by moving the cursor to the row desired by means of the
cursor UP/DN key (either way), then hitting any key to select the

54

u
u
u
u
V

v

U

U

V

V

V

U

U

V

V

V

U

U

V

V

V

U

V

V

V

U

U

U

U

V

V

U

U

U

V

U

BASIC 2
programming

row on which the cursor sits. Finally, to dress up the display,
Menumaker draws a round-cornered box around the whole
menu.

Menumaker is presented here as a self-contained program
that you can use to try different layouts to find the one which best
suits the application. The program was written in four parts using
GOSUBs to produce the entire display. In this way the parts can
be fitted into your own programs as needed. For example, you
may wish to place some instructions in one section of the screen
and draw a box around them. No user selection is involved, so
the cursor portion of the program isn't needed.

The PrOgram
Part 1 extends through line 290. It sets up the various constants
and gets the input values of RI$, 0$, and TE$, which set the posi
tioning of the rows, the columns, and the text lines, respectively.
The variables RI$ and 0$ are tested to see if the automatic center
ing option was chosen, and if not, whether the numerical values
are within the allowed ranges. These are set by the screen charac
ter limits with allowances for the borders of the box, the dash,
and cursor array.

The text input is obtained by lines 170-195, checking that the
maximum character count isn't exceeded. Each line is ended with
a carriage return until a null line ends the loop. As each line is
read in, its length is measured and the largest count is retained as
LW% in line 194.

If the centered option is selected, lines 205-240 will compute
the cursor column number and the text starting column number.

Part 2, lines 320 to 370, prints the text on the screen, and Part
3, lines 510 to 680, draws the bordering box. The final part, lines
800-920, is the cursor routine.

putting It All Together
Now that you have Menumaker, how can you put it to work? The
straightforward way is to just type it in as needed, leaving out all
the REMs but making sure that all of the required input variables
are satisfied. These are defined in the leader block preceding each
subroutine.

There are many frills or variations which could be used with
Menumaker. For example, you could make the cursor a different
color. How about changing the color of the selected text line to
highlight the choice? Just making the box different in color from

55

2 BASIC
programmIng

the text will add a bit of pizazz. You could use a joystick to move
the cursor or just use the fire button. The variations are endless,
so have some fun and dress up your programs while you make
them easier to use with Menumaker.

Menumaker

7 REM{11 SPACES}MENUMAKER
8 REM{2 SPACES}THIS PROGRAM DISPLAYS UP

TO 22
9 REM{2 SPACES}LINES OF UP TO 35 CHARACT

ERS.
1~ REM THE CHOICE IS MADE BY MOVING THE
11 REM CURSOR VERTICALLY (WITH WRAP-
12 REM AROUND) ALONG AN ARRAY IN THE
13 REM LAST COLUMN. HITTING ANY KEY BUT
14 REM THE UP/DN CURSOR WILL ENCODE THE
15 REM THE ROW #.A BOX IS DRAWN AROUND
16 REM THE MENU. THE TOP LEFT-HAND CHAR
17 REM INSIDE THE BOX CAN BE LOCATED
18 REM SPECIFICALLY OR THE BOX CAN BE
19 REM CENTERED IN ROW AND/OR COLUMN.
2~ REM*********************************
4~ REM ********************************
41 REM
42 REM{4 SPACES}THE FOLLOWING ARE COMPUT

ER
43 REM{7 SPACES}DEPENDENT CONSTANTS:
44 REM
45 REM{7 SPACES}CM=4~{2 SPACES}:MAX # CO

LS
46 REM{7 SPACES}RM=24{2 SPACES}:MAX # RO

WS
47 REM{6 SPACES}SC%=1~24:ST OF C-64 SCRE

EN
48 REM{7 SPACES}PN=87{2 SPACES}:NORMAL C

URSOR POKE
49 REM{7 SPACES}PR=215 :REV CURSOR POKE
5~ REM{7 SPACES}CR=119 :NORMAL CURSOR CH

R$
52 REM
53 REM{2 SPACES}CHANGE AS NEEDED FOR COM

PUTERS
54 REM{2 SPACES}OTHER THAN THE COMMODORE

64.
55 REM
56 REM*********************************
57 REM

56

u
u

'U

U

U

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

U

U

V

V

U

V

V

V

U

V

V

U

V

V

U

IBASiC2
programming

60 CM=40:RM=24:SC%=1024:PN=87:PR=215:CR=
119

69 REM*********************************
70 REM
71 REM{5 SPACES}PARAMETER INPUT ROUTINE
72 REM
73 REM{7 SPACES}REQUIRED INPUTS ARE:
74 REM
75 REM{6
76 REM{6
77 REM{6

SPACES}RI$=STARTING TEXT ROW
SPACES}CI$=STARTING TEXT COL
SPACES}TE$=UP TO 22 TEXT LINES

78
79
80
81
82
83
84
85
86
87
88
89
90

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

ROUTINE ACCEPTS A NUMBER FOR RI$
AND CI$, OR 'C',IN WHICH CASE IT
WILL CENTERS ROWS AND/OR COLS.

TEXT STRINGS CAN BE A MAX OF 35
CHARACTERS, EACH LINE ENDING WITH
A CARRAIGE RETURN. TEXT ENTRY
ENDS WITH A NULL LINE.

REM * * * * *,*
REM
REM{2 SPACES}THE FOLLOWING ARE SCREEN

CHAR
91 REM{2 SPACES}CODES FOR THE C-64:
92 REM{8 SPACES}ER$=ERASE SCREEN
93 REM{8 SPACES}CD$=CURSOR DOWN
94 REM{8 SPACES}CL$=CURSOR LEFT
95 REM{8 SPACES}RO$=REVERSE ON
96 REM{8 SPACES}HO$=HOME
97 REM********************************
98 ER$=CHR$(147):CD$=CHR$(17):CL$=CHR$(1

57):RO$=CHR$(18):HO$=CHR$(19)
100 DIM TE$(22)
105 PRINTER$;CD$;CD$;"ENTER ROW AND COLU

MN OF START OF TEXT"
110 PRINT"{7 SPACES}FOR CENTERED TEXT EN

TER 'c'"
115 INPUT"{2 DOWN}{8 SPACES}ROW,COL=";RI

$,CI$
120 LW%=0:CS%=0
125 IFCI$="C"THEN140
130 CS%=VAL(CI$)
135 IFCS%<10RCS%>(CM-5)THEN INPUT"{RVS}C

OL# INVALID- ENTER COL#";CI$:GOT0125
140 IF RI$="C"THEN LM=RM-2:GOT0160
145 RT%=VAL(RI$)

57

2IBASIC
programming

15111 IFRT%<l OR RT%>RM-2THEN INPUT"{RVS}R
OW# INVALID- ENTER ROW #":RI$:GOT014
111

155 LM=RM-1-RT%
16111 PRINTCD$:CD$:" ENTER UPTO"LM:"LINES

ENDING EACH WITH A"
165 PRINT" CARRAIGE RETURN. EXIT WITH A

NULL LINE"
17111 FOR NL=lTO LM
175 PRINT"LINE #":NL::INPUTTE$(NL)
18111 IF TE$(NL)=""THEN2111111
185 L=LEN(TE$(NL»:CL=CM-4-CS%
19111 IFL>CLTHEN PRINTTAB(ll11): "{RVS}TOO MA

NY CHAR, MAX=ICL:TE$(NL)="":GOT0175
194 IF LW%<L THENLW%=L
195 NEXT NL
2111111 LW%=LW%+2:NL=NL-1
21115 IFRI$="C"THENRT%=INT(RM-NL)/2+1
225 IFCI$=IC"THEN235
23111 C%=CS%+LW%-1:GOT024111
235 C%=INT(CM+LW%)/2-1:CS%=C%-LW%+1
24111 S%=SC%+C%+CM*RT%
25111 GOSUB 32111:REM TEXT TYPE-OUT
26111 GOSUB 5111111:REM DRAW THE BOX
27111 GOSUB 719:REM MAKE THE CURSOR
28111 PRINT"{HOME}{3 SPACES}THE ROW IS =":

R%
29111 END
3111111 REM*****************************···
31111 REM
31112 REM{5 SPACES}TEXT TYPE-OUT ROUTINE
31113 REM
31114 REM{6 SPACES}REQUIRED INPUTS ARE:
31115 REM
31116 REM{6 SPACES}RT%=TOP ROW #
31117 REM{6 SPACES}NL =# LINES OF TEXT
31118 REM{6 SPACES}TE$=TEXT LINE ARRAY
31119 REM
31111 REM·········*··**···*·*···*****·***
32111 IFRT%=lTHENLF$="":GOT034111
33111 LF$="":FORI=lTORT%-l:LF$=LF$+CD$:NEX

T
34111 PRINT ER$:LF$
35111 FORI=lTONL:ND$="":NC=LW%-LEN(TE$(I»

-l:FORN=lTONC:ND$=ND$+"*":NEXT
36111 PRINT TAB(CS%):TE$(I)+ND$:NEXTI
37111 RETURN
4111111 REM********************************
41111 REM

58

u
u
V

U

V

V

U

V

V

V

U

V

V

V

U

U

V

V

U

V

U

V

U

V

U

U

U

U

V

U

V

U

U

V

V

U

BASIC 2
programming

402 REM ROUTINE TO MAKE ROUND CORNERED
403 REM BOXES WITH TOP LEFT-HAND CORNER
404 REM OF INTERIOR AT DESIRED ROW AND
405 REM COLUMN.
406 REM
407 REM{3 SPACES}WHEN USED AS MERGED COD

E
408 REM{3 SPACES}THE REQUIRED INPUTS ARE

409 REM
410 REM{4 SPACES}RT%=# OF TOP INSIDE ROW
411 REM{4 SPACES}NL =# OF INSIDE LINES
412 REM{4 SPACES}LW%=# OF INSIDE CHAR -1
413 REM{4 SPACES}CS%=# OF LEFT INSIDE CO

L
414 REM
415 REM{4 SPACES}LT$=LEFT-TOP CHR$
416 REM{4 SPACES}RT$=RIGHT-TOP CHR$
417 REM{4 SPACES}SD$=SIDE CHR$
418 REM{4 SPACES}DA$=DASH CHR$
419 REM{4 SPACES}LB$=LEFT-BOT CHR$
420 REM{4 SPACES}RB$=RIGHT-BOT ,CHR$
421 REM
422 REM********************************
500 REM THE FOLLOWING ARE FOR THE C-64
510 LT$=CHR$(117):RT$=CHR$(105)
520 RB$=CHR$(107):LB$=CHR$(106)
530 DA$=CHR$(99):SD$=CHR$(125)
540 IF CS%<>0THENBL%=CS%:GOT0560
550 BL%=INT(CM-LW%)/2
560 BR%=BL%+LW%
570 PRINTHO$·:
580 LF$=CHR$(0):LN$=CHR$(0)
590 IF RT%<=lTHEN610
600 FORA=lTORT%-l:LF$=LF$+"{DOWN}":NEXT
610 FORA=lTOLW%:LN$=LN$+DA$:NEXT
620 PRINTLF$:
630 PRINTTAB(BL%-l):LT$:LN$:RT$
640 FORA=lTONL
650 PRINTTAB(BL%-l)SD$:TAB(BR%):SD$
660 NEXTA
670 PRINTTAB(BL%-l):LB$:LN$:RB$
680 RETURN
700 REM********************************
701 REM
702 REM ROUTINE TO PUT ON CURSOR ARRAY
703 REM WITH FLASHING CURSOR. CURSOR UP
704 REM /DOWN KEY IS USED TO MOVE WITH
705 REM WRAP-AROUND. HIT ON ANY OTHER

59

2 BASIC
programming

706 REM KEY EXITS ROUTINE WITH R%=ROW
707 REM OF CURSOR.
708 REM
709 REM
710 REM{4 SPACES}THE REQUIRED INPUTS ARE

711 REM
712 REM{6 SPACES}RT%=TOP ROW #
713 REM{6 SPACES}NL =# OF ROWS
714 REM{6 SPACES}LW%=COL#-l OF CURSOR
715 REM{6 SPACES}CS%=COL# OF 1ST CHAR
716 REM{6 SPACES}S% =CURSOR SCREEN LOC
717 REM
718 REM********************************
719 REM
800 RB%=NL+RT%-l:LF$=CHR$(O)
810 IF RT%=lTHEN830
820 FORA=lTORT%-l:LF$=LF$+CD$:NEXT
830 PRINTHO$:LF$
840 FORI=lTONL:PRINTTAB(C%):CHR$(CR):"

{OFF}" : NEXT
850 R%=RT%
860 POKES%,PN:FORI=lT050:NEXT
870 POKES%,PR:FORI=lT050:NEXT
880 GETB$:IFB$=""THEN860
890 IFB$<>CHR$(145)THEN930
900 POKE S%,PN
910 IFR%>RT%THENR%=R%-l:S%=SC%+C%+R%*CM:

GOT0980
920 S%=SC%+C%+RB%*CM:GOT0980
930 IFB$<>CD$THENRETURN
950 POKE S%,PN
960 IFR%<RB%THENR%=R%+l:S%=SC%+C%+R%*CM:

GOT0980
970 S%=SC%+C%+RT%*CM
980 R%=INT«S%-SC%)/CM):GOT0860

60

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

r'i

r'i

r'i

r'i

r'\

r'\

r'i

r'\

r'\

r'\

r'\

r'\

r'\

r'\

r'i

r'i

r'i

r'i

r'i

r'i

r'i

tl

r'i

tl

r'i

r'i

r'\

r'i

tl

r'i

r'i

r'i

r'i

r'i

r'i

tl

BASIC 2
programming

Data storage
Ron Gunn

Data storage can be the most perplexing aspect of programming for the
novice. Here are some practical tips which just might save you days of
experimentation.

Types of Data
Commodore computers use three kinds of variables, and it is the
values stored in variables that you will be dealing with when you
save and recall data. The first of these is floating point, repre
sented by a variable like A or A(X). The second is integer, repre
sented by a variable like A % or A %(X).

The third is the string variable, represented by A$ or A$(X).
Any of these varieties can be single: A; or may have subscripts:
A(X); A(X,Y); or A(X,Y,Z). Part of your sense of power in comput
ing comes when you realize just how much data you can pack
and organize into those multiple-subscripted arrays.

When you are putting data out on tape or disk and expecting
to read it back in, you must remember two things: 1. The three
variable types are different and are not interchangeable. 2. They
are put onto the recording medium in series without any identifi
cation and must therefore be read back in, in exactly the same
sequence, to be recovered.

Only the data is recorded, not the variable names them
selves. You can send it onto the tape as A, and can call it B when
reading it back in. That is fair. But if you read data back as B% or
B$, you will get an error message. Some error messages are really
undeserved, as you know. This one is deserved. Don't mix your
data types - integer to integer, string to string, and so on.

A Caution about string variables
String variables, however, are a special case. Let's see why. In
Commodore BASIC, unlike some other versions, there is a de
fault value for variables. It is set when the machine is turned on or
when an array is dimensioned. The value is zero.

When you write string variables to tape, however, this default
value of zero is not a legitimate representation of anything. A

61

2 BASIC
prOgramming

string "0" would be ASCII 48, but that is not what is there. What
is there is a binary, octal, decimal, hex 0 - which, in the special
language of strings, represents a null. Neither the cassette nor the
disk will accept null strings. Result: input rejects it and the data
isn't transferred.

The cure is logical, once it is pointed out: load all string vari
ables, including string arrays, with a string variable that the tape
or disk can recognize. Example: you have dimensioned a string
array A$(20) that may not be filled from your program when you
want to save it. Right after the DIMension statement, do the
following:

11000 DIM A$(20)
11010 FOR 1=0 TO 20:A$(I)="X":NEXT

The array has now been loaded with a recognizable string ("X")
and can be saved. All unused parts of it will be saved as X and will
not confuse things later.

saving Simple variables
When the sequence used in saving data is also followed in load
ing data, then the right variables get put back where they belong,
and the transfer proceeds smoothly. You can safely use the fol
lowing procedure, and it will work very well indeed on cassette:

12000 OPEN 2,1,I:REM WRITE
12010 PRINT#2,A:",":B%:",":C$
12020 REM WHAT IS THIS?

You should be surprised by line 12010. First the variables are
mixed, but that is OK as long as they are brought back in in the
same order. A floating point, an integer, and a string can be safely
handled on the same line. You can't just have your other program
trying to bring in a string when a number is next in line to come
offthe tape. .

Second, what is all that between the variables? It is instruc
tions to the computer about what to put on the tape record. Semi
colons suppress "carriage returns:' but commas are put in to
allow the beginning and end of each separate item of information
to be established. These are delimiters. They are like walls to make
sure that two items are separated. (A carriage return is like moving
the paper up one line when you hit the RETURN key on a normal

62

u
u
u
u
u
u
u

u
u
u
U

u
u
u
u
U

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

~

~

~

~

~

~

~.

~

~

~

Ii

~

~

~

~

~

Ii

~

~

~

~

~

Ii

~

~

~

~

~

~

~

~

~

Ii

~

~

t"',

BASIC 2
programming

typewriter. Each time you use a PRINT statement in BASIC it is
followed by a carriage return unless you put a semicolon after it.)

Let'S Put It on a Disk
So far we've zeroed in on cassette data operations. What about
the same thing on disk? (Skip this section if you are concerned
now just about cassette data.)

12000 DO$=11:SCORE,S,W"
12010 OPEN 2,8,9,DO$
12020 PR1NT:jj:2,A: I ,I:B%:I,":C$:CHR$(13):

In line 12000, a record is defined as associated with disk unit
1: it is to be called SCORE and is identified as Sequential. This
will be a Write operation. A later Read operation will be needed to
bring it back in. In line 12010, file 2 is opened to unit 8 (the disk)
with a secondary address of 9. Use 9 for a disk secondary address
unless you specifically want something else. It works. The last
part of the file opening statement is the DO$ that was defined in
line 12000.

Line 12020 contains all of the variables and delimiters used in
the cassette statement, with one addition: a carriage return
CHR$(13) has been added to the disk statement. Note that it is
surrounded by semicolons so no line feeds will be slipped in. You
want a CHR$(13), not a CHR$(13) CHR$(10), there to keep the
records straight.

saving Array variables
While it is clear that mixing variable types on a single line is OK as
long as they are recovered in that same order, this does not seem
to be true if an array is involved. The following is not
recommended:

13000 FOR 1=0 TO 20
13010 PR1NT:jj:2,A(1)
13020 PR1NT:jj:2,B$(1)
13030 NEXT

For reliable records, just don't mix string and numerical vari
ables in a FOR/NEXT loop when saving data. Use an entirely
separate loop to handle the strings. Any potential savings by
avoiding the use of another separate loop to handle the strings
can be costly. This works reliably:

63

2 BASIC
programming

13~~~ FOR I=~ TO 2~
13~1~ PRINT#2,A(I)
13~2~ NEXT
13~3~ FOR I=~ TO 2~
13~4~ PRINT#2,B$(I)
13~5~ NEXT

If this were a disk operation, each PRINT If2. statement would end
with:

iCHR$(13)i

A Practical Application
Now let's define and then write a minor cassette or disk data tour
de-force program. ~t's say you need to input two arrays that con
tain names and scores for a tournament. N1$ is the name of the
tournament, TP the number of tournament players, N$(TP) their
names, and S(TP) their scores. We are reading data:

15~~~ OPEN 1,1
15~1~ INPUT#l,NT$,TP
15~2~ CLOSE 1
15~3~ DIM N$(TP),S(TP)
15~4~ OPEN 1,1
15~5~ FOR I=~ TO TP
15~6~ INPUT#l,N$(I)
15~7~ NEXT
15~8~ FOR I=~ TO TP
15~9~ INPUT#l,S(I)
151~~ NEXT

At 15010 the name and size are brought in on the same line.
That's OK. They were put on the record earlier using the neces
sary delimiters. The file is then closed to bring all of the informa
tion in from the buffer.

At 15030, TP is used to dimension the necessary arrays to
hold the data. Then, using loops, the data for names and then for
scores is brought in separately. So, we have stuck to our princi
ples. Single-line data is mixed because it will mix. Array data is
not mixed even though it seems compellingly simple to do so.

Not that we referred to both cassette and disk in this pro
gram. The only difference between input of cassette data and in
put of disk data is the opening statements (Le., OPEN 1,8 instead
of OPEN 1,1). It is actually practical to have independent opening

64

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

V

~

~

~

~

~

~

('j

~

~

~

('j

~

~

('j

('j

~

('j

('j

('j

('j

('j

('j

('j

('j

('j

('j

('j

('j

~

('j

('j

('j

('j

('j

('j

('j

BASIC 2
programming

statements, but then GOSUB to the same input loop subroutine
for both cassette and disk. When you are reading data back in,
there are no forced delimiters and no fancy manipulation of the
line feeds. You can easily make your program read either cassette
or disk data with negligible extra programming or complexity.

The Commodore cassette and disk are amazingly reliable in
handling data. I once tried saving and then reloading .5 mega
bytes (500,000 characters) in the same program, and no errors
occurred.

65

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

Commodore 64 ~
VIdeo ~

An Introduction
tothe
6566 Video Chip
Jim Butterfield

Before setting off on our expedition, we need to establish a few
landmarks which will place the chip within the Commodore 64
architecture.

Memory and Video
The 6566 chip relates to memory in two ways. First, the chip's con
trol registers are accessible in addresses 53248 to 53294 or, if you'd
rather, hexadecimal 0000 to D02E. We11 change these registers if
we want to change the behavior of the chip.

The chip itself looks directly into memory as it generates
video. It is usually looking for at least two things: what characters
to display and how to display them. It finds what characters to
display in an area called "screen memory:' or, more formally, the
"video matrix:' It finds out how to display the characters by look
ing at the Character Generator table, or the Character Base.

Since the chip generates a lot of video, it looks at memory a
great deal. Most of the time, it can do this without interfering
with the processor's use of memory; but every five hundred
microseconds or so, it needs to stop the processor briefly in order
to get extra information. This doesn't hurt anything: the pause is
so short that we don't lose much processing time.

But occasionally, the microprocessor is engaged in timing a
critical event and does not want to be interrupted. In this case, it
shuts off the 6566 chip until the delicate work is over. Ever won
dered why the screen blanks when you read or write cassette
tape? To give the computer an extra edge while timing tape, that's
why.

Charting the 64
When the video chip goes to memory for its information, it has a

69

3 Commodore 64
Video

special problem: it can reach only 16K of memory. That's OK for
most work. For example, the screen (or video matrix) is usually
located at 1024 to 2023 (hex 0400 to 07E7), so we11 use it there. But
if we wanted to move screen memory to a new location, say

. 33792, we would need to work out some details, since the chip
would not normally be able to reach addresses so high in
memory.

We are given some help in doing this by the 64 architecture it
self. There are two control lines called VA15 and VA14 which allow
us to select which block of 16K memory we want the video chip to
use. Note that once we've selected a block, the chip must get all its
information from that block: we can't mix and match.

The control lines are available in address 56576 (hex DDOO) as
the two low-order bits. The memory maps you get are:

• POKE 56576,4 the chip sees RAM from 49152 to 65535. There's
no Character Generator; youll have to make your own.

• POKE 56576,5 the chip sees RAM from 32768 to 36863 and from
40960 to 49151. The ROM Character Generator is in the slot from
36864 to 40959.

• POKE 56576,6 the chip sees RAM from 16384 to 32767. No
Character Generator.

• POKE 56576,7 the chip sees RAM from 0 to 4095, and from 8192
to 16383. The ROM Character Generator is in the slot from 4096 to
8191. This is the normal Commodore 64 setup.

Also note that the chip never has access to RAM at addresses 4096
to 8191 and 36864 to 40959. You will not be able to put screen
memory or sprites there.

Be careful with these. If you move the chip's memory area,
you'd better be sure to move the screen. For example, try the
following:

POKE 648,132:POKE56576,5

Youll find yourself transferred to a new, alternate screen. The
new screen will be "dirty" - it hasn't been cleaned up. Typing a
screen clear will make things look neat, and you may then play
around with an apparently normal machine. When you're fin
ished, turn the power off for a moment to restore your machine to
the standard configuration.

70

u
u
u
u
u
u
-,

U

U

U

U
.-,

U

U

U

U

U

U

U

V

V
--.

U

U

U

U

U

U

U

U

V

U

U

U

U

V
~ .

V

V

V,

t',

t',

t',

r--.
t',

t',

t',

t',

t',

t',

t',

t',

t',

t',

t',

t',

t',

t',

t',

r--.
t',

r--.
r--.
t',

t',

t',

r--.
r--.
r--.
t',

t',

r--.
t',

t',

t',

"""'" -,

Commodore 64 3
Video

The Chip: Video Control
Nowfor the 6566 chip itself. Well go through the registers, but
not in strict numeric order.

Location 53265 (hex 0011) is an important control location. It
contains many functions; its normal value is 27 decimal.

Values from 24 to 31 control the vertical pO!iitioning of the
characters on the screen. Try this:

FOR J=24 TO 31:POKE 53265,J:NEXT J

Youll see the screen move vertically, leaving an empty spot near
the top. POKE 53265 back to 27.

If we subtract 8 from the value in location 53265, the screen
will lose a line: instead of 25 lines well have only 24. The best way
to see this is to clear the screen, write lOP on the top line,
BOT1OM on the bottom line (don't press RETURN!), and then
move the cursor to about the middle of the screen and type:

POKE 53265,19

Youll see the top and bottom trimmed to half a line each.
Think about using these two features together. If we have a

screen full of information, we would normally scroll when we
wanted to write more - the characters would jump up a line. But
if we can switch to 24 lines, slide the characters up gently, and
then switch back to 25 lines, we'd have a smooth scroll.

POKE 53265 back to 27

If we subtract 16 from this location, well blank the screen.
This will give the processor a little more accuracy in timing. In
fact, this POKE is the key to allowing us to WAD a program from
an old-style 1540 disk unit. If the disk hasn't been modified, it will
deliver bits slightly too fast for the computer. But we can bridge
the gap with POKE 53265,11: LOAD and the loading will take
place successfully. When the load is complete, we can get the
screen back with POKE 53265,27.

High ReSolution
The next control bit - value 32 - switches the display to pure
bits. No more characters; "the screen will be purely pixels as we
switch to high-resolution mode. Well use a lot of memory for this
one: memory to feed the screen will be 8000 bytes.

71

~ Commodore 64
~Vldeo

High resolution needs to be carefully set up, but let's plunge
right into it. Type POKE 53265,59 and you'll see an intricate pat
tern on the screen. What you are looking at now is a bitmap of
RAM memory addresses 0 to 4096, plus the Character Generator
area. The top of the screen will twinkle a little. Some of the page
zero values change constantly - things like the realtime clock and
the interrupt values.

In the bottom half of the screen, we11 see the Character Gen
erator itself. Oddly enough, the characters are readable. That's
because of the way high-resolution bitmapping works: each
sequence of eight consecutive bytes m,aps into a character space,
not across the screen, as you might think.

Now we're going to play around a little. First, clear the screen.
Surprise! It doesn't clear, but the colors change. That's because
screen memory, into which we are typing, holds color informa
tion for the high-resolution screen. Now, we11 clean out a band of
hi-res data by typing in a BASIC line. We must do this ''blind''; the
screen won't help us. Type:

FOR J=3200 TO 3519:POKE J,0:NEXT J

If you've typed correctly, you11 see a blank band across the
screen. Don't worry about the color change as you type. Now
well enter (blind again):

FOR J=3204T03519 STEP 8:POKE J,255:NEXT J

You should see a high-resolution line drawn across the screen.
That's· all the high-resolution fun we're going to have this ses

sion, but you may be starting to get an idea of what's going on.
Turn off the power, and let's look at other things.

Extended Color
If we add 64 to the contents of 53265, well invoke the extended
color mode. This will allow us to choose both background and
foreground colors for each character. Normally, we may choose
only the foreground: the background stays the same throughout
the screen. You lose some colors, but get better combinations.

Try POKE 53265,91. Nothing happens, except that the cursor
disappears, or at least becomes less visible. Why? We've traded
the screen reverse feature for a new background color. Try typing
characters in reverse font, and see what happens. Try choosing
some of the specialized colors - the ones you generate with the

72

u
u
V

U

U

U

U

U
,.

V

V

V

U

V

U

V

V

V

U

V

V

U

V

V

V

V

V

V

V

V

U

U

U

U

U

U

U

Commodore 64 3
Video

COMMODORE key rather than CTRL. See how you like the ef
fect. Think how you might be able to use it.

Extended color is purely a screen display phenomenon.
POKE 53265,27 will bring all the characters you have typed back
to their normal appearance.

0011

0012

0013

0014

0016

0018

0019

001A

0020

0021

0022

0023

0024

0025

0026

Table 1.
6566 Video Chip:

Control and Miscellaneous Registers

Color Registers

53272

53273

53274

53284

53285

53286

73

Commodore 64
VIdeo

Table 2.
Sprite Sprite 6566 Video Chip: Sprite Sprite

o 7 Sprite Registers 0 7

1 1 1 1
0000 DOOE ~........... ... POsition X J 53248 53262

0001 DOOF Y J 53249 53263
~~~~~~~~~~--~~~~ 

0027 D02E [unused Color 153287 53294 

rr(1\'t~~ 
• • • • • • • • 

~X~~~i~~~~Mj .. . . 1 53264 
~~~~~----~~~~----~~~~--~ 

0010
,.

0015 r

0017

D01B

DOlC

0010

DOlE

D01F

The High Bit
There's one more bit in location 53265, the one we would get if we
added 128. Don't do this now: this bit is part of a value we'll dis
cuss later: the "raster value:' You won't use this one out of BASIC,
but it can be handy at machine language speeds.

There's Much More
We've done a lot of things so far, using only one control location.
It's a big chip. It will take a lot of time to digest all its possibilities.
It's fun, and it can create remarkable effects.

74

u

v

v

v

v

u

v

u

v

v

v

u

u

v

v

v

u

v

u

u

V

U

v

v
u

v

v

V

U

V

v

V

U

v

V

V

.~

~

~

~

t"'I

~

~

~

~

t"'I

~

~

t"'I

~

t"'I

t"'I

~

~

~

~

t"'I

t"'I

~

t"'I

~

~

~

~

~

t"',

t"'I

t"'I

t"'I

t"'I

t"'I

Commodore 64 ~
Vldeo~

The 6566 Video
Chip
The Raster Register,
Interrupts, Color
and More.
Jim Butterfield

In the introduction we began touring the 6566 chip, which gives
the Commodore 64 its video. We saw the variety of important
controls that we can reach in location 53265: vertical screen posi
tioning, screen blank, bitmapping, and extended color. There's a
second control location, at 53270 (hexadecimal D016); let's look
at it.

The first thing we should note about this location is that the
two high bits are not used. That means that we can usefully
POKE only values from 0 to 63 in there. It happens that if we
PEEK 53270, we'll probably see a number that is 192 too big; if you
want to see the working value, use PEEK(53270) AND 63, which
will throwaway the unused part of the number.

We saw a vertical fine scroll in location 53265. Location 53270
has a horizontal fine scroll that works exactly the same way. Type:

FOR J= 8 TO 15:POKE 53270,J:NEXT J

You'll see the screen characters slide over horizontally. As
with the vertical fine scroll, we also have facilities for trimming
the size of the screen. Restore the screen to its original form with
POKE 53270,8. Then shrink the screen by typing POKE 53270,0.
You'll see a character disappear from each end. In other words,
you now have a 38-character screen instead of 40 characters. Don't
forget that fine scroll and shrink can be used effectively together.

If you add 16 to the contents of 53270, you'll switch to multi
color mode. This is not the same as extended color which we dis
cussed previously. Multicolor allows selected characters to be
shown on the screen in a combination of colors. Extended color

75

3 Commodore 64
Video

allows screen background and foreground to be set individually
for each character.

If you're familiar with the VIC-20, you'll find that setting the
multicolor mode makes the Commodore 64 behave in the same
way. Here's the trick: we invoke multicolor on an individual char
acter by giving that character a color value greater than 7. This
way, the regular colors (red, blue, black) behave normally, but the
new pastels (gray, light red) switch to multicolor mode.

You'll need to create a new character base to exploit the ad
vantages of multicolor, since the old characters weren't drawn
with color in mind. However, we can get a quick idea of the fea
ture by invoking it: POKE 53270,24 sets up multicolor; the screen
characters may turn a little muddy, but don't worry about them.
Set a primary color such as cyan and type a line~ Normal, right?

Next, set up one of the alternate colors (hold down the COM
MODORE key and press a key from 1 to 8). Type some more;
you'll get multicolor characters. They won't make much sense,
since the Character Generator isn't building the colors suitably;
but you can see that something new is going on.

Adding 32 to the contents of 53270 gives chip reset. You won't
want to do this very often - it's done on your behalf when you
turn the power on. If you do use chip reset, remember that to
make it work, you must turn reset on and then off again. POKE
53270,32:POKE 53270,8 will clear you out of multicolor mode.

Setting Screen and Characters
Location 53272 sets the location of screen RAM (the video matrix)
and the Character Generator (the Character Base). Don't forget
that they must be in the same 16K block, as determined by the
low bits of address 56576.

You can get the BASIC address of screen RAM in this way:
take the contents of 53272 and divide by 16; then throwaway the
remainder and multiply by 1024, and you have the screen
address. You can get the BASIC address of the Character Base in
this way: take the contents of 53272 and divide by 16. Then take
the remainder, subtracting one if it's odd, and multiply by 1024;
that's the Character Base address. Both addresses will need to be
adjusted to allow for the 16K quadrant we have selected.

If we are in bitmap mode, we get the Character Base address
in a slightly different way. If we divide the contents of 53272 by 16,
take the remainder and divide by 8, discarding the remainder, and

76

u
u
u
u
u
u
U

U

U

u
u
u
V

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

Commodore 64 ~
Vldeo~

finally, multiply by 8192, we will have the bit image; it should be
either 0 or 8192.

How does this work out in the standard Commodore 64? We
may PEEK 53272 and see a value of 21. That means the screen is at
INT(21/16)* 1024, or address 1024. Right on target. The character
matrix works out: the remainder of 21/16 is 5, so drop one for the
odd number, giving 4; multiply by 1024 to get address 4096. In the
introduction I indicated that RAM was replaced by the Character
Generator ROM at this video chip address. And when we flipped
to bitmapping in the last episode, we still got remainder 5; divide
by 8, giving 0, then multiply by 8192 - you still get 01 high
resolution screen from address O.

If you'd like to try your hand at the arithmetic, flip to upper-I
lowercase mode (hold down SHIFT and press the COM
MODORE key) and see what addresses have changed. Or if
you'd rather, try typing in FOR J = 110 100:POKE 53272,21:POKE
53272,23:NEXTJ and watch the action.

The Raster Register
Location 53266 (hex 0012) and the high bit of the previous loca
tion are not of much use to the BASIC programmer, but can be
very valuable to the machine language beginner. Here's the idea:
by looking at these locations, you can tell exactly where the screen
is being scanned at that moment. This allows you to change the
screen as it's being scanned. Halfway down, you could switch
from characters to bitmap, or change to multicolor, or move a
sprite that has already been displayed.

If you're really interested in machine language, you may want
to take an extra step: instead of watching where the screen is, you
can leave the message 'Wake me when you get to scan line 100:'
ML beginners will recognize this as an interrupt request. How do
you set the identity of the desired scan line? By placing it into the
same locations, that's how. We have a dual function here: when
we read, we recall the scan location; when we write, we store an
interrupt value.

Light Pen
Locations 53267 and 53268 (hex 0013 and 0014) are the light pen
registers. An Atari-style light pen can be plugged into the joystick
port number one; if it sees a suitable signal from the screen, the X
and Y values will be latched into these registers. The light pen can

77

3 Commodore 64
Video

be used on an interrupt basis: we can "stop the music" and get
immediate action if we choose to set things up that way.

This is the second time we've mentioned interrupts; per
haps we'd better discuss them a little more closely.

InterrUptS
Interrupts are for machine language experts - things happen too
fast for BASIC to cope in this area. There are four types of inter
rupts: raster, light pen, and two kinds of sprite collision. (We'll
talk about sprites in the next section.) We may use all of them or
none; and even when these signals are not used for interrupt, we
can check them.

location 53273 (hex 0019) tells us which o~ the four events has
occurred. We don't need to make the interrupts '1ive"; they will
signal us anytime the particular event happens. The weights are
as follows:

1 (bit 0) - the raster has matched the preset line value;

2 (bit 1) - a sprite has collided with the screen background;

4 (bit 2) - a sprite has collided with another sprite;

8 (bit 3) - the light pen has sensed a signal;

128 (bit 7) - one of the above has triggered a live interrupt.

Once any of the above takes place, the bit will remain stuck
on until you turn it off. How do you turn it off? This may sound
goofy, but you turn an interrupt signal off by trying to turn it on.
Hmmm, let me try that again. Suppose that we have both a raster
and a light pen signal; we'll see a value of 9 (8 + 1) in the interrupt
register. Now suppose further that we are ready to handle the
light pen, so we want to turn its signal off. We do this by storing 8
into location 53273. Huh? Wouldn't that turn it on? Nope, it turns
it off, and leaves the other bit alone. So after storing 8, we look at
the register again, and (you guessed it) we see a value of 1 there.
Honest.

location 53274 (hex DOlA) is the interrupt enable register: it
sets the above signals for ''live interrupt:' Select bits 0 to 3 corre
sponding to the interrupts you want. Whatever live interrupt you
select will now trigger a processor interrupt and also light up that
high bit of 53273. Don't forget to shut the interrupt flag off when
you service the interrupt, using the method indicated in the
previous paragraph. Otherwise, when you finish the job and re
turn from the interrupt (with RTI), it will reinterrupt you all over
again.

78

u
u
u
u
u
u
u
V

U

U

U

U
-

V

u

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

A Little Color

Commodore 64 3
Video

Some of the colors we have mentioned and some we have yet to
discuss are neatly stored in addresses 53280 to 53286 (hex D020 to
D026). We may store only values 0 to 15 here, for the 16 Com
modore 64 colors.

The chart in the previous article shows it all: the exterior
(border) color; then four background colors (they may be selected
as part of multicolor characters or bits); and finally, two colors re
served especially for sprites.

79

3 Commodore 64
Vldleo

Sprites
Jim Butterfield

So far we have looked through the functions of the nonsprite
video control words at 53265 to 53286 (hex DOll to D026). Sprites
are completely separate from the conventional video circuitry.
You can lay a sprite on top of just about anything. But first, what's
a sprite and how do we define it?

MOBs
Sprites are sometimes called Movable Object Blocks (MOBs) -
and that's what they are, movable objects. The nice thing about
them is that they appear on the screen independently of the main
screen image, so that we can have a sprite airplane flying across
the screen, and, after it passes a background object, the object re
appears. This can save a lot of programming.

We noted earlier that the video chip can reach only 16K for its
information. This includes three things: the screen memory (or
video matrix), the Character Generator (or Character Base), and
the sprite information. It all has to come out of the same 16K section.
. When we learn how to draw spp.tes, we'll discover that each .
sprite occupies 63 bytes and uses a 64-byte block. So within 16K,
we could draw up to 128 sprites. We can't use more than eight at a
time, but we can have up to 128 drawings waiting to be used. The
sprite positions number from 0 at address 0, through 1 at address
64, up to 127 at address 8128.

We cannot use all of the 128 sprite positions, of course. For
one thing, the video matrix and the Character Base will use up a
total of 3K of memory, and this space won't be available for us to
use. That cuts us down to 80; and, depending on the 16K block
we have chosen, there may be other forbidden locations.

The normal configuration is for the video chip to access 0 to
16383, and there's a lot of forbidden territory in there. Many of the
first 1024 bytes are busy as the BASIC work area; the screen is
normally 1024 to 2023 (more on that later); the Character Base ap
pears in addresses 4096 to 8191, since there are two complete
character sets; and everything above 2048 that isn't used by the
Character Base is used to store your BASIC program. We haven't
started, but we seem to be out of sprite memory!

80

u
u
u
u
u
u
u
U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U·

U

V·

V

U

Commodore 64 3
Video

If we want to draw lots of sprite pictures, we would need to
do one of two things: move BASIC RAM so that it starts at a much
higher location, or move to another 16K block that is not so busy.
For the moment, we can find room for a few sprites in the existing
space. I find the following sprite areas available: sprite 11 at 704 to
766; sprite 13 at 832 to 894; sprite 14 at 896 to 958; and sprite 15 at
960 to 1022. These last three use the cassette tape buffer; if we use
cassette tape during the program run, the sprites will become
very strange.

The Hardway
There are quite a few utility programs around that will help us
draw sprites. You should use them; they will help make life
easier. In the meantime, we can draw a sprite the hard way by
using a sheet of squared paper. Let's draw a target reticule. First,
well sketch it:

xxxxxxxx
x .•
x ..

x ..
x ..
x x x x x x x x

x
x

x x . x x
x
x

xxxxxxxx
• • . x
. .. x

.. x

. . x
xxxxxxxx

There are 24 pixels across (that takes three bytes of eight bits
each) and 21 down. We may analyze the pixel pattern eight at a
time, using a binary system to describe each byte. We end up with
a DATA statement something like:

10 DATA 255,0,255,128,0,1,128,0,1,128,0,
1,128,0,1,128,0,1,128,0,1

20 DATA 0,8,0,0,8,0,0,8,0,0,52,0,0,8,0,0
,8,0,0,8;0

30 DATA 128,0,1,128,0,1,128,0,1,128,0,1,
128,0,1,128,0,1,255,0,255

Now we place the sprite into slot 13 by:

40 FORJ=0T062:READ X:POKEJ+832,X:NEXT J

81

3 Commodore 64
VIdeo

Good. Running the program this far will place the sprite into
slot 13, but it won't do anything. It's just a picture, and nobody is
using it. That's OK. In fact, you'll often want to have dozens of
pictures available, even though you might end up using only one
or two at a time.

Let's tell a sprite to use this drawing. We do it in an odd way:
we don't use the video chip control registers at all. Instead, we use
the video matrix, or "screen memory:' You may recall that 1024
addresses are set aside for the video memory, but the screen
holds only 1000 characters. What about the extras? At least some
of them are used to designate which sprite picture to use for a
given sprite. The last "live" screen address is 2023. We could point
sprite 0 to sprite drawing 13 (the one we have just done) by POKE
2040,13. Better yet, let's point all the sprites at this drawing:

50 FOR J=0 TO 7:POKE 2040+J,13:NEXT J

We're almost ready to energize the sprite. But, first, let's give it a
position on the screen. For sprite 0, we set the position by
POKEing to 53248 and 53249. Let's put a value of 99 in each, and
then turn the sprite on. If you've run the above program, you may
do this with a direct command, or give it a program line:

60 POKE53248,99:POKE53249,99:POKE53269,1

Either way, you should get your sprite on the screen. Now we
can play with it and see how easy some things are to do. Notice
how you can see right through the transparent portions of the
sprite to the program listing behind. Now you can try changing
the sprite color as desired by POKEing a value from 0 to 15 into
location 53287. One color will be the same as the background, so
that the sprite will be almost invisible, but not quite, since we can
see when it covers part of the text.

You can move the sprite around at will by changing the values
you have POKEd into 53248 and 53249. Try playing with the
values; you may find that (vertically, at least) you can move the
sprite partly or completely off the screen. If you like, try the fol
lowing command:

FOR J= 99 TO 150:POKE 53248,J:NEXT J

and then substitute 53249 for 53248 and try it again. Neat? You
bet. And there's more to come. But first, a small problem to be
resolved.

82

u
u
u
u
u
v

u
u

u
u

u
u

u
u

u

u
u

u
u
u
u
v

u
u
u
u
u
u

v
u
u

u
u
u
u

u

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~.

~

~

~

~

~

Commodore 64 3
Video

Moving Left or Right
We can move the sprite vertically anywhere we like - including
partly or completely off the screen. But the screen is wider than it
is high; and we can't reach the whole screen with the range of
values (0 to 255) that we can POKE in 53248. We need a high bit to
cover the extra distance. Youll find this in 53264; POKEing 53264
with a value of one causes sprite zero to be moved to the right -
perhaps off screen.

Let's stop for a moment and look at video registers. When we
set the X and Y position for sprite zero by changing 53248 and
53249, we recognized that we would need a different set of loca
tions for sprite one - 53250 and 53251, as it happens. And when
we set sprite zerds color to anyone of the 16 combinations by
changing address 53287, we see that well need a new color
address for sprite one - 53288.

But the other sprite registers use a different system. One
register controls sprites: so that address 53269 allows us to turn
on one sprite, or all eight. We use a bitmap to arrange this; the
pattern is:

Sprite 0 - value 1
Sprite 1-value 2
Sprite 2 - value 4
Sprite 3 - value 8
Sprite 4 - value 16
Sprite 5 - value 32
Sprite 6 - value 64
Sprite 7 - value 128

We use addition to signal a combination of sprites. If we
wished to turn on sprites zero and three, we would POKE 53269,9
(nine is the sum of eight and one). All other sprites would be
turned off.

That's how the X-position high bit works: we set sprite zero to
the right-hand sector of the screen by POKE 53264,1. All the other
registers we will discuss work the same way.

You may be pleased by the way that the sprite moves over the
top of the text on the screen - it would move over a background
picture just as easily, of course. But we have another option: you
can make the sprite move behind the main screen if you wish. Do
this with location 53275. For example, POKE 53275,1 will place the
sprite behind the screen text.

The sprite that we have drawn isn't very big. We can make it
larger in the X and Y directions with addresses 53277 and 53271

83

3 Commodore 64
Video

respectively. These addresses are often used together; when an
object is drawn bigger it looks closer, and we often want this effect
in games and animations. Try, separately or individually, POKE
53277, 1 and POKE 53271,1.

FOUr-color Sprites
Our sprite is only one color, the color we selected in 53287. The
other color is "transparent;' so it isn't really a color at all. We may
code our sprite in four colors (or three plus transparent, to be ex
act), but we would need to draw it slightly differently. Instead of
one bit representing either "color" or "transparent;' a grouping of
two bits will be needed to describe four conditions: the sprite
color (as before), special color #1, special color #2, and trans
parent. These extra special colors, by the way, are kept at 53285
and 53286: they are the same for all sprites; only the sprite color is
individual.

Now we come to the last two registers, which tell you about
collisions. PEEK(53279) will tell you if any sprites have collided
with the background since you last checked. One certainly has, of
course, if you've been messing around with the screen as sug
gested. PRINT PEEK(53279) will yield a value of one: checking
the bit table above tells us that sprite zero has hit the background.
Now, checking this location clears it; but if the sprite is still touch
ing some of the screen text, it will flip right back on again. Move
the sprite to a clear part of the screen. Print the PEEK again - it
will likely still say one, since the sprite has hit characters since it
was last checked. If the sprite is safely in a clear screen area, the
next PEEK will yield a zero.

Weve activated only one sprite, so that we won't see any colli
sions between sprites. You would see this in location 53278, but
right now PEEK(53278) will yield zero; unless you have activated
more sprites, there would not have been any collision. Again,
when you get a signal here, you'll know which sprites have
bumped; and testing the location clears it, so that only new
"touches" will be shown on the next test.

A small comment here: these two PEEK locations are marked
'1nterrupt:' Yet when such collisions occur, they are logged -
they don't do anything. As we discussed earlier, the word inter
rupt has a special meaning to machine language programmers;
and no interrupts seem to be happening. The machine language
programmer who wants interrupt to happen must enable the in
terrupt by storing the appropriate value into address DOlA hexa-

84

u
u
u
u
u
u

u

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
v
u
u

u
u
u
v
u

Commodore 64 3
VIdeo

decimal, and then write the appropriate extra coding to make it all
work.

This completes our roster of registers, but the plain mechani
cal facts don't convey the remarkable things that you can do with
the Commodore 64. There's more to come.

85

'2' Commodore 64
~Vldeo

PrOgram Design
Jim Butterfield

We've examined all the bits in the video chip control registers.
Now let's ease back and look at the 64's video structure. Well talk
a bit about program design considerations.

A Single 16K Slice
We have discussed how the video chip gets its screen information
directly from memory. We indicated that the chip must dig out all
of its information from a single 16K slice. We might draw this as a
diagram (see the figure).

v
u
V

V

U

V

V

u

u
v
v
v

v
v
v

v
v
v
v
v
v
v
v

v
v

v

The video chip obtains its screen information U
from one of four 16K memory ''Slices~' TWO of the u
slices contain the ROM Character cenerator.

We can control which slice we want by manipulating the two
low bits in address 56576 (hex DDOO). Normally, the processor
picks the slice from 0 to 16383.

Once we've picked a 16K block, we must get all screen data
from this block: the screen memory, the character set, and the
sprites. We cannot get the screen data from one block, the Charac-

86

V

V

V

V

V

V

V

V

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

r",

Commodore 64 ~
Vldeo~

ter Base from another, and sprites from still another. Because we
are restricted, we must do a little planning and design our video
information into our program.

After we have picked the 16K slice, we must set the video
matrix (screen memory) to some point within it. We may pick any
multiple of 1024 as a starting address. The normal 64 configura
tion is set to a value of one, meaning we take the screen informa
tion from memory starting at address 1024. The video matrix, you
may remember, is stored in the high nybble (that means multiply
it by 16) of 53272 (hex 0018).

We must pick our Character Base next. H were in normal
resolution, we may pick any even multiple of 1024 as a starting
address: i.e., 0, 2048, 4096, etc. H we're in high-resolution mode,
we must pick only values of zero and eight, meaning that the hi
res starting address will be either 0 or 8192. The normal 64 config
uration is set to four or six for either uppercase/graphics or upper-/
lowercase mode, meaning we take our character set from 4096 to
6144. The Character Base is stored in the low nybble of 53272.

So we'd expect a normal 64 to place into address 53272: a
video matrix of one, times 16, plus a Character Base of four or six,
yielding a total of 20 or 22. You may in fact see 21 or 23 if you PEEK
the location, but the extra bit doesn't matter - it's not used. And
if we switch to high-resolution without changing anything else,
our Character Base of four or six will be trimmed back to zero -
explaining why we saw zero page when we tried POKE 53265,48
in the first article of this series.

Let's try a few specific design jobs.

Task 1: Simple Craphics
We're quite satisfied with the screen and character set, but wed
like to add a few sprites to liven things up. Fine, the normal 64
configuration leaves room for about four sprite drawings (num
bers 11, 13, 14, and 15), provided we don't need to use cassette
tape during the program run. This may be enough for a lot of ani
mation; all eight sprites could use a single drawing, if that suited
the task.

H we needed more than four drawings, we might be tempted
to move the start-of-BASIC pointer to a higher location, making
room for the extras. That can work quite well, but it will probably
call for two programs: a configuring program and a final pro
gram. It's hard for a program to reconfigure itself and survive.

87

3 Commodore 64
Video

TaSk 2: New Character sets
If we wish to use the regular character set as well as new charac
ters that we might devise, we'll want to stay in the memory blocks
from 0 to 16383 or 32768 to 49151. These two blocks contain the
ROM Character Generator at offset 4096 to 8191. If we don't need
regular characters at all (if we intend to use our own), it may be
more convenient to switch to either of the other two blocks: 16384
to 32767 or 49152 to 65535. Since there's nothing but RAM in these
two, we may find more room.

Note that some of these RAM addresses are ''hidden'' be
neath ROMs - BASIC from 40960 to 49151, and the Kernal from
57344 to 65535. The video chip sees only the RAM; but in a
normally configured 64 system, programs will see only the ROM.
You can POKE or store to the RAM beneath, but when you PEEK
or load from these addresses, you'll get the ROM. That's OK; the
video chip sees the RAM locations you have POKEd. Result:
something for nothing! You can build a Character Base into RAM,
and not lose any memory from your system.

Task 3: &nulating a PET
This is a clear-cut task. We want to move the screen to the same
place that the PET uses the screen. That's very straightforward
from a video chip standpoint. (Note: If you type the following
POKEs in one at a time, you may have to type blind for some of
them.) The PET screen belongs at 32768, so we must select that
slice with:

POKE 56576,5

so that we'll pick up RAM starting at 32768. The ROM Character
Generator is still in place.

Since we want the screen (video matrix) to be positioned
right at the start of the block, we must set it to a value of zero. The
Character Base can stay at its value of four (for graphics mode), so
we must set up address 53272 with zero times 16 plus four:

POKE 53272,4

That completes the video, but we have a few other things to do to
make BASIC work in a sound manner. We must tell BASIC where
the new screen is located:

POKE 648,128

88

u
u
u
u
u
u
u
u
u
u
u
v

u
u
u
u
u
u

u
U

U 1

U

u l

ul
u'
u l

v
u
u
V

U

U

U

U

U

U

Commodore 64 3
Video

And finally, we should set the start and end of BASIC to corre
spond with a 32K PET:

POKE 1024,0:POKE 44,4:POKE56,128:NEW

Clear the screen, and the job's done. Zero page usage is still differ
ent, so not all PEEKs and POKEs will automatically work on this
reconfigured system; but BASIC and screen now match the PET.

Task 4: High-resolution Plotting
There are only eight places in memory that we can place a high
resolution screen: 0, 8192, 16384, 24576, 32768, 40960, 49152, and
57344. We tend to choose the two 16K blocks that don't have the
Character Generator, 16384 to 32767 and 49152 to 65535. That way,
we'll have more clear RAM to use; there will be more space left for
our video matrix and any sprites we need.

If we want to write characters on the hi-res screen, we'll have
to generate them ourselves or steal them from the Character Gen
erator. Here's an odd thing - the video chip sees the character
ROM at two different addresses, but the processor chip (and that
includes your program) sees the same 4K ROM only at a third
location, 53248 to 57343. Most of the time, the processor can't see
the ROM anyway, since the addresses are overlaid with the
110 chips.

So if our program wants to see the character set, it must flip
away the 110 chip with POKE 1,51- stop, don't do it yet! There
are two problems. First, once the 110 chips are moved out -
sound, video, interface, everything - you won't be able to type
on the keyboard; so you'll never be able to type the POKE to put
everything back. Second, the interrupt program uses these 1/0
chips for quite a few things, and it will go berserk the moment
you take them out of action. So we must use a program or a multi
ple direct command to do the job, and we must temporarily lock
out the interrupt activity. Type the following statements as a
single line:

POKE 56333,127: (lock out the interrupt)
POKE 1,51: (flip out 1/0)

X =PEEK(53256): (read part of character)
POKE 1,55: (restore 110)

POKE 56333,129 (restore interrupt)

X will contain the top row of pixels for the letter A. If you like,
you can draw a character's shape with the following program:

89.

3 Commodore 64
Video

100 INPUT "CHARACTER NUMBER";A
110 IF A<0 OR A>255 THEN STOP
120 B=53248+8*A
130 C=56333
140 FOR J=0 TO 7
150 POKE C,127:POKE 1,51:X=PEEK(B+J)/128
160 POKE 1,55:POKE C,129
170 FOR K=1 TO 8
180 X%=X:X=(X-X%)*2
190 PRINT CHR$(32+X%*3);
200 NEXT K:PRINT
210 NEXT J
220 GOTO 100

To terminate this program, enter a number over 255. You'll
note that most of the characters are drawn with "double width"
lines. A video technician would tell you that this reduces the
video frequencies and is likely to cause less picture smear.

Arranging the video areas is almost an art. It takes a little
practice, but youl1 get the knack of it fairly quickly.

90

u
u

u

u
u
v
,-

U

\,.)

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

v

u
u
u
u
u
u
u

u

u

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

,-..,

Commodore 64 3
Video

The Lunar
Lander: The 64
inACtion
Jim Butterfield

Now well write a small lunar lander program that demonstrates
some of the features of the 64's video chip.

First, the craft
First, let's draw the sprites for the rocket:

100 DATA 0,24,0,0,60,0,0,198,0,1,131,0,1
,131,0,3,1,128,3,1,128,3,1,128

110 DATA 3,1,128,3,1,128,3,1,128,3,1,128
,1,131,0,1,131,0,1,131,0

120 DATA 0,102,0,0,126,0,0,0,0,0,0,0,0,0
,0,0,0,0

A fairly crude craft - you can improve it if you like. We have
drawn the sprite into 63 bytes of memory; one more and we can
continue to the next sprite.
130 DATA 0:REM GAP BETWEEN SPRITES

Then the Flame
Now we're going to draw the rocket flame as a separate sprite.
Why? Because later, when we look for collisions, we don't care
what the flame hits, just what the rocket hits. There's another rea
son: when we're not thrusting, we can simply turn this sprite off,
and the flame disappears.

140 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

150 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,66,0,0,36,0,0,24,0,0,24,0

Mostly zeros. The flame is only at the bottom of the sprite. OK,
we're ready to go. Let's clear the screen and print instructions:

91

3 Commodore 64
Video

16flJ PRINT CHR$(147)
170 PRINT "LUNAR LANDER"
180 PRINT
190 PRINT II PRESS I SPACE I FOR MAIN THRUST

II

200 PRINT "pRESS IF11 {4 SPACES}FOR LEFT
THRUST II

210 PRINT "PRESS IF71 {4 SPACES}FOR RIGHT
THRUST II

220 PRINT
230 PRINT II WATCH OUT FOR THE MINES. II

240 PRINT
250 PRINT "LAND GENTLY OR YOUILL BOUNCE!

II

While the user is reading the instructions, we can read in the
sprites and put them into slots 13 and 14. We can also set our
sprite "position" addresses as variables, and identify sprites 0 and
1 as using pictures 13 and 14.

260 REM SET UP
27flJ FOR J=0 TO 126:READ X:POKE 832+J,X:N

EXT J
280 X0=53248:YflJ=53249:C0=53279
290 X1=5325flJ:Y1=53251:E=53269
300 POKE 2040,13:POKE 2041,14

We'1l make the rocket exhaust go behind the main screen.
This way, as we land, the exhaust will go behind the background.
We'1l also give it color to distinguish it from the rocket ship itself
(you can pick your own).
310 POKE 53275,2
320 POKE 53288,3:REM THRUST COLOR
330 PRINT "READY TO START":
340 X$="Y":INPUT X$

Variable E is used to enable the sprites. When we're ready,
we'1l turn them oni for now they can stay off.

350 POKE E,0
360 IF X$<>"Y" AND X$<>"YES" THEN END

We're ready to fly. Let's put the sprite high on the left part of
the screen. Then we'1l draw a screen with mines for the player to
avoid.

92

v
V

U

U

U

U

U
~ ~,

U

U

V

U

U

U

U

U

V

U

U

U

U

U

U

U

U

U

U

V

V

U

U

U

U

U

U

U

V

Commodore 64 3
Video

370 V=100:H=100:V0=0:H0=0
380 POKE 54296,15:POKE54278,240
390 REM DRAW SCREEN
400 PRINTCHR$(147)
410 FOR J=l TO 18:PRINT:NEXT J
420 FOR J=l TO 4:FOR K=l TO 30
430 C$="":IF RND(l)<.l AND (K<20 OR K>25

) THEN C$="#"
440 PRINT C$;:NEXT K:PRINT:NEXT J
450 FOR J=l TO 30:PRINT I =";:NEXT J

Keyboard Checks
Let's place the sprite, and start the main play by checking the key
board. We check for two different things: a new key (K$), or an
old key still being held down (K):

460 POKE X0,H:POKE Y0,V:POKE X1,H:POKE Y
1,V

470 K=PEEK(203):GET K$
480 REM MAIN FLIGHT LOOP-TEST KEYS
490 IF K$=""GOTO 550
500 K0=ASC(K$):V1=.1:H1=0 ,

Let's check for the space bar. If it's on, we want to energize the
rocket and the rocket flame. Our vertical thrust will be upwards
(- .5), and well want to enable the flame video with a note that
EO =3. Well spot lateral thrust as keys F1 and F7, and set value HI
accordingly.

510 E0=1:IF K0=32 THEN V1=-.5:E0=3
512 REM
520 IF K0=133 THEN H1=-.2
530 IF K0=136 THEN H1=.2
540 GOTO 560
550 IF K=64 THEN V1=.1:H1=0:E0=1

Here's where we turn on our sprites - either rocket only
(EO = 1) or both rocket and flame (EO =3). As long as were turning
rockets on and off, we might as well add sound effects, too:

560 IF PEEK(E)=E0 GOTO 600
570 REM THRUST SOUND
580 POKE E,E0:IF E0=1 THEN POKE 54276,0:

GOTO 600

93

3 Commodore 64
Video

59~ POKE 54273,8:POKE 54276,129
6~~ IF Hl=H9 GOTO 63~
61~ H9=Hl:K=SGN(ABS(H9»*129:POKE 54273,

99:POKE 54276,K
Gravity, thrust, or lateral thrust - they all involve accelera

tion. We add acceleration to our speed to get new speed; then we
add speed to position to get new position.

62~ REM LET'S MOVE IT!
63~ V~=V~+Vl:H~=H~+Hl

To prevent the player going off screen, well invent a force
field around the screen boundary. If you hit it, youll bounce; that
is, your speed will flip to the opposite direction. We'll fudge a bit.
The high bit of the X position is tricky to set in BASIC; there's
often a flicker during the moment that we set the low and high
values. So let's limit the player'S travel to the left-hand three
quarters of the screen and avoid the problerp..

64~ REM FIELD FORCE BOUNDARIES
65~ IF V<5~ THEN V~=ABS(V~)
66~ IF H<2~ THEN H~=ABS(H~)
670 IF H>240 THEN H~=-ABS(H0)
68~ V=V+V~:H=H+H~

We move the craft simply by changing its coordinates. Then
we check the collision register to see if we've hit anything.

There's a problem here. It seems that collision is noted when
the screen is drawn, not when you set the coordinates. BASIC
isn't super fast, but it could be fast enough to miss that collision. If
you watch the program closely, you will see that the rocket some
times bounces after it goes below ground level.

There's an additional contributing factor. BASIC, being slow,
may need to move the rocket several pixels in distance at a time.
So, rather than just touching the ground and stopping, the rocket
may leap from just above the ground to well into it, if it's going
quite fast.

69~ REM MOVE CRAFT, CHECK COLLISION
7~~ POKE X~,H:POKE Y0,V:POKE Xl,H:POKE Y

1, V
71~ C=PEEK(C0):IF(C AND 1)=~ GOTO 47~

Collision says we've hit something. We can look at our height
(Y position) to see if it's the ground. If not, it must be a mine.

94

u
u
u
u
u
u
u
u
u
V

U

u
u
u
u

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
U

U

U

U

U

V

Commodore 64 3
Video

720 IF V>218 GOTO 780
730 IF V+V0<218 GOTO 470

We could do a sensational explosion here, but we'd need to
define more sprites, or modify the ones we've got. Try your hand
at it if you like. For the moment, hitting a mine will cause the
rocket to disappear.

740 REM WE SEEM TO HAVE HIT A MINE
750 PRINT CHR$(19};ICRASHED1":POKE E,0
760 GOTO 820

BOunCe and Overshoot
I arbitrarily decided to make the craft bounce if it hits too fast. If
you'd rather crash, go ahead. See the previous note.

770 REM HIT THE DECK ••• TOO FAST?
780 IF V0>1 OR V0<0 THEN V0=-ABS(V0}:GOT

o 470
790 PRINT CHR$(19}; II LANDED 1 ":POKE E,l

Because we may overshoot the ground and dig a little hole,
we'll reset the vertical position of a successfully landed rocket to
look neat. Then we wind up the game or play another one.

800 POKE Y0,219
810 REM ALL DONE-SHUT DOWN
820 POKE 54276,0:POKE 54296,0
830 PRINT "WANT TO TRY AGAIN";
840 GOTO 340
There are many features you can add - such as a fuel supply.

We could have done a pretty background in high-resolution
graphics, but this would make it difficult to add features (if you
wish) like meter readouts. In fact, I've used very dull graphics,
but you may consider that a challenge.

That's it. We've done a simple sprite exercise. It's really not
hard, even in BASIC. In machine language, it's almost too easy;
you'll find that you need to slow your program down, or every
thing will happen too fast.

The graphics capability is there, and it's not hard to use. A lit
tle experimentation and practice, and you too can animate a pic
ture that's worth a thousand words.

95

3 Commodore 64
Video

spit SCreens
Jim Butterfield

In this section we will deal with a fairly advanced technique: split
screens. It's a new aspect of the computer, combining things we have
already learned into a new set of capabilities. We'll demonstrate, via a
machine language program, an amazing visual display.

Wel1 need to venture into more technical waters now, but with a
little effort we can perform some minor miracles on the screen.
All the limitations we have learned may be set aside with a little
creative "cheating:' Wel1 have a venture into machine language;
but even if you're not an ML fanatic, it's worth knowing that the
job can be done.

We have learned a number of limitations, largely based on the
idea that the screen can do a lot of things, but only one at a time:

• We can have only one background color, unless we are in
multicolor mode; and even in that case, we're restricted in our
choice of colors.

• We can obtain information only from one 16K memory
quadrant.

• We can use only one character set.
• We can be in character mode or bitmap (hi-res) mode, but

not both.
• We may have only eight sprites on the screen at one time.

In fact, we have a more general set of rules. We may be in only
one mode at a time - multicolor is either on or off; extended
color is either on or off, and so on. It seems impossible to mix
screen modes and have the best of both worlds, but we can do it.

Here's the trick: the Raster Register, address $D012 together
with the high bit of $D011, can do more than tell us where the
screen is being painted at this instant. We may store an interrupt
value there and tell the computer: 'Mvise me when you get to
this part of the screen:' At this point, we can switch screen char
acteristics: color mode, high resolution, background color, char
acter set, memory bank - whatever you want. Of course, we
need to put it all back when we return to the top of the screen.

96

u
u
u
u

u
V

V

V

V

V

U

V

V

V

u
v
u
u
V

u
V

U

V

V

V

V

U

V
-

u

'1
V
-

V

U

V

V

U

Commodore 64 ~
Vldeo~

The Task
Were going to write a quick program to split the screen into two
parts, each with a different characteristic. It won't be perfect;
we're just trying to show the technique, not polish up all the
loose ends. The fine points will come later. First, let's plan.

H we set a new interrupt into our machine, well need to make
some careful distinctions. First, when an interrupt happens, we
must establish: who caused this one? Was it the raster, or the tra
ditional interrupt source of 1/60 second timing? Second, if it was a
raster, which part of the screen is involved - the top or the
"switch" point?

The Interrupt
Let's start to layout the machine language program. All interrupts
will come here, and well need to sort them out. Well put the pro
gram into the cassette buffer.

033C AD 19 DO INT
033F 29 01
0341 FO 19

LOA
AND
BEQ

$0019
#$01
REGULR

The interrupt has happened and has come here. Check the Raster
Interrupt Bit in $D019 - was this one caused by the raster? Well
need to mask out the bit we want with an AND. H we get nothing,
it's a regular interrupt - go there.

0343 80 19 DO STA $0019

It is indeed a raster interrupt, and we must shut of(the alarm. We
do this by storing the bit back where it came from (there's a 1 in
the A register right now). Amazingly, this turns the bit off.

0346 A2 92 LOX #$92
0348 AD 15 LOY #$15

Well prepare the registers, assuming we are doing the top-of
screen work. The hex 92 is decimal 146 - the scan line that hits
about mid-screen; that's where we will want the next interrupt to
take place. Note that hex 92 is considered a "negative" byte; we
will use this fact in just a moment. Now, let's see if we are correct
about being at mid-screen:

034A AD 12 DO LOA #$0012
0340 10 04 BPL MID

We look at the raster scan. H it's less than 127, we're near the
top of the screen, and we don't see the negative byte. So we skip
ahead. H, however, we are at the middle of the screen, well see a

97

3 Commodore 64
Video

negative value. We won't branch; instead, we'll fix up the registers
for mid-screen work:

034F A2 01 LDX #$01
0351 AO 17 LDY #$17

Both streams join again at this point. X contains the raster
location where we will want the next interrupt: if we're at the top,
we want to be interrupted at the middle (hex 92); if we're at the
middle, we will want to be interrupted at the top (hex 01). Y con
tains information on the character set we want to choose:
graphics or text. Let's proceed:

0353 8E 12 DO MID STX $D012

Place the next interrupt point into the raster register. The next in
terrupt will now hit at the right time.

0356 8C 18 DO STY $D018

Place the "character set" value - hex 15 for graphics, hex 17 for
text - into the appropriate register.

0359 4C DC FE IMP $FEDC

We've done our job. We may now exit. Don't give an RTI; instead,
go to a routine that cleans things up nicely, at $FEBC. And what
of our regular interrupt?

035C 4C 31 EA REGULR IMP $EA31

It goes to the normal address ($EA31), to which regular interrupts
go. We have more to do after we get this program into memory.
We must also detour the interrupt vector to our new program and
fire up the raster interrupt control.

BaCk to BASIC
Ready to put all this in BASIC? Here we go:

90 POKE 53265,27
100 FOR J=828 TO 862:READ X
110 T=T+X:POKE J,X
120 NEXT J
130 IF T<>3958 THEN STOP
200 DATA 173,25,208,41,1,240,25,141,25,2

08,162,146,160,21,173,18
210 DATA 208,16,4,162,1,160,23,142,18,20

8,140,24,208,76,188,254,76,49,234
300 POKE 56333,127
310 POKE 788,60:POKE 789,3
320 POKE 56333,129:POKE 53274,129

98

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
U

U

U

U

U

Commodore 64 3
Video

Let's look at the last three lines. Line 300 kills the interrupt for a
moment, so that we can mess with the interrupt vector without
running into disaster. Line 310 changes the interrupt vector to
point at our newly POKEd program. Line 320 restores the inter
rupt and adds an extra one: the raster interrupt.

An Amazing Split
Whe~ the program is run, an amazing thing happens: the screen
becoIf1es graphic at the top and text at the bottom. Impossible,
you say? Not for us clever - and careful- people. The effect is
permanent: you may NEW the program and start something
else, and the split screen will still be there. You shouldn~t use
cassette tape with program in place - it's there in the buffer.
And you may find that LOAD and SAVE don't work quite right.
RUN-STOP/RESTORE will put everything back to its former
state. (Please save this program for use in the next section.)

The unsolved Problem
But it's not perfect (I warned you). Every once in a while, the bar
rier seems to creep slightly, and then correct itself. Maybe it's
computer hiccups. It seems worse when you are using the key
board. What's happening? And how can we fix it? Read "Son of
Split Screens:'

99

~ Commodore 64
~Vldeo

Son of
Split SCreens
Jim Butterfield

In the section called "Split Screens:' we had a program similar
but not identical to the one below. Either type this in or load the
earlier version and make the necessary changes in lines 130, 200,
and 210.

90 POKE 53265,27
100 FOR J=828 TO 862:READ X
110 T=T+X:POKEJ,X
120 NEXT J
130 IF T<>3929 THEN STOP
200 DATA 173,25,208,41,1,240,25,141,25,2

08,162,146,160,6,173,18
210 DATA 208,16,4,162,1,160,0,142,18,208

,~40,33,208,76,188,254,76,49,234
300 POKE 56333,127
310 POKE 788,60:POKE 789,3
320 POKE 56333,129:POKE 53274,129

Our previous example split the screen into two sections:
graphics and text. This one splits the screen into two background
color areas. It makes it easier for us to see the glitch - the hiccup
that occasionally disturbs our screen split. By the way, it's easier
to see the problem when you are using the keyboard.

Why the Problem?
Here's where the problem comes from: the timer interrupt strikes
about every 1/60 second. The screen display, too, runs at a
rate of about 60 times a second. But they are not synchronized.
The two processes run at similar, but not identical, speeds.

Every once in a while, the timer interrupt hits just before the
raster interrupt. The timer interrupt has quite a few jobs to do:
update the TI$ clock, check the cassette motor, flash the cursor,
and check the keyboard. It takes time to do these jobs, and extra
time is required if a key is being pressed.

100

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u

Commodore 64 3
Video

Suppose we have just started on the timer interrupt, and the
raster scan says, '1'm ready!" Sorry, raster, were already into an
interrupt routine, and other interrupts are locked out until we
have finished. By that time, the screen scan might have moved
along a few lines, and our split screen has crept from its normal
position.

Some Possible Fixes
There are several possible approaches to fixing this jitter. The
ones that come to mind first are complex; in a moment, we'll
move on to an easy one.

When the timer interrupt strikes, we could ask it to look at the
raster and see if the scan was close to the interrupt point. If so, we
might wait things out or skip part of the timer interrupt jobs.
Messy.

The timer interrupt could unlock the interrupt very quickly,
using a CLI command. That way, we could interrupt the interrupt
program itself to do the split screen job. Better - but some pro
grammers feel it's dangerous to allow this kind of thing to happen.

A Better way
There is an easier way: shut the timer interrupt off completely,
and do its various jobs with our own programs. This seems com
plex, but it's not. We can call the timer interrupt routines our
selves, whenever it's time.

Let's look a little more closely into the timing of these inter
rupts. We expect to cause a raster scan interrupt about 120 times a
second. That's twice as often as the timer interrupt needs to be
handled. So our raster program could occasionally call in the
timer interrupt program.

It seems that we could accomplish the task easily by calling
the timer interrupt routines every second raster interrupt. That
would certainly do the job, but theres a better way.

Even though we've shut off the timer interrupt, it's still signal
ing when the time is ready. Let's review: the timer leaves a signal
in hex address $DCOD (56333) whenever it counts down to zero.
Normally, this signal triggers the interrupt line (IRQ) and causes
the processor to be interrupted. But we may ''break'' the connec
tion between the timer signal and the interrupt line. In this case,
the timer will not cause an interrupt, but the signal bit will still
flash when the appropriate time has·come.

We can see the plan in Figures 1 and 2. We will disconnect the
timer from interrupt and service it.ourselves when it flashes.

101

3 Commodore 64
Video

Easier done than said. Let's look at the machine language coding:
033C A9 01 INTR LOA #$01
033E 8D 19 DO STA $0019

Raster interrupt is now the only game in town, so we don't need
to test for it. We must, of course, turn off the raster interrupt flag.

0341 A2 92 LDX #$92
0343 AO 06 LDY #$06

Setup for top of screen. Next interrupt, line 92 hex; new color,
number 6.

0345 AD 12 DO LDA $0012
0348 10 04 BPL MID

If it's really the top of screen, we can skip ahead. Otherwise, we
change for mid-screen -line 1,new color, number 0:

034A A2 01 LOX #$01
034C AO 00 LOY #$00

Now were ready to do the job, wherever the screen is:
034E 8E 12 DO MID STX $D012
0351 8C 21 DO STY $D021

The job is done. Now let's see if the timer interrupt is calling for
action:

0354
0357
0359

AO OD DC
29 01
FO 03

LOA
ANO
BEQ

$OCOD
#$01
SKIP

If we didn't skip, the timer wants attention. Call it in:
035B 4C 31 EA IMP $EA31

If we did skip, the timer isn't needed. Quit with:
035E 4C BC FE SKIP IMP $FEBC

We must remember, of course, to turn off the timer interrupt,
set the IRQ vector to our new code, and turn on the raster inter
rupt. We'll do all that in BASIC.

BASIC-ally YOurs
Here's the same program in BASIC.

90 POKE 53265,27
100 FOR J=828 TO 864:READ X
110 T=T+X:POKE J,X
120 NEXT J
130 IF T<>4077 THEN STOP

102

u
u
u
u
u
U.

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U.

U

U

U

U

U

U

Commodore 64 ~
Vldeo~

200 DATA 169,1,141,25,208,162,146,160,6,
173,18,208,16,4,162,1

210 DATA 160,0,142,18,208,140,33,208,173
,13,220

220 DATA 41,1,240,3,76,49,234,76,188,254
300 POKE 56333,127
310 POKE 788,60:POKE 789,3
320 POKE 53274,129

Now we have a rock-solid color change at the appropriate
screen point. No creeping, no jittering, no hiccups.

We've only touched upon the techniques of raster interrupt.
A whole host of new possibilities open up with its use.

But we've shown it can be done - and some of the tech
niques that can be used to do it.

Figure 1. Conventional coding requires the
proJJram to distinguish between the two live
timing sources. It may also cause timing jitter ..

Raster
Interrupt

Return
From Interrupt

Timer
Interrupt

Return
From Interrupt

103

3 Commodore 64
Video

Figure 2. Single Interrupt coding gives priority to
the time-senSitive raster Job.

104

Raster
Interrupt

Only

Return From Interrupt

From Interrupt

u

u
u
u

u

-~

u
u

u
u

-
u
u

u
u

u

v

V

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

ti

ti

ti

lti

r'I

r'I

r'I

r'I

ti

r'I

r'I

ti

r'I

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

ti

creating 4
Cames

Joysticks
and Sprites
Sheldon Leemon

Fast movement of sprites can increase the appeal of any game. Try the
demonstration programs here and learn huw to add this technique to
your games.

As the owner of an Atari 800 computer, I welcomed Commodore's
announcement of the 64, because it closely parallels the Atari in
its consumer orientation. One example is the inclusion of two
ports for Atari-type joystick controllers. These controllers provide
a simple way for the user to interact with any type of program, in
cluding, of course, arcade games.

A Fascinating Chip
When I bought the computer, however, I discovered, to my
dismay, that the consumer-oriented design approach did not
seem to carry through to the BASIC interpreter and User's Guide.
Not only was there no BASIC command for reading the joystick
controllers, but the BASIC manual also made no mention
whatever of these ports! This meant that if I discovered how to
use these sticks any time soon, I would have to play hardware
detective.

Fortunately, the 64 is similar to the VIC-20 in a number of
ways. Since the VIC reads the joystick through a VIA (Versatile
Interface Adapter) chip, it stands to reason that the 64 would read
its joystick through the analogous CIA (Complex Interface
Adapter) chip. An early memory map from Commodore shows
CIA #1 to be addressed at location $DCOO, or 56320 decimal. The
CIA is a fascinating 110 chip and could well serve as the basis for
an article in itself, but here I'll focus attention on the registers that
read the joysticks.

Like the VIC, the 64 uses Peripheral Data Registers A and B to
read these sticks, and 110 (input/output) through these registers is
controlled by Data Direction Registers A and B. These registers are

107

4 creating
. Games

addressed at the chip's first four locations, so that on the 64 Data
Register A is addressed at 65320, Register B is addressed at 56321,
and Data Direction Registers A and B are addressed at 56322 and
56323, respectively.

Reading the Joysticks
Knowing this, with a bit of trial and error I was able to figure out
how to read the joysticks. A quick try seemed to indicate that it
was not necessary to write to the Data Direction Registers before
reading the sticks, as must be done on the VIC-20. Checking the
values of Registers A and B while moving joysticks connected to
Control Ports 1 and 2 revealed that the data from the stick con
nected to Control Port 1 appeared in Register B, and that the data
from the stick in Port 2 showed up in Register A.

The relationship of the data returned in the register to the
direction of stick movement is exactly the same as on the Atari.
Each of the low bits (0-3) corresponds to one of the switches that
is closed by moving the stick in one of the four primary directions.
These bits are normally set to 1, but are reset to 0 when the corre
sponding switch is closed. Bit 0 corresponds to the up switch, bit
1 corresponds to the down switch, bit 2 is left, and bit 3 right. Bit 4
is used to read the joystick trigger button. It is set to 1 normally
and reset to 0 if the button is pushed.

What this means to the hardware-weary reader who has
borne with me thus far, patiently waiting for an explanation in
plain English of how to use the Commodore 64 joysticks, is that it
takes only a couple of BASIC statements to do the job. Those
familiar with the Atari system of numbering the joystick positions
(as I am) may want to use the following statements:

Sl=PEEK(56321) AND 15:REM READS STICK 1
S2=PEEK(56320) AND 15:REM READS STICK 2

Because these registers can contain irrelevant information in bits
4 -7, the logical AND is used to mask (block out) those bits. The
figure on the next page shows the way in which the number
returned in variable 51 or 52 corresponds to the direction in
which the stick is pushed.

To read the trigger buttons, the following stat~ments will re
turn a 1 if a button is pressed, and a 0 if it is not:

T1=-«PEEK(56321) AND 16)=0)
T2=-«PEEK(56320) AND 16)=0)

108

u
u
u
U

U

U

U

U

U

U

U

v

u

u
u
u
u
u
u
u
u
u
V

u
u
u
u
u
u
u
u

u

u
u
u

V

r--,

r--,

r--,

~

~

~

~

~

~

r"t

~

~

~

~

r"t

~

~

~

~

r"t

~

~

~

~

~

~

~

~

~

~

("".,

~

~

("".,

~

r--,

creating 4
Carnes

14

11 7

13

Of course, if you prefer a system where the variable will be 0
when the stick is not pressed, you can use the logical operator
Nor to adjust the values accordingly.

Sl=NOT PEEK(56321) AND 15
S2=NOT PEEK(56320) AND 15

This will produce the following pattern:

1

4 8

2

A Keyboard BOnus
The variations on these basic schemes are limited only by your
applications. If you are using the joystick for an action game, for
example, you may want to read the changes in horizontal position
and vertical position separately. You can do this with the follow
ing formulas:

H1=«PEEK(56321) AND 4)=0)-«PEEK(56321)
AND 8)=0)

H2=«PEEK(56320) AND 4)=0)-«PEEK(56320)
AND 8)=0)

109

4 creating
Carnes

Vl=((PEEK(56321) AND 1)=0)-((PEEK(56321)
AND 2)=0)

V2=((PEEK(56320) AND 1)=0)-((PEEK(56320)
AND 2)=0)

The value of H1 will be 1 if the stick is pressed to the right, -1 if
the stick is pressed to the left, and 0 if centered. Likewise, the
value of V1 will be -1 for an upward press, 1 for a downward press,
and 0 if the stick is centered. If you wish, you can even read each
switch separately. Program 1, short and not exciting, demon
strates the technique.

One interesting sidelight demonstrated with this program is
the fact that some OA registers that are used to read the joysticks
are used also to read the keyboard. The four keys at the top left of
the keyboard (Control, Left Arrow, 1, and 2) are read exactly the
same as joystick switches 0-3. While you are running Program 1,
try pressing these keys, and you will see what I mean.

Pressing the Control key has the same effect as moving the
stick to the left, while the Left Arrow, 1, and 2 keys function like a
joystick moved down, up, and to the right, respectively.

sprite Movement
Program 2 sets up a sprite and moves it around based on the posi
tion of the joystick. The initialization routine, which I have put
out of the way at the back of the program, starting with line 1000,
sets up a flying saucer in double width, and then RETURNs to
the movement loop at line 2. The ON-GOSUB routes the pro
gram to the proper line number without having to test each stick
position, which would slow down the loop.

There are a couple of points to note. First, the registers that
designate sprite horizontal and vertical positions are not write
only registers, as are the Atari horizontal position registers. This
means that you can find out the current position of the sprite just
by reading those registers, without having to set up separate
RAM variables to keep track of them as must be done on the
Atari. I set up variables X % and Y% in Program 2 only for pur
poses of readability.

To move a sprite one position to the right, we need only read
the current horizontal position, add 1, and POKE that number
back into the horizontal position register. Of course, you must
keep in mind that you can't POKE in a value less than 0 or greater
than 255. If you examine the move-down and move-up

110

u
u
u
u
u
u

u

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
v

u

u
u

u
u
u
V

r-'l

r-'l

r-'l

r-'l

r-'l

r-'l

t""'\

r'1

r-'l

r-'l

r'1

t""'\

r-'l

t""'\

t""'\

r'1

r'1

r-'l

r'1

t""'\

r-'l

r'1

r-'l

~

~

r'1

r'1

r'1

r'1

r'1

r'1

r'1

r'1

r'1

r'1

n

creating 4
Carnes

subroutines at lines 80 and 90, you will see that I have incorpo
rated logical statements to move the sprite to the bottom of the
screen if it hits the upper limit, and which will move it to the top if
the value tries to get below O. This wraparound feature
guarantees that no errors will result from trying to POKE in an
illegal quantity.

The Horizontal"Seam"
A more complicated situation arises when we deal with hori
zontal movement. Because there are 320 horizontal positions
available, but only 256 combinations which can be accessed from
the horizontal position register, we need to set the Most Signifi
cant Bit in the register located at 53264 whenever we wish to use a
horizontal position between 256 and 320. Anytime the sprite
moves into or out of this zone, therefore, special handling of this
bit will be required.

Accordingly, the horizontal movement routines (lines 40-45
and 70-75) have to test to see if this "seam" is encountered before
moving the sprite. If the horizontal position register reads 0, for
example, we don't know whether the sprite is located at the left
edge of the screen or at the "seam" (i.e., location 256) until we
check the MSB register. This extra checking is time-consuming,
and as a result the saucer moves noticeably faster up and down
than it does right and left.

Because of the slowness of the motion in BASIC, I have multi
plied all motion by the factor WUN, which is defined in line 1005,
and which can be set from 1 to 3. When its value is 1, the motion is
very smooth, but extremely slow. When it is 3, each push of the
stick changes the position of the sprite by three places, speeding
up the motion, but making it somewhat jerky.

Machine Language Motion
The best solution to the problem of achieving quick, smooth mo
tion is the use of a machine language subroutine which will read
a joystick and move the sprite accordingly. Program 3 uses just
such a subroutine. Though I POKE it into memory starting at
$COOO (49152 decimal), it is completely relocatable.

If it later proves that this large block of free RAM can be better
used otherwise, you will be able to move the routine with no re
writing. You should be aware, however, that, as written, the rou
tine checks only the joystick in Port 1, and moves only Sprite 0 in
response to movement of that stick. Since some lines of Program

111

4 CreatIng
Carnes

3 duplicate those of Program 2, you may want to edit the latter
program rather than typing in Program 3 from scratch.

One difference that you will notice immediately is that this
program asks you to select a speed (you should respond with a
value from 1-5). The reason for this is that I wanted to demon
strate the degree to which even a machine language subroutine is
slowed down by BASIC At Speed 1, each time through the loop
the program calls the subroutine once and returns to BASIC
Though this produces smooth motion, it is still somewhat slow.
At Speed 2, the program calls the subroutine twice in a row before
returning, and so on up to Speed 4, which produces rather qUick
motion. At Speed 5, the machine language subroutine goes into a
continuous loop, without ever returning to BASIC At this speed,
if you push on the stick diagonally, it will appear as if there are
dozens of saucers on the screen at once!

Though my examples may seem most applicable to game pro
grams, do not overlook the joysticks as input devices for more
mundane tasks. Because each stick has only four switches, it
limits the number of choices available to the user. It therefore re
duces the number of mistakes that can be made, as compared
with a keyboard, which has over 60 keys, each key having both a
shifted and nonshifted value.

PrOgram 1. Joystick Demonstration
is FOR 1=1 TO 2S:DOWN$=DOWN$+CHR$(17):NE

XT:HOME$=CHR$(19):PRINTCHR$(147);CHR$
(5)

15 PRINT" THIS PROGRAM READS STICK #l":P
RINT" INSERT JOYSTICK, AND MOVE IT AR
OUND1"

20 S=NOT PEEK(S6321) AND 15
30 UP=S AND l:IF UP THEN PRINT HOME$;LEF

T$ (DOWN$, is) ;TAB(lS); "UP{3 SPACES}";:
GOTO 50

40 DOWN=S AND 2:IF DOWN THEN PRINT HOME$
;LEFT$(DOWN$,10):TAB(lS);"DOWN ";

50 LEFT=S AND 4:IF LEFT THEN PRINT HOME$
;LEFT$(DOWN$,10);TAB(2S);"LEFT ";:GOT
070

60 RIGHT=S AND S:IF RIGHT THEN PRINT HOM
E$;LEFT$(DOWN$,10);TAB(2S);"RIGHT";

70 IF S=O THEN PRINT HOME$;LEFT$(DOWN$,l
o): TAB (15):" {16 SPACES}"

SO GOTO 20

112

u
u
u
u
u
u
u
v
u
v
u
v
v
v
v

v

v
u
v
v
v
u
u
v

v
u

v

u
v
u
u

U

~

~

r--,

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

(j

~

~

(j

~

~

~

~

~

~

~

~

~

~

(j

~

program 2. Moving Sprites in BASIC
1 GOTO 1131313
2 S=PEEK(S13)AND15:0NSGOSUB3,3,3,3,213,313,

413,3,513,613,713,2,813,913,3:GOT02
3 RETURN
213 GOSUB 413:GOSUB 813:RETURN
313 GOSUB 413:GOSUB 913:RETURN
413 X%=X%+WUN :IF X%>255 THEN X%=13:POKE S

P+16,1
43 IF X%>65 AND PEEK(SP+16)=1 THEN POKE

SP+16,13:X%=13
45 POKEHP,X%:RETURN
513 GOSUB 813:GOSUB 713:RETURN
613 GOSUB 913:GOSUB 713:RETURN
713 X%=X%-WUN:IF X%<1 AND PEEK(SP+16)=1 T

HEN X%=255:POKE SP+16,13
73 IF X%< 1 AND PEEK(SP+16)=13 THEN X%=65

:POKE SP+16,1
75 POKEHP,X%:RETURN
813 Y%=Y%+WUN+HI * (Y%>HI):POKEVP,Y%:RETU

RN
913 Y%=Y%-WUN-HI * (Y%<WUN):POKEVP,Y%:RET

URN
1131313 FORI=871T0895:POKEI,13:NEXT:FOR 1=83

2T08713:READA:POKEI,A:NEXT:SP=53248
113135 HP=SP:VP=SP+1:X%=1613:Y%=11313:WUN=3:H

I=252:S13=56321
113113 POKESP+21,1:POKE213413,13:POKESP+39,6

:POKESP+29,1:POKEHP,X%:POKEVP,Y%
113213 POKESP+32,13:POKESP+33,13:PRINTCHR$(1

47)
113313 FORI=1 TO 513:R=11324+INT(RND(13)*1131313

):POKE R,46:POKE R+54272,1:NEXT
113413 DATA 13,56,13,13,124,13,13,254,13,13,1713,13

,1,171,13,15,255,224,15,255,224,13,8
5,96

113513 DATA 13,85,96,15,255,224,15,255,224
,13,254,13,13,124,13

113613 GOTO 2

Creating 4
Cames

program 3. Moving Sprites in Machine Language
113 PRINTCHR$(147);CHR$(5): INEUT"SPEED "

;S:GOTO 1131313
213 ON S GOTO 313,413,513,613,713
313 SYS(494139):GOTO 313
413 SYS(494136):GOTO 413
53 SYS(494133):GOTO 53

113

4 Creating
Cames

6~ SYS(494~~):GOTO 6~
7~ SYS(49413):GOTO 7~
1~~~ FORI=871T0895:POKEI,~:NEXT:FOR 1=83

2T087~:READA:POKEI,A:NEXT:SP=53248
1~1~ POKESP+21,1:POKE2~4~,13:POKESP+39,6

:POKESP+29,1:POKESP,16~:POKESP+1,1~
~

1~2~ POKESP+32,~:POKESP+33,~:PRINT CHR$(
147)

1~3~ FORI=1 TO 5~:R=1~24+INT(RND(0)*1~~~
):POKE R,46:POKE R+54272,1: NEXT

1040 DATA 0,56,~,~,124,~,~,254,~,0,17~,~
,1,171,~,15,255,224,15,255,224,13,8

5,96
1045 DATA 13,85,96,15,255,224,15,255,224

,0,254,~,~,124,~
1~5~ FOR 1=1 TO 1~1:READ A:POKE 49151+1,

A:NEXT
1~55 FOR 1=1 TO 19:READ A:POKE 49399+I,A

:NEXT:GOTO 2~
1~60 DATA 173,1,22~,74,176,3,2~6,1,2~8,7

4,176,3,238,1,2~8,74,176,38,173
1~70 DATA 0,208,2~8,15,173,16,2~8,41,1,2

4~,12,173,16,2~8,41,254,141,16

1~80 DATA 208,2~6,0,2~8,96,173,16,208,9,
1,162,63,141,16,208,142,~,2~8,96

1~90 DATA 74,176,32,238,~,2~8,24~,28,173
,16,2~8,41,1,24~,2~,169,64,205

11~0 DATA 0,208,2~8,13,173,16,208,41,254
,162,~,141,16,2~8,142,~,2~8,96

111~ DATA 173,16,2~8,9,1,141,16,208,96
12~~ DATA 32,~,192,32,0,192,32,~,192,32,

0,192,96,32,~,192,76,5,193

114

u
u
u
u
u
u
u
u
u
u
u,
u
u
u
u
u
u
u
u
u
u
u
u
u
v
v
u
u

u
u
v

u
v
v
u

u

AI b 9
Michael Wasilenko

creating 4
Games

Preschoolers will love this simple game. The child is required to press the
correct letter in order to start the race.

/I Alfabug" is for relatively young people, three to six years old.
To a child learning the alphabet, the accomplishment of pressing
the correct key to initiate a bug race is quite exhilarating.

The object of the game is to press the same letter of the alpha
bet on the keyboard that the computer displays on the screen.
When the correct letter is pressed, a bug race starts: five bugs of
different colors race across the screen. If the wrong letter is
pressed, the computer responds with an unpleasant sound and
then waits for the correct letter. The order in which the bugs finish
is marked at the end of each lane, so the player(s) can also com
pete for points by guessing the winner. Upon completion of each
race, the player is asked if another race is desired. At this point, a
Y or N for yes or no is expected. Again,anuripleasanfSound is
heard when an invalid answer is given.

In the following program, the computer will select the letters
alphabetically beginning with A (of course) and will reset to A
after Z is reached. By simply deleting the remark statement .
(REM) from line 76, the program will select the letters randomly.
You could also modify the program so it asks the player for the
method of letter selection. But I have found that the fewer the
prompts, the easier it is for the child. Remember, this is for young
children who are just learning their alphabet or who are just
learning to read. For instance, with the selection method fixed in
the code, my five-year-old daughter can load and run the pro
gram without any assistance.

This simple program can provide hours of fun for young
children while helping them practice the alphabet. But watch out!
You may not get to use your computer again, unless they're all
asleep.

115

4 creating
Games

Alfabug

o PRINT"{CLR}INITIALIZING"
1 POKE52,48:POKE56,48:CLR:POKE56334,PEEK

(56334)AND254:POKE1,PEEK(1)AND251
5 FORN=0T01279;POKEN+12288,PEEK(N+53248)

:NEXTN:POKE1,PEEK(1)OR4
6 POKE56334,PEEK(56334)OR1
10 PRINT" {BLK}{CLR}" :POKE53281, 1
20 DIMY(5),K(5),O(5),CO(5):AB=64
25 CO(0)=0:CO(1)=3:CO(2)=4:CO(3)=5:CO(4)

=7
30 Z=05:A=45:CR=42:IN=-1:WX=54272
34 SS=12288+(41*8):FORI=0T015:READQ:POKE

SS+I,Q:NEXTI
36 DATA 36,72,123,254,254,123,72,36,144,

72,123,254,254,123,72,144
40 FORN=0T04:READY(N):NEXTN
50 DATA 1306,1386,1466,1546,1626
55 FORW=0T04:K(W)=Y(W):NEXTW
57 PRINT"{WHT}{CLR}":FORP=0T04:0(P)=48:N

EXTP:X=1264:F=48
60 FORL=0T05:FORI=0T039:POKEX+I,A:POKEX+

I+WX,0:{2 SPACES}NEXTI
70 POKEX+I-l,115:X=X+80:NEXTL
74 FORG=0T04:POKEY(G)-I+WX,0:POKEY(G)+WX

,CR:NEXTG
75 FORG=0T04:POKEY(G)-1,49+G:POKEY(G),CR

:NEXTG
76 REM{3 SPACES}AB=INT(RND(1)*26)+64
77 AB=AB+l:IFAB>90THENAB=65
78 PRINT"{HOME}{BLK}{DOWN}PRESS "1CHR$(1

8)CHR$(AB)CHR$(146);" TO START"
79 GETA$:IFA$=""THEN79
80 IFASC(A$)<>ABTHENGOSUBI74:GOT078
81 POKE53272,(PEEK(53272)AND240)+12: M=3

5:FORC=0T04:IFK(C)=Y(C)+35THEN105
85 POKEK(C),32
90 E=INT(RND(0)+.5)+1.5:K(C)=K(C)+E:IFK(

C)=>Y(C)+M-l.5THENK(C)=Y(C)+M:F=F+l
100 POKEK(C),CR:POKEK(C)+WX,CO(C):FOR J=

0TOZ:NEXTJ:IFK(C)=Y(C)+MTHENI05
102 GOT01l0
105 IFO(C)<>ITHENPOKEK(C)+l,F:POKEK(C)+1

+WX,0:POKEK(C),42:0(C)=I:GOSUB200
110 NEXTC
115 CR=CR+IN:IN=IN*-I:IFF<53THEN81
118 POKE53272, 21

116

u
u
u
u
u
V

U

V

V

V

V

V

V

V

V

V

V

V

U

U

V

V

V

U

V

V

U

V

V

V

V

V

V

V

V

U

1213 PRINT"{HOME}{BLK}{19 DOWN}AGAIN? 'y'
OR 'N'"

1313 GETY$:IFY$=""THEN1313
1413 IFY$="Y"THENCR=42:IN=-1:GOT055
145 IFY$<>"N"THENGOSUB174:GOT01213
1513 END
174 SO=54272:FORGH=SOTOSO+24:POKEGH,13:NE

XT:POKESO+24,15:POKESO+1,34:POKESO,7
5

175 POKESO+5,72:POKESO+6,72
176 POKESO+4,129:FORT=1T051313:NEXT
177 FORGH=113T013STEP-1:POKESO+24,GH:NEXT
178 RETURN
21313 SO=54272:FORGH=SOTOSO+24:POKEGH,13:NE

XT:POKESO+24,15:POKESO+1,34:POKESO,7
5

2135 POKESO+5,72:POKESO+6,72
2113 POKESO+4,17:FORT=1T051313:NEXT
215 FORGH=113T013STEP-1:POKESO+24,GH:NEXT
2213 RETURN

creatIng 4
Carnes

117

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

V
Q

U
Q

o
o
o
o
o
<)

<)

o
o
o
o
o

" o
o

" Q

" o

" o
o
v
v
v
o
v
Q

" o
o
o

~

~

~

~

~

~

I)

I)

~

~

I)

I)

~

I)

I)

~

I)

I)

~

I)

~

I)

('l

(l

I)

I)

I)

(l

(l

(l

(l

(l

I)

(l

I)

o

peripherals 5

The Confusing
catalog.
Jim Butterfield

Have you ever wanted to have a program gain control of the disk catalog?
There are a number of ways to use directory information, but getting hold
of it is not as simple as it might seem at first glance.

On Commodore machines with 4.0 BASIC, you just type CATA
LOG or DIREC1DRY to see a list of the programs on a disk. On
other Commodore machines, you must LOAD "$'~8 and then
LIST. Either way, you get a directory with your disk header, infor
mation on the programs, and the number of blocks free. Very
handy indeed.

Here's the problem: you would like,Your program to be able
to read a directory. It seems simple: just OPEN it as a file and
bring in the items. Unfortunately, it doesn't work that way.

TWO Types
When you command LOAD "$'~8 you are bringing in a directory
with a LOAD command; it arrives in a certain format. If you
OPEN 1,8,2:'$" within your program, you'll get an entirely differ
entformat. Why?

When you say LOAD, the disk manufactures a directory that
imitates a BASIC program. After all, the next thing you'll say is
LIST, and the only thing that can be listed is BASIC. If you say
OPEN, however, the disk will give you its directory, in binary, just
as it is stored on the disk surface. That seems to be a little better -
until you realize that BASIC has a devil of a time understanding
binary.

You can do an OPEN and getthe imitation program. The trick
is to use secondary address 0 - usually reserved for LOADing.

Another PrOblem
Either way, you get binary. You'll need to translate it and interpret
it; and you'll need to cope with that annoying BASIC glitch, in-

121

5 perIpherals

putting a CHR$(O). Whenever BASIC GETs a CHR$(O), it changes
it to a null string (" ''), and youll need to detect this and change it
back.

The coding for this is fairly easy. After we get a character with
GET A$, we may take its binary value with A =ASC(A$) - except
that the null string won't work right. So,.we say, A =ASC(A$ +
CHR$(O» and everything works out.

Imitation BASIC
This is the easiest and most standard way of obtaining directory
information; it works the same way with all Commodore disk
drives. To understand it, we must see how a BASIC line is
constructed:
First two bytes: forward chain or zero (dummy on directory)
Next two bytes: binary number
Then: text of line
Ending with: binary zero

Program'l prints the directory. Big deal: you could do that
anyway. But since it's a program, you can change it to do what
ever functions you need. For example, you could dig into the text
part in more detail, extracting the program name and type; that
way, your program would know if a given data file were on the
disk.

It's handy to be able to check how many blocks are free on the
disk. Our program already does this: the last number that line
230 calculates will be the blocks-free value. You can abbreviate this
procedure by making the program skip all the file names. Change
the OPEN statement to read:
100 OPEN 1,8,0,"$0:5%Q"

Now, the program will catalog only those programs whose
name happens to be exactly S%Q. Chances are you won't have
many of these. Your directory is now shortened down to the
header line and the BLOCKS FREE line. Let's telescope our pro
gram into a simple block-free checker. Try Program 2.

We've only scratched the surface. Try your hand at program
ming some directory search function of your choice.

Bit-image Directories
You can get more information from a bit-image directory than
from a BASIC-imitator. For example, you can read the length
parameter of relative files, see deleted files, and view file track
and sector values.

122

u
u
--

U

U

U
~

U

U
~

U

U

U

U

U

U

U

U

U

U

U

U
-

U

U
-.

u
u
u
u
u
u
u
u

u
u
u
u
u
u
~

u

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

/"'"",

~

~

. /"'"",

~

~

~

/"'"",

~

~

~

~

~

/"'"",

/"'"",

~

peripherals 5

But this comes with considerable difficulty. You might get any
one of several different formats, depending on the disk. We won't
do the whole job here: you can chase after some of the details for
yourself. Look at Program 3.

Yes, you can go in there and drag out the BAM. Yes, you can
dig useful data out of the stuff we skipped in lines 360-380. Check
your disk manual for details.

It's not easy either way. The "imitation BASIC" is the shortest
and works on all disks: use it when you can. But if you need the
extra power of the bitmap, don't hesitate to go for it.

program 1. Print Directory
95 REM GET THE DIRECTORY FOR DRIVE ~
1~~ OPEN 1,8,~,"$~"
1~5 REM NULL STRING REPLACEMENT
ll~ N$=CHR$(0)
185 REM SKIP THE "LOAD ADDRESS" AT FILE S

TART
19~ GETU,A$,A$
195 REM SKIP THE FORWARD CHAIN
~~~ GETU ,A$ ,A$ 
205 REM EXCEPT ZERO CHAIN MEANS END 
21~ IF A$=""GOTO 400 
215 REM GET THE BINARY NUMBER 
220 GETU,A$,B$ 
225 REM PRINT "NUMBER OF BLOCKS" 
23~ PRINT ASC(A$+N$)+ASC(B$+N$)*256; 
295 REM LET'S GET TEXT 
3~0 GETU,A$ 
305 REM END OF THIS LINE:GO BACK 
310 IF A$="" THEN PRINT:GOTO 20~ 
315 REM PRINT ONE CHARACTER 
32~ PRINT A$; 
325 REM GET SOME MORE 
33~ GOTO 30~ 
400 CLOSE1 

PrOgram 2. Block-free Checker 
95 REM ANOTHER UNLIKELY NAME 
1~0 OPEN 1,8,0,"$~:E71N" 
ll~ N$=CHR$(~) 
195 REM THROW AWAY LOAD ADDRESS, LINK, N 

UMBER 
20~ GET#l,A$,A$,A$,A$,A$,A$ 
205 REM THROW AWAY THE HEADER LINE 

123 



5 peripherals 

21121 GET#l, A$: IF A$ <> ""GOTO 21121 
215 REM THROW AWAY THE LINK, GET THE NUMB 

ER 
22121 GET#l,A$,A$,A$,B$ 
225 REM HERE'S OUR BLOCK-FREE COUNT 
23121 F=ASC(A$+N$)+ASC(B$+N$)*256 
4121121 CLOSE1 
41121 PRINT F 

program 3. Bit-image Directory 
95 REM WE MUST INITIALIZE FOR THIS ONE 
1121121 OPEN 1,8,15,"II2I":CLOSE1 
11215 REM HERE COMES THE BIT DIRECTORY 
11121 OPEN 1,8,2,"$0" 
12121 N$=CHR$(I2I) 
125 REM DISK WILL IDENTIFY ITSELF 
13121 GET#1, A$ 
135 REM HERE'S THE IDENTITY 
14121 A=ASC(A$+N$) 
145 REM JUST TO PROVE WE IDENTIFIED IT. 
146 REM 825121'S WILL GIVE TROUBLE HERE 
15121 IF A=67 THEN PRINT "81215121" 
16121 IF A=65 THEN PRINT "154121/1541/41214121" 
17121 IF A=l THEN PRINT "21214121" 
195 REM SKIP THE(BIT) BAM 
2121121 FOR J=l TO 253 
21121 GET #l, A$ 
22121 NEXT J 
225 REM THE 812150 HAS A BIG BAM TO SKIP 
23121 IF A<>67 GOTO 3121121 
24121 FOR J=l TO 254*2 
25121 GET#1, A$ 
26121 NEXT J 
295 REM EIGHT FILES PER BLOCK 
3121121 FOR J=l TO 8 
31215 REM FILE TYPE, TRACK, SECTOR 
31121 GET#l,F$,T$,S$ 
32121 F=ASC(F$+N$) 
325 REM GET 16-CHARACTER NAME 
33121 P$="":FOR K= 1 TO 16 
34121 GET#l,X$:P$=P$+X$ 
35121 NEXT K 
355 REM THERE'S USEFUL STUFF HERE, BUT WE 

'LL SKIP IT 
36121 FOR K= 1 TO 9 
37121 GET#1 ,X$ 
38121 NEXT K 
385 REM FILE LENGTH 

124 

u 
u 
u 
u 
u 
u 
~ 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 



Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

!) 

Ii 

!) 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

Ii 

!) 

!) 

!) 

!) 

!) 

!) 

!) 

390 
395 

400 
405 

410 
415 
420 
425 
430 
480 
500 
900 

perIpherals 5 

GETU,L1$,L2$ 
REM WEIRD; 254 BYTLES/8 LEAVES US TWO 

BYTES SHORT 
IF J<8 THEN GET#1,X$,X$ 
REM TO ALLOW US TO TEST END-OF-DIRECT 
ORY 
SW=ST 
REM NOT A REAL FILE 
IF F<129 OR F>132 GOTO 480 
REM NAME AND LENGTH 
PRINT P$;ASC(L1$+N$)+ASC(L2$+N$)*256 
NEXT J 
IF SW=0 GOTO 300 
CLOSE1 

125 



5 peripherals 

Automatic 
PrOgram 
Selector 
Steven A. Smith 

Here are several ways to make disks easier to use. A disk menu program 
that will run your programs automatically is included. 

If you want to be able to choose from among a number of options 
within a program, one of the best methods available is a menu. 
The computer displays a list of items with numbers or letters as
signed to each, and you press the number or letter corresponding 
to the option you want. This way, you don't have to worry about 
which responses are allowed or about how to spell a particular re
sponse, and it's much faster. 

All this applies to disk drives, as well. Also, someone who is 
not familiar with the operating system of the computer can call up 
any of a number of programs without having to know about 
diskette directories or about LOADing or RUNning programs. 

You can choose between two ways of automating program 
selection from a disk. The first one we'll describe uses specific, 
predefined menus for each diskette or function. The second can 
be used with any diskettes, determining at runtime which pro
grams are available on the disk. 

predefined Menus 
A predefined menu is written right into the BASIC menu pro
gram. Because of this, a new program must be written for each 
diskette for which you want a menu. However, there are several 
advantages to using a predefined menu. First, it's fast. As soon as 
you RUN it, the menu program knows what programs should be 
on the diskette and can go about the business of displaying the 
menu. Also, you can add program descriptions to the menu 
screens to show more information about the programs than just 
their names. 

126 

u 
V 

V 

U 

U 

u 
U 

U 

U 

u 

u 
u 
u 
u 
u 
U 

U 

U 

u 

V 

U 

U 

U 

U 

U 

U 

U 

U 
~--

V 

U 

U 
/ -

U 

U 

V 

U 



PerlPheralSS 

Another, less obvious advantage to predefined menus is that 
you can set up a menu for just a few of the programs on a diskette, 
have another menu for some others, and have other programs 
that are not accessed by any menus. This way, you can let some
one have access to only the programs that a particular application 
requires. 

Program 1 is a sample of a predefined menu for an inventory 
file maintenance system. Although it is short, it is surprising how 
impressive it can be in operation, especially to someone who is 
used to having to load and run individual programs via the tradi
tional directory method. 

Lines 120-130 set up an array of program names, one per array 
element. 

Lines 140-230 display the actual menu. The numbers 1 
through 8 are displayed in reverse, with a description of the 
associated programs next to them. The number of items on the 
menu is not significant - eight just happened to fit well on this 
menu. 

In this menu, the programs are grouped by type of operation 
to make things clearer for the user. Inventory file operations, 
transaction file operations, and setup operations are each 
grouped together and separated from the others by a line. Of 
course, you can display and group items on your menus any way 
you wish, remembering to have your item numbers and array ele
ments correspond properly. 

Lines 240-260 accept your menu item choice, making sure it is 
between one and the maximum item number on the menu. On 
this menu, choice number 8 simply ends the program. 

Lines 270-300 are the heart of the menu program. Using the 
dynamic keyboard technique (where the computer enters its DUm 

instructions), the computer types the WAD and RUN instruc
tions on the screen, and then forces RETURNs into the keyboard 
buffer to make it execute them. To accomplish this dynamic effect, 
you need to POKE a value of 13 into the first two keyboard buffer 
bytes, and a value of two into the byte which contains the number 
of characters in keyboard buffer (line 300). 

This sample menu program will expect to find a "Library In
ventory System" diskette in drive 0 containing programs with the 
filenames stored in the array C$ (lines 120-130). To use Program 1 
with your own disks, substitute the names of your own programs 
in lines 120-130 and short descriptions in lines 140-230. You may 
need to change the DIM statement in line 110 and the entry num-

127 



5 peripherals 

ber checking in lines 250-260 if you have more or fewer than eight 
menu items. 

Increasing Menu Items 
Nine items can be placed on this menu before the screen begins to 
look crowded. There are two ways to improve on this number: 
the first is simply to use several menus and let each menu chain 
(call in) the next. You can let one menu item be the next menu 
program, or add a line: 

245 IF A$=CHR$(13) THEN C$(0)=IMENU2":A$= 
11":GOTO 270 

This line will call the next menu program (here named MENU2) if 
RETURN, rather than one of the options shown, is pressed. 

While this works quite well, you do have to wait for the new 
menu to be loaded each time you chain from one to the next. A 
faster way is shown in Program 2. Several menus can be stored in 
the same program. By pressing RETURN, you can go from one 
menu to the next without waiting to load a new menu program. A 
message is added to the bottom of the screen indicating that you 
can press RETURN to go on to the next menu. After the last menu 
is shown, pressing RETURN again will bring you back to the first 
menu. Of course, going to the next menu could itself be made a 
menu option, instead of being automatic. 

To make menus especially useful to people unfamiliar with 
computers, you can make the programs called by the menu call 
the menu back when they finish. To do this, find where your pro
gram ends, whether by an END statement or by reaching the last 
of the line numbers. Change your END statements to GOlD 
62000 and add the following lines: 

62000 PRINT II {CLR}{4 DOWN} II 

62010 PRINT I LOAD I CHR$(34)10:MENU"CHR$(34 
)",8{4 DOWN}" 

62020 PRINT II RUN II : PRINT II {9 Up} II 

62030 POKE 631,13:POKE 632,13:POKE 198,2 
: END 

This assumes that your menu program is named ''MENU''. 
Once you load the menu program, you don't need to worry 

about loading any more programs. Each time you finish one pro
gram, the machine will take you back to your menu. This is why 
menus are especially helpful for inexperienced operators. A 

128 

u 
u 
u 
u 
u 
u 
- -
U 

U 

U 

U 

U 

U 

V 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 



r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

peripheralS 5 

menu also works well at parties - you set it up with games which 
call back the menu, and you don't have to worry about being 
around to show people how to LOAD and RUN their choices. 

Fully Automatic Menus 
Program 3 is a different method of generating menus, a fully auto
matic diskette menu. When you run this program, you can put 
any disk in the drive and it will find out what programs are on the 
disk and build a menu around them. Although you can't add de
scriptions to the program names, with disk files you do have 
16-character names to work with, and you can make them quite 
descriptive. 

This method is slower than using predefined menus because, 
before the program can generate the menus, it must read the 
diskette directory and fill its own array of program names. How
ever, you don't have to write a new menu program for each 
diskette or change a menu program when you change the con
tents of a diskette. 

The following is a description of the variables used in Pro
gram 3: 

AE$ 
AN 
AO 
C$ 
DE 
DRS 
ER 
F$ 
FL 
I 
J 
MM 
MN 

: Filename Array 
: Array Entry Number 
: Files From Drive 0 
: Character Read In 
: Directory Entry 
: Drive Number 
: Disk Error Number 
: Filename Found 
: Filename Length 
: Iteration Variable 
: Iteration Maximum 
: Maximum IOn Menu 
: Menu Number 

Lines 190-210 set up the variables and the program name 
array used by the program. Line 220 initializes the diskette in the 
drive currently being checked. This sets things up for line 230, 
which checks to see if a diskette was found in the drive. If not, the 
program prints an error message. 

Lines 240-250 are in the program mostly to let you know 
something is happening. While the program is reading the disk 
directory, it lets you know how many programs it has found on 
that drive. 

129 



5 peripherals 

In lines 260-390, the diskette directory is opened and read as a 
sequential file. After skipping over the directory header, each 
directory block of eight file entries is checked for programs until 
the last entry is reached. 

Line 310 skips entries which have their first byte equal to any
thing other than 130. That would indicate that the file was not a 
program file. You could use this line to create menus which dis
played only USR or SEQ files if you wished. Line 330 puts the 
program name into string F$. Line 340 keeps the DOS support 
program from showing up on the menus. Line 340 also shows 
how a program can be excluded from the menu if you don't want 
it displayed. Line 350 updates your screen to tell you how many 
program entries have been found, and line 360 puts this program 
name and drive number into the array of filenames found. Lines 
370-380 then read past the proper number of bytes to be ready to 
read in the next file entry. 

Line 410 finishes up the work. If no programs were found, the 
program ends with line 430. Otherwise, the first menu is ready to 
be displayed. 

Entering YOur Choices 
Line 440 prints the menu heading. The heading will include a 
menu number starting with 1 and going as high as necessary to 
show all of the program names found, in groups of nine. Line 450 
checks to see if there are enough program names left in the array 
to display nine menu items. If not, the menu is shortened. Line 
460 displays the menu item itself, and lines 470-480 display the 
message at the bottom of the screen. 

Lines 490-530 check for your choice of menu item. It must be 
between 1 and the maximum number on the menu, or it can be 
RETURN, in which case the program will display the next menu. 
If there are no more items in the program name array, the first 
menu is redisplayed: 

If the key you pressed was one of the menu items shown, the 
program continues to line 540. Variable AE$ is now the drive 
number, a colon, and the 16-character name of the program you 
have chosen. Any blanks in the name are stored in the directory 
as shifted spaces, with an AScn value of 160. 

Lines 560-580 check to see how long the program name is by 
looking backwards from the end for the first character that is not a 
shifted space. When one is found, variable FL contains the length 
of the n~me plus the drive number. Then, the LOAD and ~UN in-

130 

u 
u 
V 

V 

U 

V 
--

U 

V 

U 

U 

U 

V 

U 

U 

U 

U 

U 

U 

U 

U 

U 

V 

U 

U 

V 

V 

U 

U 

U 

U 

U 

U 

V 

V 

V 

U 



~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

r.. 

peripherals 5 

structions are displayed, and the keyboard buffer is POKEd with 
RETURNs to load the chosen program, just as in the predefined 
menu programs. 

program 1. Predefined Disk Menu 
100 REM ** LIBRARY INVENTORY SYSTEM DRIVE 

R MENU ** 
110 DIMC$(6):PRINT CHR$(14) 
120 C$(0)="SLIB":C$(1)="SLIBPRINT":C$(2)= 

"SLIBINQ":C$(3)="STRANPRINT" 
130 C$(4)="STRANPURGE":C$(5)="SLIBSETUP": 

C$(6)="FORMAT" 
140 PRINT"{CLRJ{2 DOWN}{10 SPACESJ{RVS} P 

ROGRAM CHOICE MENU {OFF} {2 DOWN}" -
150 PRINT" {7 SPACES}{RVS} 1 {OFF} INVENTORY 

FILE MAINTENANCE{DOWN}" 
160 PRINT"T7 SPACES}{RVS}2{OFF} INVENTORY 

FILE LISTING{DOWN}" 
170 PRINT"T7 SPACES}{RVS}3{OFF} INVENTORY 

FILE INQUIRY{2 DOWN}" 
180 PRINT"T7 SPACES}{RVS}4{OFF} TRANSACTI 

ON FILE LISTING{DOWN}" 
190 PRINT"{7-SPACES}{RVS}5{OFF} TRANSACTI 

ON FILE PURGE{2 DOWN}" 
200 PRINT"{7-SPACES}{RVS}6{OFF} FIRST-TIM 

E FILE SETUP{DOWN}" 
210 PRINT"{7 SPACES} {RVS}7{OFF} FORMAT A 

DISKETTE{2 DOWN}" 
220 PRINT" {7 SPACES}{RVS}8{OFF} END OF LI 

BRARY WORK { DOWN} " 
230 PRINT"T8 SPACES}{RVS} CHOOSE ONE OF T 

HE ABOVE {OFF}" ~ - -
240 GETA$:IFA$=""THEN240 
250 IFA$<"1"ORA$>"8"THEN240 
260 IFA$="8"THENEND 
270 PRINT" {CLR} {6 DOWN}" 
280 PRINT"LOAD"CHR$(34)"0:"C$(VAL(A$)-1)C 

HR$(34)",8" 
290 PRINT"{4 DOWN}RUN":PRINT"{9 UP}" 
300 POKE631,13:POKE632,13:POKE198,2:END 

program 2. Multiple predefined Menus 
100 REM ** INVENTORY SYSTEM DISK MENU #1 

** 
110 DIMC$(9):PRINT CHR$(14) 
120 C$(1)="SLIB":C$(2)="SLIBPRINT":C$(3)= 

"SLIBINQ":C$(4)="STRANPRINT" 

131 



5 peripherals 

130 C$(5)="STRANPURGE":C${6)="SLIBSETUP": 
C$(7)="FORMAT":C${8)="DIRECT" 

140 PRINT" {CLR}{DOWN}{ 7 SPACES}{RVS} LIBR 
ARY INVENTORY MENU 1 {OFF} {2 DOWNT" 

150 PRINT"{7 SPACES}{RVS}l{OFF} LIBRARY F 
ILE MAINTENANCE{DOWN}" 

160 PRINT" {7 SPACES}{RVS}2 {OFF} LIBRARY F 
ILE LISTING{DOWN}" 

170 PRINT" {7 SPACES}{RVS}3{OFF} LIBRARY F 
ILE INQUIRY{2 DOWN}" 

18111 PRINT"{7 SPACES}{RVS}4{OFF} TRANSACTI 
ON FILE LISTING{DOWN}" 

19111 PRINT" {7-SPACES}{RVS}5 {OFF} TRANSACT I 
ON FILE PURGE{2 DOWN}" 

21110 PRINT" {7-SPACES}{RVS}6{OFF} SETUP INV 
ENTORY FILES{DOWN}" 

21((J PRINT"{7 SPACES}{RVS}7{OFF} FORMAT A 
DISKETTE {DOWN} " 

22111 PRINT"{7 SPACES}{RVS}8{OFF} PRINT A D 
ISKETTE DIRECTORY{2 DOWN}" 

23111 PRINT"{5-SPACES}{RVS}{4 SPACES}CHOOSE 
ONE OF THE ABOVE{4 SPACES}{OFFT" 

240 PRINT" {5-SPACES} {RVS} OR PRESS RETURN 
FOR NEXT MENU {OFF} "1- - -

25111 GETA$:IFA$;;;;""THEN25111 
26111 IFA$=CHR$(13)THEN29111 
27111 IFA$<"1"ORA$>"8"THEN25111 
28111 GOT045111 
29111 C$(1)="SLIBPRT1":C$(2)="SLIBPRT2":C$( 

3)="SLIBPRT3":C${4)="SLIBPRT4" 
31110 C$(5)="SLIBPRT5":C$(6)="SLIBPRT6":C$( 

7)="SLIBPRT7":C$(8)="SLIBPRT8" 
31111 PRINT"{CLR}{DOWN}{7 SPACES}{RVS} LIBR 

ARY INVENTORY MENU 2 {OFF}{2 DOWNT" 
32111 PRINT"{7 SPACES}{RVS}l{OFF} PRINT SAL 

ES REPORT {DOWN} " 
330 PRINT"{7 SPACES}{RVS}2{OFF} PRINT BAC 

KORDER REPORT{DOWN}" 
34111 PRINT" {7 SPACES}{RVS} 3 {OFF} PRINT DEL 

INQUENT ACCOUNTS {DOWN} " 
350 PRINT"{7-SPACES}{RVS}4{OFF} PRINT HIS 

TORICAL REPORT{DOWN}" 
360 PRINT" {7-SPACES}{RVS}5 {OFF} PRINT HIS 

TORICAL SUMMARY{DOWN}" 
370 PRINT"{7-SPACES}{RVS}6{OFF} PRINT SAL 

ES TAX REPORT{DOWN}" 
38111 PRINT"{7 SPACES}{RVS}7{OFF} PRINT MON 

THLY!EPORTS{DOWN}" 

132 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

V 



peripherals 5 

390 PRINT" {7 SPACES}{RVS}8{OFF} PRINT YEA 
RLY REPORTS {DOWN} " --

400 PRINT"{5 SPACES}{RVS}{4 SPACES}CHOOSE 
ONE OF THE ABOVE{4 SPACES}{OFFT" 

410 PRINT"{5-SPACES}{RVS} OR PRESS RETURN 
FOR NEXT MENU {OFF}": - - -

420 GETA$:IFA$;;""THEN420 
430 IFA$=CHR$(13)THEN120 
440 IFA$<"1"ORA$>"9"THEN420 
450 PRINT"{CLR}{6 DOWN}" 
460 PRINT"LOAD"CHR$(34)"0:"C$(VAL(A$»CHR 

$(34)",8" 
470 PRINT"{4 DOWN}RUN":PRINT"{9 UP}" 
480 POKE631,13:POKE632,13:POKE198,2:END 

program 3. Automatic Disk Menus 
100 REM * AUTOMATIC DISKETTE MENU * 
190 AE$="":AN=0:A0=0:C$=ul:DE=0:DR$=u0" 
200 ER=0:F$="":FL=0:I=0:J=0:MM=0:MN=0 
210 DIM AE$(150) 
2200PEN15,8,15:PRINT#15,"I u+DR$ 
230 INPUT#15,ER:IFER=21THEN400 
240 PRINT"{CLR}{DOWN}READING DIRECTORY OF 

DRIVE u:DR$ 
250 PRINT"{DOWN}PROGRAMS FOUND: 0 u 
260 OPEN8,8,8,"$I+DR$+",SEQ" 
270 FORI=lT0254:GET#8,C$:N~XT 
280 FORDE=1T08:F$="":GET#8,C$ 
290 IFC$=CHR$(199)THEN410 
300 IFC$=""THENJ=29:GOT0370 
310 IFASC(C$)<>130THENJ=29:GOT0370 
320 AN=AN+l:J=11:GET#8,C$:GET#8,C$ 
330 FORI=1T016:GET#8,C$:F$=F$+C$:NEXT 
340 IFLEFT$(F$,3)="DOS"THEN AN=AN-1:GOT03 

70 
350 PRINT" {UP} "TAB(l5 )AN-A0 
360 AE$(AN)=DR$+":"+F$ 
370 FORI=lTOJ:GET#8,C$:NEXT 
380 IFDE<>8THENGET#8,C$:GET#8,C$ 
390 NEXT:GOT0280 
400 PRINT"{DOWN}NO DISKETTE FOUND IN DRIV 

E "DR$" {DOWN}" 
410 CLOSE8:CLOSE15 
430 IFAN=0THENPRINT" {2 DOWN}{ RVS} NO PROG 

RAMS FOUND { OFF} {2 DOWN}": END 
440 MM=9:PRINT"{CLR}{DOWN}"TAB(12)"{RVS}P 

ROGRAM MENU 4f"STR$ (MN+1) " {OFF} {DOWN}" 
450 FORI=lT09:IFAE$(MN*9+I)=""THENMM=I-l: 

I=9:GOT0470 

133 



5 peripherals 

460 PRINTTAB(12)I{RVS}IRIGHT$(STR$(I),1)" 
{OFF} "MID$(AE$(MN*9+I),3,16)"{DOWN}" 

470 NEXT: PRINT" {4 SPACES}{RVS}{4 SPACES}C 
HOOSE ONE OF THE ABOVE OR{3 SPACES} 
{OFF}" 

480 PRINT"{4 SPACES}{RVS} PRESS RETURN TO 
GO TO NEXT MENU {OFF}" 

490 GETC$:IFC$=""THEN490 
500 IFC$<>CHR$(13)THEN530 
510 MN=MN+1:IFMN*9+1>ANTHENMN=0 
520 GOT0440 
530 IFVAL(C$)<1 OR VAL(C$»MM THEN490 
540 AE$=AE$(MN*9+VAL(C$» 
550 PRINT:PRINT"{CLR}{4 DOWN}MENU ITEM CH 

OSEN: #"C$" - "MID$(AE$,3,16) 
560 FORI=18T01STEP-1:FL=I 
570 IFASC(MID$(AE$,I,1»<>160THENI=1 
580 NEXT:PRINT"{4 DOWN}LOAD"CHR$(34)LEFT$ 

(AE$,FL)CHR$(34)",8{4 DOWN}" 
590 PRINT"RUN":PRINT"{9 UP}" 
600 POKE631,13:POKE632,13:POKE198,2:END 

134 

u 
u 
u 
u 
u 
u 
u 

u 
V 

V 

U 

U 

U 

V 

V 

U 

u 
u 
u 
v 

u 

V 

U 

u 

u 
V 

U 

U 

U 

U 

U 

U 

U 

u 
u 



peripherals 5 

64 DOSmaker 
Charley Kozarski 

Changing disks to load DOS 5.1 can at times be inconvenient. )'Ou can 
use these short programs to save time - by putting the Wedge on your 
own disks. 

If you've bought a 1541 disk drive for your Commodore 64, you've 
probably noticed that the Test/Demo disk which comes with it 
contains several useful programs. In particular, there is a program 
called "DOS 5.1" whi,ch simplifies many disk-handling opera
tions for you. For example, you can just use the symbol for divi
sion (/) followed by the name of a file, and the file will be 
LOADed in for you. 

Despite the misleading name, DOS 5.1 is not a Disk Operat
ing System (DOS) for the 1541. Like all Commodore disk drives, 
the 1541 is "intelligent:' which means that its DOS is contained in 
ROM inside the drive itself. DOS 5.1 is actually a DOS support pro
gram which makes the built-in DOS easier to use. 

All of the helpful functions of the DOS support program, 
however, are available only on that disk. If, for some reason, you 

. need to turn off power, you've got to reload DOS 5.1 from the 
demo disk. Wouldn't it be nice to be able to put this useful pro
gram on any of your disks? 

Program 1 must be saved onto each disk on which you want 
to put DOS 5.1. It is the "wedge:' which ties DOS 5.1 into BASIC. 
Type Program 1 in and SAVE it on a disk. Then type NEW and 
type in Program 2 which is the DOS 5.1 Creator. SAVE Program 2 
to the same disk. It is necessary to SAVE Program 2 to only one of 
your disks because after it creates DOS 5.1, it serves no further 
purpose. You11 only need Program 1 and DOS 5.1 on each disk. 

Now replace your disk with the Test/Demo disk. (Program 2 
will get DOS 5.1 from the demo disk.) RUN Program 2 and, after a 
few seconds, it will ask if you have replaced the demo disk with 
your own. Make that replacement and you're halfway through 
creating a new DOS 5.1. When your disk is in the drive, type Y for 
yes and hit RETURN. The Creator program will now SAVE DOS 
5.1 onto your disk and then erase itself from memory. If you forgot 

135 



5 peripheralS 

to remove the demo disk, there will be no problem because the 
tab on the disk prevents anything from being SAVEd onto it. Pro
gram 2, however, will have erased itself and you'll need to start 
over. 

After you've got a copy of DOS 5.1 on one of your disks, 
you're all set to use it anytime you use that disk. Simply load in 
the Wedge (Program 1) from that disk and RUN it. 

program 1. DOS wedge 
1~ REM DOS WEDGE FOR C-64 
2~ PRINT "{CLR}" 
3~ IF IM=YOU THEN YOUR=I:LOAD"DOS 5.1",8 

,1 
4~ IF YOUR=1 THEN SYS 52224 
5~ NEW 

program 2. DOS creator 
1~ REM DOS WITHOUT LOADING DEMO DISK 
2~ IF IM=YOU THEN YOUR=I:LOAD"DOS 5.1",8 

,1 
3~ IF YOUR=1 THEN SYS 52224 
4~ INPUT "{CLR}DEMO DISK REPLACED YET? ( 

Y OR N )":I$:IF I$<>"Y" THEN 4~ 
5~ POKE 43,255:POKE 44,2~3:POKE 45,9~:PO 

KE 46,2~7 
6~ SAVE"DOS 5.1",8,1 
7~ POKE 43,I:POKE 44,8:POKE 46,8:NEW 

136 

u 
u 
u 
u 
u 
u 
u 

v 
u 
v 
v 
u 
u 
v 
u 

u 

u 
u 
v 
v 
u 
v 
v 
u 
u 
u 
u 
u 
v 
u 
u 
u 
u 
u 
u 
v 



peripherals 5 

Backup 
1540 11541 Disks 
Harvey B. Herman 

LOAD, switch disks, SAVE, LOAD, switch, SAVE - it can be cumber
some and tedious to make backups of disks when you don't have a dual 
disk drive. What's worse, you need to go through special extra steps to 
transfer machine language programs. This utility makes creating safe 
backups on single disk drives nearly automatic. 

1 recently purchased a 1541 disk drive. The diskette that came 
with it included a few sample programs. Conspicuous by its 
absence, however, was a program to make duplicate copies of 
diskettes for backup purposes. 1 have learned the hard way that 
diskettes do not last forever, and it is foolish to have only one copy 
of important programs. 

What to do? Well, 1 was lucky to have acquired an excellent 
backup program for the Commodore 2031 single disk drive (writ
ten by Jim Law and Keith Hope and distributed by the Toronto 
PET Users Group). 1 adapted this program to work on the Com
modore 64. The modifications in the original program were quite 
modest - a few PEEKs and POKEs were changed, and the 
machine language portion was relocated to the cassette buffer 
and POKEd in from DATA statements. 
Using the PrOgram 
The program is quite easy to use; no knowledge of machine lan
guage is necessary. First, the destination diskette is formatted, a 
good idea if you will be using it later on the same drive. Please be 
careful to format only blank diskettes, or ones that are no longer 
needed. Next, the diskettes are swapped and the source diskette 
is read to determine how much to copy. Successive blocks are 
then read from the source into the available computer memory. (I 
can read 124 blocks on the Commodore 64.) The diskettes are 
swapped again, and identical blocks on the destination disk are 
written from data saved in memory. The swapping of source and 
destination diskette continues until the entire diskette has been 
copied. 

137 



5 peripherals 

Of course, it would be easier (but not much faster) if a second 
drive were available. However, this program is the next best thing. 
It surely beats loading and saving BASIC programs, one at a time, 
or finding the loading address of machine language files. Try that 
sometime if you doubt it. 

Disk Backup 
1 FORI=828T0883:READA:POKEI,A:NEXTI 
HJ REM " D=DSAVE" @BACK2" , DI2I: ?DS$: CATALOGDI2I 
2121 BB=PEEK(44)+27:POKE995,BB 
3121 POKE998,PEEK(55):POKE999,PEEK(56):POKE 

55,I2I:POKE56,BB:CLR 
40 BB=PEEK(995) 
50 N=PEEK(999)-BB-l:BA=BB*256:MA=828 
60 DIMBM%(35,24) 
70 FORJ=I2IT07:TA(J)=2tJ:NEXT 
80 PRINT"{CLR} {3 RIGHT} {RVS} BACKUP 1541 

{OFF} " 
90 PRINT" {DOWN} 'GOT010000 , IF PROGRAM QUI 

TS ABNORMALLY" 
100 PRINT"{DOWN}"N"BUFFERS AVAILABLE" 
11121 OPENl,8,15 
2121121 REM *** MAIN FUNCTIONS **** 
210 GOSUB1000 
22121 D$="S":GOSUB3200:I2$=IR$ 
23121 IFDR$<>"2A"THENPRINT"{RVS}ILLEGAL DOS 

1.121 DISK{OFF}":GOTOl12112100 
240 IFI2$=Il$THENPRINT"{RVS}SOURCE AND DE 

STINATION HAVE SAME ID CODE{OFF}":GOT 
01001210 

250 GOSUB2500 
26121 T=TS:S=0:NU=1:Tl=T:Sl=S 
270 PRINT#1,"I0":OPEN3,8,3,"#" 
280 PRINT"READING BLOCK #": 
290 IFBM%(Tl,Sl)=0THENGOSUB21210121:NU=NU+l:I 

FNU>NTHEN320 
31210 Sl=Sl+1:IFSl>2121THENSl=I2I:Tl=Tl+l 
31121 IFTl<TF+lTHEN290 
320 PRINT" {DOWN}" 
33121 CLOSE3 
340 D$="D":GOSUB321210:IFIR$<>Il$THENGOT034 

121 
35121 PRINT#1,"II2I":OPEN3,8,3,"#" 
36121 PRINT"WRITING BUFFER #": 
37121 NU=l:Tl=T:Sl=S 
38121 IFBM%(Tl,Sl)=I2ITHENGOSUB220121:NU=NU+l:I 

FNU>NTHEN41121 
39121 Sl=Sl+1:IFSl>20THENSl=I2I:Tl=Tl+l 

138 

u 
u 
u 
u 
u 
u 
u 
V 

U 

U 

U 

U 

V 

U 

V 

V 

V 

V 

U 

U 

U 

V 

V 

V 

U 

U 

V 

U 

U 

V 
-

U 

U 

V 

V 

V 

V 



I~ 

peripherals 5 

400 IFTl<TF+lTHEN380 
410 PRINT"{DOWN}" 
420 CLOSE3 
430 S=Sl+1:IFS>20THENS=0:Tl=Tl+l 
440 T=Tl:IFT>TFTHEN500 
450 D$="S":GOSUB3200:IFIR$<>I2$THEN450 
460 NU=1:Tl=T:Sl=S:GOT0270 
500 REM FINISHED XFERS 
510 CLOSEI 
520 POKE55,PEEK(998):POKE56,PEEK(999):CLR 
530 PRINT"{2 DOWN}BACKUP COMPLETE" 
540 OPENl,8,0,"$0" 
550 GETU,A$:IFA$<>"{RVS}"THEN550 
560 PRINTA$;:GOT0610 
570 GET#l,A$:SS=ST:A=LEN(A$):IFATHENA=ASC 

(A$) . 
580 GET#l,B$:SS=ST:B=LEN(B$):IFBTHENA=ASC 

(B$) 
590 IFSSTHEN660 
600 IFA=lANDB=lTHENGOSUB630 
610 GETU,A$:IFA$=""THENPRINT:GOT0570 
620 PRINTA$;:GOT0610 
630 GET#l,A$:SS=ST:A=LEN(A$):IFATHENA=ASC 

(A$) 
640 GET#l,B$:SS=ST:B=LEN(B$):IFBTHENB=ASC 

(B$) 
650 N=B*256+A:PRINTN;:RETURN 
660 CLOSEI 
670 END 
1000 REM HEADER DEST DISK 
1010 PRINT"{DOWN}INSERT DESTINATION DISK 

TO BE FORMATTED" 
1020 INPUT"{2 DOWN}DISK NAME{3 RIGHT} 

{SHIFT-SPACE}{16 SPACES}{19 LEFT}";D 
N$ 

1030 IFDN$="{SHIFT-SPACE}"THENPRINT" 
{3 UP}";:GOT01020 

1040 IFLEN(DN$»16THENCLR:GOT040 
1050 F=0:FORJ=lTOLEN(DN$):Sl$=MID$(DN$,J, 

1) 
1060 IFSl$="{SHIFT-SPACE}"ORSl$=CHR$(34)T 

HENF=l 
1070 NEXTJ: IFFTHENPRINT ". {3 UP}";: GOT01020 
1080 INPUT"{DOWN}UNIQUE DISK ID{3 RIGHT} 

{SHIFT-SPACE}{20 SPACES}{23 LEFT}";I 
1$ 

1090 IFIl$="{SHIFT-SPACE}"THENPRINT" 
{2 UP}";:GOT01080 

1100 IFLEN(Il$)<>2THENPRINT"{2 UP}"; : GOTO 
1080 

139 



5 peripheralS 

1110 PRINT#l, "N0: "+DN$+", "+11$ 
1120 GOSUB3000 
1130 IFERTHENPRINTER$:GOT010000 
1140 RETURN 
2000 REM READ BLOCK Tl,Sl TO BUFFER # NU 
2010 C=. 
2020 PRINT#1,"Ul":3:0;Tl;Sl 
2030 GOSUB3000:IFNOTERTHEN2060 
2040 C=C+l:IFC<3GOT02020 
2050 PRINTER$:FORJ={BB+NU}*256TO{BB+NU}*2 

56+255:POKEJ, .:NEXTJ:GOT02100 
2060 PRINT#1,"B-P";3;0 
2070 IFNU<>0THENPRINT"{3 SPACES}{3 LEFT}" 

; RIGHT$ ( "{ 2 SPACES} "+STR$ (NU) ,3};" 
{3 LEFT}"; 

2080 POKE996,PEEK(3}:POKE997,PEEK(4}:POKE 
4,BB+NU:SYSMA 

2085 POKE3,PEEK{996}:POKE4,PEEK{997} 
2090 IFST<>.ANDST<>64THENGOSUB3000:GOT020 

50 
2100 RETURN 
2200 REM WRITE BLOCK Tl,Sl FROM BUFFER # 

NU 
2210 C=. 
2220 PRINT#1,"B-A";0;Tl;Sl:PRINT#1,"B-P"; 

3;0 
2230 PRINT"{3 SPACES}{3 LEFT}";RIGHT$(" 

{2 SPACES}"+STR$(NU},3};"{3 LEFT}"; 
2240 POKE996,PEEK{3}:POKE997,PEEK(4}:POKE 

4,BB+NU:SYSMA+3 
2245 POKE3,PEEK{996}:POKE4,PEEK(997} 
2250 IFST<>.ANDST<>64THENPRINT"{RVS}IEEE 

WRITE ERROR"ST"{OFF}":GOT010000 
2260 PRINT#1,"U2";3;0;Tl;Sl 
2270 GOSUB3000:IFNOTERTHEN2300 
2280 C=C+l:IFC<3THEN2260 
2290 PRINT"{RVS}UNRECOVERABLE WRITE ERROR 

"ER$:GOT010000 
2300 RETURN 
2500 REM GET BAM TO BM%(T,S} 
2510 TS=l:TF=. 
2520 PRINT#1,"I0":OPEN3,8,3,"#" 
2530 S9=0 
2540 PRINT"{DOWN}TRACK #{3 SPACES}BLOCKS 

TO XFER" 
2550 PRINT"g24 T~" 
2560 NU=0:Tl=18:S1=0:C0$=CHR$(.}:GOSUB200 

o 
2570 BY=4 

140 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
V 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
V 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 



r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

r) 

\("1 

peripheralS 5 

2580 T%=(BY-4)/4+1 
2590 PRINT"{2 SPACES}";T%; 
2600 IFPEEK(BA+BY)=.THENFORJ=.T020:BM%(T% 

,J)=.:NEXT:BY=BY+4:GOT02650 
2610 S=0 
2620 BY=BY+1:A0=PEEK(BA+BY):FORJ=.T07:BM% 

(T%,S)=A0ANDTA(J):S=S+1:NEXT 
2630 IFS<22THEN2620 
2640 BY=BY+l 
2650 ES=21:IFT%>17THENES=t9 
2660 IFT%>24THENES=18 
2670 IFT%>30THENES=17 
2680 FORJ=EST024:BM%(T%,J)=-1:NEXT 
2690 SM=.:FORJ=.T020:IFBM%(T%,J)=.THENSM= 

SM+l 
2700 NEXT:PRINTTAB(12);SM:S9=S9+SM 
2710 IFSM=.ANDTS=T%THENTS=TS+1:GOT02730 
2720 IFSM<>.THENTF=T% 
2730 IFBY<143THEN2'580 
2740 CLOSE3 
2750 PRINT"START =";TS;" FINISH =";TF 
2760 PRINT"{DOWN]A TOTAL OF";S9;"BLOCKS T 

o XFER" 
2770 S8=90+25+(.650+.980)*S9 
2780 S7=INT(S8/60):PRINT"APPROX";S7":"INT 

(S8-S7*60);"FOR COpy" 
2790 RETURN 
3000 REM READ ERR CH TO ER,ER$ 
3010 INPUT#1,E0$,E1$,E2$,E3$:ER$=E0$+","+ 

E1$+","+E2$+","+E3$ 
3020 ER=LEN(E0$):IFERTHENER=VAL(E0$) 
3030 RETURN 
3200 REM INSTRUCT TO SWAP TO DISK GIVEN I 

N D$ 
3210 IFD$="D"THENS1$="DESTINATION":GOT032 

30 
3220 S1$="SOURCE" 
3230 PRINT"{DOWN}INSERT ";S1$;" DISK, PRE 

SS {RVS}SPACE{OFF}" 
3240 GETA$:IFA$<>" "THEN3240 
3250 OPEN2,8,~,"$0" 
3260 GOSUB3000:IFER>0THEN10000 
3270 FORJ=1T026:GET#2,A$:NEXTJ 
3280 GET#2,A$:GET#2,B$:IR$=A$+B$ 
3290 GET#2,A$:GET#2,A$:GET#2,B$:DR$=A$+B$ 
3300 CLOSE2:RETURN 
10000 REM DROP OUT 
10010 POKE55,PEEK(998):POKE56,PEEK(999):C 

LR:STOP 

141 



5 peripherals 

1seee DATA 76,66,3,76,91,3,162,3,32,19S,2 
55,16e,e,132,3,32,2e7,255,145 

15e1e DATA 3,165,144,2eS,3,2ee,2eS,244,32 
,2e4,255,96,162,3,32,2e1,255,16e 

15e2e DATA e,132,3,177,3,32,21e,255,165,1 
44,2eS,3,2ee,2eS,244,32,2e4,255,96 

142 

""""IlIIi/!4!("-' 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

u 

U 

U 

U 

U 

U 

U 

U 

U 

U 

u 

U 

U 

U 

U 

U 

U 

U 

V 

U 

U 

U 

U 

U 

V' 



USing the 
userPort 
John Heilborn 

peripherals 5 

The User Port on the 64 gives you direct access to your computer. This 
article explains exactly haw to program for and connect to this port'. 

Located on the back and side of the 64 are several different con
nectors (see Figure 1). Each ofthem (except one) has a specific 
purpose. For example, the video port connects to a television or 
monitor; the game ports on the side of the computer connect to 
various kinds of game controllers such as paddles or joysticks; the 
serial plug on the back of the computer connects to a Commodore 
printer or disk drive; and the expander slot accepts program 
cartridges. _-=;:;::::;';:r=;I~--;~""""" 

Figure 1. 64 POrts 

-User Port 

Cassette Port 

.A4II"---Serial Port 

A-I--AudiolVideo 

T.V. Video Out 

-Expansion Port 

Power In 

143 



5 peripherals 

There is one connector, however, that was designed to be 
used by you, the user, and is called (appropriately enough) the 
User Port. 

What IS the user POrt? 
To get an idea of what the User Port is, let's take a look atthe 64 
system as a whole. Figure 2 is a block diagram of the major com
ponents of the 64. As you can see, the 64 consists of a Central 
Processing Unit (CPU), some memory (lots of memory), and 
some 110 (Input/Output) devices. The television (or monitor), 
the printer, disk drive, and even the keyboard are connected to 
the 64 through the 110 devices. 

The following is a brief description of each of the major com
ponents of the 64. 

The Central PrOcessing unit (CPU) 
This is the device that performs all of the logical and numerical 
functions for the 64. The central processor in the 64 is a micro
processor called a 6510. 

Random Access Memory (RAM) 
This part of memory is used to store all of your programs and 
data. Whenever you write a program and/or enter data, the com
puter stores it here. 

Read only Memory (ROM) 
This is where the 64's control programs reside. Some of the pro
grams stored in ROM are the Operating System, the Kernal, and 
the BASIC interpreter. 

The 1/0 Devices 
These are the devices that the 64 uses to send information to or re
ceive it from any external equipment. The 110 devices are: 

The VIC-II chip. This is the Video Interface Chip. It converts 
the data for screen memory into video signals so they can be 
viewed on the monitor or television screen. 

The SID chip. The SID (Sound Interface Device) chip is the 
device that generates all of the sounds for the 64. These signals 
can be sent to the television or monitor, or to an external ampli
fie~ such as your home stereo system. 

The CIA chips. CIA means Complex Interface Adapter. The 
CIAs allow the keyboard, the serial port, the game ports, and the 
User Port to communicate with the cpu. 

144 

u 
u 
u 
u 
u 
u 
u 
u 
U 

\.....J 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

\.....J 

\.....J 

U 

U 

\.....J 

\.....J 

U 

U 

U 

U 

U 



~ 

~ 

~ 

,-., 
r-., 

r-., 

~ 

r-., 

r-., 

r-., 

r-., 

r-., 

r-., 

r-., 

~ 

r-., 

r-., 

r-., 

r-., 

r-., 

r-., 

~ 

r-., 

~ 

r-., 

r-., 

r-., 

r-., 

r-) 

rl 

rl 

r-) 

r-) 

r-) 

r-) 

r-., 

Figure 2. 64 Computer System 

Central 
Processing 
Unit (CPU) 

6510 
Microprocessor 

Video 
Interface 
Chip 
(VIC-II) 

SID 
Chip 

Read-Only Memory 
(ROM) 
Operating 

L------I System 
.-----~ Kernal Routines 

BASIC 
Character Set 

Random
Access 
Memory 
(RAM) 

CIA#! 

CIA 112 

peripheralS 5 

To Video 
Portion of 
Television 

or 
Monitor 

To Sound 
Portion of 
Television 

Expansion 
Port 

145 



5 peripheralS 

HOw the user POrt WOrks 
The User Port can be controlled directly from BASIC by using the 
commands PEEK and POKE. Remember that the User Port is an 
I/O device. When the port is set up for input, PEEK is used to read 
data that is corning in. When the port is set up for output, POKE 
is used to write the data going out. 

The User Port as an output Device 
The User Port operates much like a typical memory location, and 
while we're using it as an output device, data can be sent to the 
port using the POKE command. Before we examine the specific 
features of the User Port, however, let's review the process of 
POKEing using some ordinary RAM locations. 

Enter and RUN the following routine: 

1'" A=6"''''''' 2'" GET A$: IF A$="II THEN 2'" 3'" IF A$="*" THEN 7'" 
4'" PRINT A$i 
5'" POKE A, ASC(A$) 
6'" A=A+1: GOTO 2'" 
7'" PRINT 8'" FOR R = 6"''''''' TO A 
9'" PRINT CHR$(PEEK(R»i 
1"'''' NEXT 

This program demonstrates how data can be stored and re
called from memory using PEEKs and POKEs. Here is what it 
does: ' 

First, in line 20 the program waits for characters to be entered 
from the keyboard. In line 50, these characters are converted into 
their ASCII number equivalents and are POKEd into memory 
starting at location 6000. Note: ASCII codes are numeric values that 
the computer uses to represent text. 

Memory location 6000 was chosen in this routine because 
data that is stored there will not interfere with this program or 
with any other computer operations we'll be using in this 
example. 

In line 30, the program checks for a special character. (This 
program uses the asterisk [*] because it isn't often used in text. 
Any character or symbol on the keyboard could have been used.) 

When the special character is detected, data entry will end,. At 

146 

u 
u 
u 
u 
u 
u 

u 

u 

u 
u 
u 
u 
u 
u 

u 
u 
u 
u 
u 
u 
u 

u 

u 
u 
u 

u 
u 

u 
u 
u 

u 

u 
u 
u 
u 

u 



Peripherals 5 

that point the program will skip to line 70, which starts PEEKing 
memory locations beginning with location 6000. The characters 
stored there will be displayed, one character at a time, up to the 
last character we stored. 

When Memory IS Not Memory 
Not every memory location in the 64 is used to store information. 
Some memory locations are actually control registers for the 110 
chips which perform special functions. For example, location 
53280 is one of the VIC-II chip control registers. POKEing differ
ent numbers into that location will change the color of the screen 
border. To look at this, enter and RUN the following program: 

10 FOR R=0 TO 15 
20 POKE 53280, R 
30 FOR G=0 TO 500: NEXT 
40 NEXT 
50 GOTO 10 

This routine displays all of the 16 possible screen border 
colors. It does this by POKEing numbers between 0 and 15 into 
the control register (at memory location 53280) which controls 
this function. 

A Closer LOok at the control Numbers 
Normally, when,the 64 displays the contents of PEEKed memory 
locations, it displays them as decimal numbers. This is because 
BASIC converts the numbers it finds in memory into their deci
mal equivalents before displaying them. The values are actually 
stored in memory as binary numbers. 

Binary numbers are made up of only Ys and O's instead of the 
decimal numbers 0-9 that we are used to. Th~ reason they are 
stored that way is because digital circuits (like the ones in the 64) 
are actually tiny electronic switches. Each switch (like a light 
switch) can be either on or off. Numerically, these conditions cor
respond to the numbers 1 and O. By using these Ys and O's, we can 
represent any character we want. 

Every memory location in the 64 contains eight of these tiny 
switches. In computer jargon, the switches are called bits. 

"Bit Display:' the program at the end of this article, looks at 
the number stored in a memory location (we can use 6000 again) 
and displays the bits in that memory location as black and white 
squares. We'll use a light square to represent a binary 1 and a 
black square to represent a binary O. 

147 



perIpherals 

The keys numbered 1-8 will be used as toggle switches for 
each of the eight bits. Pressing a number once will turn the switch 
on and pressing it again will turn it off. 

In lines 10-240, the program sets up the variables and bit dis
plays. Program control is then transferred to the subroutine in 
lines 330-380 which reads the number stored in our memory loca
tion and displays its binary value as black and white squares. 

The program jumps to line 260 and GETs a keyboard entry. 
Line 270 checks it to make sure it is a number between 1 and 8, 
and if it is, its value is assigned to the variable B and lines 290-300 
POKE the new value into memory location 6000. 

With the new data in variable B, the program jumps to the 
subroutine at location 330 again, which converts the number to its 
binary value and displays them on the screen. After that, the pro
gram returns to line 260, awaiting another keystroke. 

The number in the upper left-hand corner of the screen is the 
decimal value of the binary number being displayed. 

It should be noted that the numbers 1 to 8 do not represent 
the number of the bit, but rather the keys to be pressed in order to 
turn the bits on and off. Bit patterns are usually numbered from 
the right starting with zero. Thus, the bit toggled by pressing the 8 
key would normally be called bit 0, while the bit toggled by press
ing the 1 key would be called bit 7. 

Rerouting the Data 
The program (''Bit Display") will display and toggle the contents 
of any memory location except one that contain~ ROM. ROM 
means Read Only Memory, and by definition, cannot be 
changed. If we had used a location that was a control register in
stead of a RAM location, howeve~ the numbers being stored and 
displayed would have also affected the device controlled by the 
registe~ just as it did in the program that changed the screen 
border colors. 

To see how this works, replace all references to memory loca
tion 6000 in the program with 53280 (the screen border color con
trol register we used in the earlier example). These references oc
cur in lines 290, 300, 330, and 350. 

290 IF(PEEK(53280)ANDA(B»=0THENPOKE53280 
,PEEK(53280)+A(B):GOT0310 

300 POKE53280,PEEK(53280)-A(B) 
330 PRINT II {HOME}{ 2 DOWN}{ 4 SPACES}{ HOME} 

{2 DOWN}"~PEEK(53280) 

148 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

u 
u 
u 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 



perIpherals 5 

350 IF«2tJ}AND(PEEK(53280}})=0THENPRINTB 
$(7-J}:GOT0370 

When you run the program now, it will behave quite differ
ently. To begin with, the four left-hand bits (numbered 1-4) are all 
on, and cannot be changed by pressing the corresponding keys. 

Look at what happens when you toggle the four right-hand 
bits. Each time a bit is changed, the screen border changes to an
other color. Notice that the control register limits us to only 16 dif
ferent number combinations - one for each color that can be gen
erated for the screen border. You will find that many of the control 
registers have rules such as this governing their use. 

sending Data to the user POrt 
In the previous example, we sent data to the control register at 
memory location 53280 which controls the color of the screen 
border. This is riot the only control register for the VIC-II chip, 
however. In order to control the screen display, the VIC-II chip 
has several control registers at various memory locations. An
other memory location that controls the functions of the VIC-II 
chip is 53281. It controls the screen background color. If you re
place the number 53280 with 53281 in the previous example, you 
will be able to manipulate the screen color instead of the border 
color. 

The User Port is also controlled by several memory locations. 
One of the memory locations is 56577. Numbers that you POKE 
into that location will appear as data on pins of the User Port 
connector. 

Figure 3. User POrt Edge Connector 

D E F J L M 

149 



5 peripherals 

Figure 3. user Port Edge Connector 

*Assorted serial input/output and "handshaking" functions. See Chapter 6 of the 
Programmer's Reference Guide for further details. 

A Simple Peripheral Device 
For those of you who are inclined to build circuits, here is a simple 
device you can plug into the User Port that will receive and dis
play the data sent there by the computer. It can be built on a small 
circuit board about 1112 inches wide by 3 inches long. The board 
used here is called "perf board:' That's because it is perforated 
with a pattern of holes which allow the components to be in
serted. The components you'll need are eight 3.3K ohm resistors, 
eight LEDs, and a 24-pin edge-card connector that fits onto the 
User Port. (Bring your computer with you when you buy the con
nector so you can be sure its contacts match the contacts on the 
User Port.) Most electronic supply stores carry these parts. 

Figure 4 is a picture of the top of the circuit board, showing 
where all of the components go. 

150 

u 
u 
u 
u 
u 
u 

u 
u 
u 

u 
u 
u 

u 
u 
u 

u 
u 
u 
u 

u 

u 
u 

u 

u 
u 
u 

u 
u 

u 

u 
u 
u 
u 
u 
u 
u 



Peripherals 5 

Figure 4. Top of Circuit Board 
NOTE: Position Flat Surface on Flange of LED Toward Connector 

,- - - - - -- - --- - ----- -----------------, O-G)-O-Q-O--O-Q-G)':l 

~ ~~ ~ ~ ~ ~ ~ jJ 

Figure 5 is a picture of the bottom of the board, showing the 
connections that need to be made there. 

Figure 5. Bottom of arcuit Board 

~r-::l~~ c--:l~c---J~~) 
H (' ~_~I ( ~. \, ( ~_ ~ ( 51. ) ("~" '// j ~fI. \ ~2 "\ 
II ~ \' '- ~~J '--t ~ 1( \.l.l '- -.~ ~ .J >,_-J 

l( 1, ), If 1: ~r ~r 1: 
r", r", r", rOO, r", r"l rOO, rool 
I I I I (I I I I (( I I ( I 
I I (I I I I I I I (I I I I I 
( I I I I I I I I I I I I 'I 
L"J L.,rl L.,,.J L".J '-,rI L"J LIOJ L".J 
J' )1 ;: ): )' ;l ;t I, 

151 



u 

5 perIpherals 
U 

U 

U 

U 

Figure 6 is a schematic diagram of the circuit. u 

Figure 6. Circuit Board u 

24-Pin U 

Edge Connector U 

I-I U 
I u 2 

U 

U 

U 
3.3K 

C 
U 

U 

3.3K U 

D U 

3.3K U 

E U 

U 
3.3K 

F 
U 

U 
3.3K U 

H 
U 

u 
J u 

U 
3.3K ~ 

K 
U 

U 

I 3.3K U 

I L ·U 

L_ J u 
U 

152 U 

U 



peripherals 5 

When you install this device, be sure you turn off power to 
the 64 first, and push the connector all the way onto the User 
Port, making sure it fits securely. 

Running the POrt 
The purpose of building the device above is to demonstrate how 
an external device can be connected to and controlled by the 64. If 
you choose not to build the device, leave the bit display program 
in the computer and make the following changes to it: 

1) Delete lines 250-320 and line 380, 
2) And change these lines: 

10 POKE 53280,0:POKE 53281,0:POKE 56579,2 
55 

330 PRINT II {HOME}( 2 DOWN }{ 4 SPACES}( HOME} 
{2 DOWN}":PEEK(56577) 

350 IF«2fJ)AND(PEEK(56577»)=0THENPRINTB 
$(7-J) : GOT0370 

With these changes to the program, the video display will 
show the output just like the external device. 

programming the user POrt 
As was mentioned earlier, the User Port can be either an input de
vice or an output device. In this article we'll be using it as an out
put device, so we'll need to program it to receive data from the 
computer and send it opt. Memory location 56579 is called the 
data direction register for the User Port. By changing the number 
in this register, you can control each bit on the port, making it 
either an input or an output bit. To make a bit on the User Port an 
output, the corresponding bit in the data direction register must 
contain a 1. To make all of the bits equal to 1 in the data direction 
register, we'll need to POKE memory location 56579 (the data 
direction register) with the binary number 11111111. This is equal 
to the decimal number 255. 

5 POKE 56579,255 

EXperimenting with the user POrt 
The examples that follow show various method of controlling the 
LEDs (or lighted squares on the video screen). More practical 
applications would suggest connecting the User Port to real appli
ances such as the lights in your home, a radio, or perhaps your 
coffee maker. However, interfacing with such appliances presents 

153 



5 peripherals 

a risk of serious electric shock or damage to the computer, and 
should not be attempted by the inexperienced. 

Keeping this philosophy in mind, enter the examples and 
think of how you might apply them to your needs. 

Binary counter 
Video Version. Remember to make the changes to Program 1 as 
outlined above before adding the following routine: 

500 IF A=255 THEN A=0 
51e POKE 56577, A 
520 A=A+1 
530 GOTO 330 

External Board Version. This routine has exactly the same 
function as the one above, but because the 64 can send data 
directly to the port much faster than it can change the screen dis
play, a delay loop was added at line 520 to allow you to see the 
counter. Additionally, the LEOs are the reverse of the screen; that 
is, a one is represented by a dark LED and a zero by a lit LED. To 
compensate for this, line 510 inverts the number. 

500 IF A=255 THEN A=0 
510 POKE 56577, 255-A 
520 FOR G=0 TO 100: NEXT 
530 A=A+1 
540 GOTO 500 

sequential Lights 
This program is similar to the previous program, but instead of 
performing a full count, it lights the lamps individually. 

Video Version. 

500 A(0)=128: A(1)=64: A(2)=32:A(3)=16: A 
(4)=8: A(5)=4: A(6)=2: A(7)=1 

510 IF B>7 THEN B=0 
520 POKE 56577, A(B) 
530 B=B+1 
540 GOTO 330 

External Board Version. 
500 A(0)=128: A(1)=64: A(2)=32:A(3)=16: A 

(4)=8: A(S)=4: A(6)=2: A(7)=1 
510 IF B>7 THEN B=0 

154 

u 
u 
u 
u 
u 
u 
u 

u 

v 
tv 

U 

U 

U 

U 

u 

u 
u 
u 

u 
u 
u 
u 

U 

tv 

U 

U 

u 
U 

U 

U 

v 
U 

U 

U 

v 
U 



PeriPherals 5 

520 POKE 56577, 255-A(B) 
530 B=B+1 
540 GOTO 500 

Incidentally, to make the lights flash in. the other direction, all 
you need to do is change line 520 to: 
520 POKE 56577, A(7-B) 
for the video version, or: 
520 POKE 56577, 255-A(7-B) 

if you are using the external board. 

Random Lights 
This program lights the LEDs (or screen lights) randomly. 

Video Version. 

500 A(0)=128: A(1)=64: A(2)=32:A(3)=16: A 
(4)=8: A(5)=4: A(6)=2: A(7)=1 

510 B = INT(RND(0)*8) 
520 POKE 56577, A(B) 
530 GOTO 330 

External Board Version. 
500 A(0)=128: A(1)=64: A(2)=32:A(3)=16: A 

(4)=8: A(5)=4: A(6)=2: A(7)=1 
510 B = INT(RND(0)*8) 
520 POKE 56577, 255-A(B) 
530 GOTO 510 

Bit DiSPlay 
18 POKE 53288,8: POKE53281,8 
28 A(1)=128:A(2)=64:A(3)=32:A(4)=16:A(5)= 

8:A(6)=4:A(7)=2:A(8)=1 
21 A$="{HOME}{12 DOWN}" 
22 B$="gGj gMHDOWN}{3 LEFTHGj gMj" 
23 C$="{RvsHGH2 SPACES}{DOWN}{3 LEFT} 

gGH2 SPACES}" 
24 D$="gMjgGj gMjgGj gMjgGj gMjgGj gMjgGj 

gMjgGj gMjgGj gMjgGj gMjgGj" 

38 B$(8)=A$+"{7 RIGHT)"+B$ 
48 C$(8)=A$+"{7 RIGHT)"+C$ 
58 B$(1)=A$+"{18 RIGHT)"+B$ 
68 C$ (1 )=A$+" (18 RIGHT) "+C$ 
78 B$(2)=A$+"{13 RIGHT)"+B$ 

155 



5 peripheralS 

8fiJ C$(2)=A$+"{13 RIGHT}"+C$ 
9fiJ B$(3)=A$+"{16 RIGHT}"+B$ 
UfiJ C$(3)=A$+"{16 RIGHT}"+C$ 
11fiJ B$ (4)=A$+" {19 RIGHT} "+B$ 
12fiJ C$(4)=A$+"{19 RIGHT}"+C$ 
13fiJ B$(5)=A$+"{22 RIGHT}"+B$ 
14fiJ C$ (5 )=A$+" {22 RIGHT} "+C$ 
15fiJ B$(6)=A$+"{25 RIGHT}"+B$ 
16fiJ C$(6)=A$+"{25 RIGHT}"+C$ 
17fiJ B$(7)=A$+"{28 RIGHT}"+B$ 
18fiJ C$(7)=A$+"{28 RIGHT}"+C$ 
19fiJ PRINT" {WHT }{ CLR}{ 1 fiJ DOWN}{ 8 RIGHT}1 

{2 SPACES}2{2 SPACES}3{2 SPACES}4 
{2 SPACES}5{2 SPACES}6{2 SPACES}7 
{2 SPACES}8{DOWN}": 

2fiJfiJ PRINT"{23 LEFT}": 
21fiJ PRINT"K24 @8{DOWN}{25 LEFT}": 
22fiJ PRINT D$:"{DOWN}{26 LEFT}": 
23fiJ PRINT D$:"{DOWN}{29 LEFT}": 
24fiJ PRINT" (DOWNH 36 LEFT}g24 Ta" 
25fiJ GOSUB33fiJ 
26fiJ GETK$:IFK$=""THEN26fiJ 
27fiJ IFASC(K$»570RASC(K$)<49THEN26fiJ 
28fiJ B=VAL(K$) 
29fiJ IF(PEEK(6fiJfiJfiJ)ANDA(B»=fiJTHENPOKE6fiJfiJfiJ,P 

EEK(6fiJfiJfiJ)+A(B):GOT031fiJ 
3fiJfiJ POKE6fiJfiJfiJ,PEEK(6fiJfiJfiJ)-A(B) 
31fiJ GOSUB33fiJ 
32fiJ GOT026fiJ 
33fiJ PRINT"{HOME}{2 DOWN}{4 SPACES}{HOME} 

{2 DOWN}":PEEK(6fiJfiJfiJ) 
34fiJ ,FORJ=fiJT07 , 
35fiJ IF«2tJ)AND(PEEK(6fiJfiJfiJ»)=fiJTHENPRINTB$ 

(7-J) : GOT037fiJ 
36fiJ PRINTC$(7-J) 
37fiJ NEXT 
38fiJ RETURN 

156 

u 
u 
u 
u 
u 
o 
u 
u 
U 

U 

v 
u 
u 
v 
u 
u 

u 
u 
v 
u 
u 
. , 

u 

u 
u 
v 
u 
v 
u 
u 
u 
V 

u 
U 

u 
u 

u 





V 
Q 

U 
Q 

o 
o 
o 
o 
o 
<) 

<) 

o 
o 
o 
o 
o 

" o 
o 

" Q 

" o 

" o 
o 
v 
v 
v 
o 
v 
Q 

" o 
o 
o 



utilities 6 

Data Searcher 
Jerry Sturdivant 

Programmers are always looking for ways to make their programs more 
"friendly," easier to use. 

This special search routine will accept all kinds of wrong input and 
still come up with the right match. 

Have you ever searched through a file for something but just 
couldn't find it? You know it's in there, but your spelling may be 
off by one letter and the strings just won't match? 

Or you know the city of Albuquerque is in the program, but 
you can't spell it? Or you don't know if you're supposed to add 
the state? And if you do need to type the state, should you use the 
two-letter abbreviation? Is New Mexico supposed to be NE or 
NM? 

. In short, if a program has to search for a string match, you can 
solve all these problems by adding a Truncating Search Routine. 

Let's look at the example program. Here a user enters the 
name of a city, and the program gives the elevation. If no match is 
found for the user's request, rather than having line 120 report 
"CITY NOT FOUND": GOIO 70, the program performs a trun
cating search (lines 160 to 210). 

The routine searches only that first part of each City string 
equal to the length of the Request string. If there is no match, it 
shortens the end of the Request string by one letter and searches 
the shorter portion of each City string. It will continue to shorten 
and search until it finds a match or runs down to two letters. It 
will print all matches found for that length Request string. 

Suppose the user gets the two-letter abbreviation of Maine 
wrong. If the user requests PORTLAND MA rather than ME or 
types out the complete word ''MAINE': it will still find PORT
LAND ME. If the user requests just PORfLAND, the search will 
print both PORTLANDs. As for our Albuquerque problem, the 
word can be badly misspelled and still be found. A user who 
understands the Truncating Search would just enter ALBD. It's a 
very handy and user-friendly routine, especially for poor 
spellers. 

159 



6 utilities 

Data search Demonstration 

1e REM PICK CITY - PRINT CITY AND ELEVAT 
ION 

2e NUMBER OF CITIES=5 
3e DIM CITY$(NUMBER OF CITIES),ELEV$(NUM 

BER OF CITIES) 
4e FOR 1=1 TO NUMBER OF CITIES 
5e READ CITY$(I),ELEV$(I) 
6e NEXT 
70 T=0:PRINT"ENTER CITY NAME" 
80 INPUT REQUEST$ 
90 FOR 1=1 TO NUMBER OF CITIES 
le0 IF REQUEST$=CITY$(I) THEN PRINT CITY 

$(I),ELEV$(I):GOTO 70 
ue NEXT 
120 REM{7 SPACES}NOTHING FOUND 
13e REM{2 SPACES}SEARCH SIMILAR SPELLING 
14e REM ========================= 
150 PRINT " SEARCHING FOR SOMETHING SIMILA 

R" 
160 FOR Z=LEN(REQUEST$) TO 2 STEP -1 
17e FOR 1=1 TO NUMBER OF CITIES 
180 IF LEFT$(REQUESTS$,Z)=LEFT$(CITY$(I) 

,Z) THEN PRINT CITY$(I),ELEV$(I):T=1 
1ge NEXT I 
20e IF T THEN 70 
210 NEXT Z 
220 PRINT"CITY NOT FOUND":GOTO 70 
250 DATA ALBUQUERQUE NM,4500 
260 DATA BISHOP CA,4100 
270 DATA PORTLAND MA,45 
280 DATA PORTLAND OR,37 
290 DATA THE DALLES OR,8S 

160 

u 
u 
u 
u 
u 
u 
v 
u 
u 
v 
u 
u 
v 
u 
u 
u 
u 
u 
u 
v 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 



utilities 6 

Music Keyboard 
Bryan Kattwinkle 

The 6~ has aff!llZing sound capal?ilities. TIfis progra~ wil~ all(JUJ you to 
expertment wtth sound by creatzng a musIc syntheszzer wtth your 64. 

"Music Keyboard" allows convenient experimentation with the 
64's built-in synthesizer, the SID chip. With this program, the 64's 
synthesizer becomes almost as easy to adjust as a professional 
synthesizer with knobs to control and buttons to push. 

Using the computer's keyboard as your control panet the top 
two rows become the piano keys, while the function keys control 
the octave and waveform. The attack, decaYt sustain, release, 
length, filter, band pass, resonance, and pulse functions are con~ 
trolled by pressing the appropriate key as shown on the screen. 
The program will inform you of the present value of any of the 
functions you may wish to change. 

The FUnctiOns 
The filter and pulse rates can vary from 1 to 4095, The band pass 
can be varied between 1 and 7 and will interact with the filter, All 
the other functions will have a value from 1 to 15, 

A quick review of each function: 

• Attack is the rate at which a note rises to its maximum 
volume. 
• Decay is the rate at which a note falls to the sustain level. 
• Sustain allows you to extend a note. 
• Release allows you to free a note once it is sustained, 
• Length is the number of seconds before a note is released 
(use .. 5 for 1f2 second), . 
• Pulse affects only the pulse waveform (P6) by changing its 
tone quality, 
• Filter will cut off the highs or lows of a wave', 
• Band pass cuts off both the highs and lows of a wave, 
• Resonance has little audible effect, 

161 



6 utilities 

Waveform refers to the shape of the sound wave: triangle 
(F2), sawtooth (F4), pulse (F6), or noise (F8). 

Try experimenting with the different functions to see what 
kinds of sound you can create with your 64. Try changing the 
functions to simulate different instruments such as a piano, flute, 
or drum. When you really feel you've got the hang of it, try com
posing a tune. 

MUsic Keyboard 
90 REM ----- MUSIC KEYBOARD -----
100 GOSUB 1000{4 SPACES}:REM SET UP DISP 

LAY 
102 PRINT TAB(12); n ••. THINKING ••• n 
110 S=13*4096+1024 :REM BASE FOR POKES 
120 FOR 1=0 TO 28 :POKE S+I,0 :NEXT 
130 DIM F(26) :REM FREQUENCY TABLE 
140 F1=7040 :TW=2t{1/12) :REM CONSTANTS 
150 FOR 1=1 TO 26 :F(27-I)=F1*5.8+30 :F1 

=F1/TW :NEXT 
160 DIM K(255) :REM KEY TABLE 
170 K$=nQ2W3ER5T6Y7UI900P@-*~tn 
180 FOR 1=1 TO LEN(K$) :K(ASC(MID$(K$,I) 

) )=1 :NEXT I 
200 GOSUB 1200{4 SPACES}:REM SET UP ADSR 
210 FOR 1=0 TO 14 STEP 7 :POKE S+I+5,0 : 

POKE S+I+6,0{2 SPACES}:REM TONES OFF 
220 WV=32:W=1:M=2:0C=3:HB=256:Z=0:PY=1 
225 PRINT n{up}n; TAB(12); n{14 SPACES}n 
235 REM ENTER HERE AFTER PARAM CHANGE 
240 FOR 1=0 TO 2{4 SPACES}:REM PULSE PAR 

AMS 
245 POKE S+2+I*7,P(8) AND 255 
250 POKE S+3+I*7,P(8)/256 
255 NEXT I 
260 POKE S+24,P(7)*16 + 15 :REM BP,VOL 
270 POKE S+23,P(9}*16 + 7 :REM RES,FV 
275 POKE S+22,P(6)/16 :REM FILTER HI 
276 POKE S+21,P(6} AND 15 :REM LO 
280 AV = P{l) * 16 + P(2) :REM ATT/DEC 
285 SV = P(3) * 16 + P(4) :REM SUS/REL 
300 GET A$ :IF A$=nn THEN 300 
310 FR=F(K(ASC(A$»}/M :T=V*7+S 

{9 SPACES}:IF FR=Z THEN 500 
315 IF PY=l THEN V=V+1 :IF V=3 THEN V=0 
320 POKE T+6,Z :REM CLEAR SUSTAIN/REL 
325 POKE T+5,Z :REM CLEAR ATTACK/DECAY 
330 POKE T+4,0 :REM TURN OFF SOUND 

162 

u 
u 
u 
u 
u 
u 
u 

u 
v 
u 

U 

U 

u 
u 
u 
U 

v 
U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

v 



.~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

r-. 
r-. 
r-. 
r-. 
r-. 
r-. 
r-. 
~ 

r-. 
~ 

r-. 
r-. 
r-. 
r-. 
r-. 
~ 

r-. 
r-. 
~ 

r-. 
r-. 
~ 

r-. 
~ 

340 POKE T,FR-HB*INT(FR/HB) :REM LOW FR 
350 POKE T+1,FR/HB :REM SET HI FREQ 
360 POKE T+6,SV{4 SPACES}:REM SET SUS/RE 

L 
365 POKE T+5,AV{4 SPACES}:REM SET ATT/DE 

C 
370 POKE T+4,WV+1 :FOR I=l TO 160*P(5) 
375 GET A$ :IF A$="" THEN NEXT I 
380 POKE T+4,WV :IF A$<>"" THEN 310 
385 FOR I=l TO 1+(P(4)/2.2)t4 
390 GET A$ :IF A$<>"" THEN 310 
395 NEXT I :POKE S+4,Z :POKE S+ll,Z :POK 

E S+18,Z 
400 GOTO 300 
500 IF A$="{F1}" THEN M=l :OC=4 :GOTO 30 

o 
510 IF A$="{F3}" THEN M=2 :OC=3 :GOTO 30 

o 
520 IF A$="{F5}" THEN M=4 :OC=2 :GOTO 30 

o 
530 IF A$="{F7}" THEN M=8 :OC=l :GOTO 30 

o 
540 IF A$="{F2}" THEN W=0 :WV=16 :GOTO 3 

00 
550 IF A$="{F4}" THEN W=l :WV=32 :GOTO 3 

00 
560 IF A$="{F6}" THEN W=2 :WV=64 :GOTO 3 

00 
570 IF A$="{F8}" THEN W=3 :WV=128 :GOTO 

300 
580 IF A$<>" " THEN 600 
585 PY=l-PY :IF PY<>0 THEN 300 
590 POKE S+11,0 :POKE S+18,0 :V=0 
595 GOTO 300 
600 N=0 
610 IF A$="A" THEN N=l :MX=15 
620 IF A$="D" THEN N=2 :MX=15 
630 IF A$="S" THEN N=3 :MX=15 
640 IF A$="Z" THEN N=4 :MX=15 
650 IF A$="L" THEN N=5 :MX=15 
660 IF A$="F" THEN N=6 :MX=4095 
670 IF A$="B" THEN N=7 :MX=7 
680 IF A$="K" THEN N=8 :MX=4095 
690 IF A$="N" THEN N=9 :MX=15 
700 IF N=0 THEN 300 
750 PRINT "{UP} "; P$(N); " ="; peN); 
755 PRINT "{2 SPACES}NEW VALUE "; 
760 GET A$ :I=P(N) :INPUT I 
770 PRINT "{UP}{38 SPACES}" 

utilities 6 

163 



6 utilities 

78121 IF (1<121) OR (I>MX) THEN PRINT "{UP} 
MAXIMUM =" ;MX; :GOTO 755 

785 P(N) = I 
79121 GOTO 24121 :REM RE-CALCULATE PARAMS 
1121121121 REM ---DISPLAY SETUP SUBROUTINE---
11211212 C=29{2 SPACES}:REM COLUMN 
11211213 POKE 5328121,PEEK(53281) :REM BORDER 
11211215 PRINT" {CLR} " : PRINT " ". 
11211217 PRINT "{2 SPACES}2 3{3 SPACES}5 6 7 

{3 SPACES}9 e{3 SPACES}- Ii"; TAB(C 
); "{4 SPACES}F1cgsa" 

11211121 PRINT" {RVS} {RIGHT} {RIGHT} B 
{RIGHT} {RIGHT} {RIGHT} B {RIGHT} 
{RIGHT} B {RIGHT} {RIGHTT "; TAB{C) 
; "{OFFliA8cF2{3 SPACES}B" 

112115 PRINT " {RVS} {RIGHT} {RIGHT} B 
{RIGHT) {RIGHT} {RIGHT} B {RIGHT} 
{RIGHT} B {RIGHT} (RIGHTT "; TAB(C) 
; "{oFFla{3 SPACES}F3cgwa" 

11212121 PRINT " TRVS} {RIGHT}-{RIGHT} B 
{RIGHT} {RIGHT} {RIGHT} B {RIGHT} 
{RIGHT} B {RIGHT} (RIGHTT "; TAB(C) 
; "{oFF}Io8cF4{3 SPACES}B" 

11213121 PRINT " {RVS} B B B B B a B B B B B 
B "; TAB(C): "rOFF}~J3 SPACEsTF5£

gwa" 
112148 PRINT " {RvsloBWBEBRBTBYBUBIBOBPB@B 

*Bt"; TAB(ch "{oFF}IoiCF6- - - - -
{J" SPACES}B" 

11215121 PRINT TAB{ch "B{3 SPACES}F7cgw8" 
11216121 PRINT "{4 SPACES}{RVS} SOLO 7 POLYP 

HONIC {OFF} ": TAB(C)r "g08CF8 
{3 SPACES}B" -

112165 PRINT TAB(C): "B{3 SPACES}OCTAVE" 
11217121 PRINT "{RVS}A{OFF} ATTACK{5 SPACES} 

{RVS}S{OFF} SUSTAINIt~ TAB(C-4); IOWA 
VEFORM" 

1375 PRINT It {RVS}D{OFF} DECAY{6 SPACES} 
{RVS}L{OFF} LENGTH" 

112183 PRINT "{2 SPACES}{RVS}Z{OFF} RELEAS 
E{4 SPACESllRVS}N{OFF} RESONANCE" 

112182 PRINT "{3 SPACES}{RVS}F{OFF} FILTER 
{5 SPACES}{RVS}K{OFF} PULSE RATE" 

112184 PRINT "{4 SPACES}{RVS}B{OFF} BAND P 
ASS" 

112185 PRINT II £3 DOWN} It 
11219121 RETURN 
12121121 REM -- SETUP A-D-S-R SUBROUTINE --
1213 DIM P(9) ;DIM P$(9) 

164 

u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

-u 
u 
u 
u 
u 
u 



,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

,-.." 

1212 P$(l)="ATTACK" :P(1)=2 
1214 P$(2)="DECAY" :P(2)=4 
1216 P$(3)="SUSTAIN" :P(3)=4 
1218 P$(4)="RELEASE" :P(4)=10 
1220 P$(S)="LENGTH" :P(S)=l 
1222 P$(6)="FILTER" :P(6)=500 
1224 P$(7)="BAND PASS" :P(7)=7 
1226 P$(8)="PULSE RATE" :P(8)=400 
1228 P$(9)="RESONANCE" :P(9)=1 
1230 RETURN 

utilities 6 

165 



6 utilities 

PrOgrammer's 
Alarm Clock 
Bruce Jaeger 

Translated for the 64 by Gregg Peele 

You'll never work too long on your 64 if you use "Programmer's Alarm 
Clock." 

Have you ever sat down at your computer after dinner to "touch . 
up that program a bit;' only to find again that you've lost all no
tion of time and you've just missed the first half of that movie 
you've waited for all week? Or you're supposed to pick someone 
up at 6:00, and by the time you look up from the screen it's 7:30? 
Me too! 

That's why "Programmer's Alarm Clock" came about. When 
you first sit down at your computer, LOAD and RUN the pro.: 
gram. It will ask you for the alarm time and current time of day. 
You must enter the time based on a 24-hour clock. The following 
chart will help you in entering the times. 
HHMMSS 

000500 12:05AM (and no seconds) 
010030 1:00AM (and 30 seconds) 
103045 10:30AM (and 45 seconds) 
120000 12 noon (and no seconds) 
133030 1:30PM (and 30 seconds) 
180000 6:00PM (and no seconds) 
233000 11:30PM (and no seconds) 
As soon as you set the time of day, the clock begins counting 

toward the alarm time. When the time of day equals the alarm 
time you selected, a beep will sound and the word "QUIT" will be 
printed on the screen. 

Since the internal clock is affected by using the cassette, the 
program will give unpredictable results if you use the cassette 
unit. Disk operation and IDOLKIT do not seem to affect the clock. 

This program is a good one to study if you are interested in 

166 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

u 
u 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

u 
u 
u 

u. 



~ 

~ 

~ 

t", 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

utilities 6 

learning about simple machine language and interrupt-driven 
routines. Since the program is so short, it is fairly simple to 
understand and adapt for use in other programs. 

programmer's Alarm Cock 
80 S=54272:FORR=STOS+24:POKER,0:NEXT 
95 GOSUB195 
100 PRINT"{CLR}SET ALARM TIME" 
110 PRINT"{DOWN}( HHMMSS )" 
120 INPUT"{DOWN}{2 SPACES}000000{8 LEFT} 

" :TI$ 
130 POKE956,PEEK(160) 
140 POKE957,PEEK(161) 
150 PRINT"{DOWN}INPUT TIME OF DAY" 
160 PRINT" {DOWN}( HHMMSS )" 
170 INPUT"{DOWN}{2 SPACES}000000{8 LEFT} 

":TI$ 
180 PRINT"{CLR}":SYS49152:END 
195 FORG=49152T049284:READE:POKEG,E:NEXT 

: RETURN 
200 DATA 120, 173, 20, 3, 141, 186, 3, 1 

73, 21, 3, 141 
210 DATA 187, 3, 169, 25, 141, 20, 3, 16 

9, 192, 141 
220 DATA 21, 3, 88, 96, 173, 160, 0, 205 

, 188, 3 
230 DATA 208, 92, 173, 161, 0, 205, 189, 

3, 208, 84 
240 DATA 169, 145, 141, 17, 4, 169, 149, 

141, 18, 4 
250 DATA 169, 137, 141, 19, 4, 169, 148, 

141, 20, 4 
260 DATA 169, 161, 141, 21, 4, 169, 15, 

141, 24, 212 
270 DATA 169, 9, 141, 5, 212, 169, 6, 14 

'1, 6, 212 
280 DATA 169, 34, 141, 1, 212, 169, 70, 

141, 0, 212 
290 DATA 169, 33, 141, 4, 212, 169, 255, 

160, 255, 136 
300 DATA 208, 253, 202, 208, 248, 169, 0 

, 141, 24, 212 
310 DATA 120, 173, 186, 3, 141, 20, 3, 1 

73, 187, 3 
320 DATA 141, 21, 3, 88, 76, 49, 234, 13 

4, 223, 32 
330 DATA 223, 0, 223, 32, 223, 32, 223, 

32, 223, 0 

167 



V 
Q 

U 
Q 

o 
o 
o 
o 
o 
<) 

<) 

o 
o 
o 
o 
o 

" o 
o 

" Q 

" o 

" o 
o 
v 
v 
v 
o 
v 
Q 

" o 
o 
o 





V 
Q 

U 
Q 

o 
o 
o 
o 
o 
<) 

<) 

o 
o 
o 
o 
o 

" o 
o 

" Q 

" o 

" o 
o 
v 
v 
v 
o 
v 
Q 

" o 
o 
o 



AWindow 
onMemory 
Gregg Peele 

Memory 7 

Ready to actually look at the 64 memory? This article will take you on a 
visual tour of your computer's memory. 

Our brain's memory is where we store information for future use. 
Like the human brain, a computer has memory also. And like the 
human brain, a computer stores information for future use. But 
unlike our memory, a computer does not forget what it has in its 
ROM memory. The computer will forget what it has in its RAM 
memory when you turn it off. 

Computers' memories allow them to store data and pro
grams. Computers are designed so we can manipulate and 
change much of the data. One of the most significant features of 
the Commodore 64 is its large memory capacity. On power-up, 
the 64 allows the user 38,000 bytes to use with BASIC and over 
40,000 bytes for use with machine language. It is this memory that 
we will be actually looking at in this article. 

The Nature of Memory 
Nybbles, Bits, and Bytes 
Memory is organized into several structural levels, each based on 
the binary (base two) number system. At the lowest level, a com
puter's memory consists of units called bits (from binary digits). 
Bits can be in only one of two states - on or off: One bit can thus 
define only two possible conditions. This seems extremely 
limited until you consider that two bits can define four different 
conditions (two to the second power), three bits can define eight 
different combinations (two to the third power), and four bits can 
describe 16 different combinations. 

Four bits seen as a unit are called a nybble. H you want to 
change the color of the screen border or background on the 64, 
you can choose from among 16 different colors. The POKE com-

171 



7 Memory . 

mand in BASIC allows you to alter a nybble in location 53281 for 
screen and a nybble in location 53280 for background. Altering 
these two nybbles provides the necessary color combinations for 
all 16 colors. 

If you utilize eight bits as a unit - called a byte - you can de
scribe a total of 256 unique numbers. The byte is the most useful 
unit within the Commodore 64. Each letter, number, or graphics 
symbol has its own pattern of eight bits. This pattern provides the 
unit for most functions which occur within the 64. For instance, 
the keyboard initiates the pattern 00000001 when you press the 
letter A. This pattern of bits travels through the computer and is 
stored in a byte of screen memory. This byte is then decoded into 
the familiar symbol A which appears on the screen. 

A single byte can hold any number from zero to 255. A 
unique character can be made with each of these values; thus it is 
possible to represent a value within a byte by using a single char
acter. This ability will come in handy as we try to decipher the 
contents of memory in our memory view program. 

Pages and Kilobytes 
The next structural level within memory consists of collections of 
bytes. One such level is the page, consisting of 256 bytes. There are 
256 pages of memory within the Commodore 64 (256*256 =65536 
bytes). Four pages (256*4 = 1024) make up one K or kilobyte. The 
word kilobyte refers to 1024 rather than 1000 bytes since 1024 is two 
to the tenth power. A 64K computer has 64*1024 bytes or 65536 
bytes. 

Kinds of Memory 
Memory may have many different functions. From a practical 
point of view, these functions can be separated into three differ
ent categories: memory available for user program space, mem
ory used exclusively by the operating system (unavailable to the 
user), and memory which provides a connection between the 
computer's operating system and the user or his or her programs. 
The 64 has the unique ability to "shift" function of its memory 
space from one of these functions to the other. (See Jim 
Butterfield's "Commodore 64 Architecture:' the next article in 
this book.) This chapter will be concerned with the memory func
tions of the computer in its normal configuration. 

172 

u 
u 
u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
u 
u 

u 

u 
u 

u 

u 
u 
u 
u 

u 

u 
u 
u 
u 
u 
u 

u 

u 

u 
u 
u 

u 
V 



Memory 7 

A Picture in Memory 
Before embarking on our tour of the Commodore 64's memory, 
type in, SAVE, and RUN the program at the end of this section. . 
The screen should be blank except for the words "LOADING 
MAZE:' While the maze is loading, get a pencil or pen and pre
pare to take a few notes. In about one minute you will see a screen 
full of what may appear to be random characters. 

These characters represent bytes in memory. In the upper-left 
comer of the screen is the decimal number of the first location 
shown; this number should be flashing. For example, if the flash
ing number is 100, then the first character shown is the character 
equivalent to what is stored in byte 100. Notice that the first few 
characters in the upper-left corner share the same space with the 
decimal number. 

If you press the F1 or F3 keys, you can scroll backward and 
forward through memory. Use the screen display codes on pages 
132-34 in your user's manual to decipher the numbers which rep
resent the characters on the screen. 

The Joumey 
Our journey begins at page zero. Move the display up or down 
until the number at the upper-left comer of the screen is at or near 
zero. Page zero takes up about one-fourth of the screen. Locations 
161 and 162 are the most active locations visible in this area. These 
locations provide the internal clock for the system. Location 162 
cycles through 256 times for each time that 161 changes. 

Just below locations 161 and 162 on the screen are the loca
tions which hold the value for the last key pressed: locations 197 
and 203. These locations will change if you press a key. Press a 
few keys and watch the values change. The characters produced 
do not match the characters on the keys, but they do produce 
unique values for each key pressed. 

Location 198 contains the number of keystrokes in the key
board buffer. If you press many keys at one time, then this num
ber increments to hold the keystroke values until they can be pro
cessed. Then, as the keystrokes are processed, the buffer grad
uallyempties, and the value in location 198 returns to zero. 

Page zero contains many locations specifically used by the 
operating system. Caution should be the rule when changing 
locations in this area. 

173 



7 Memory 

The Stack 
As you move forward within memory, the next activity that you 
see occurs in an area known as the stack. This area holds impor
tant information for both BASIC and machine language pro
grams. The BASIC command GOSUB sends a program to the line 
indicated. The stack is where the compUter stores the necessary 
information it needs to RETURN to the proper part in the pro
gram. Since this program contains subroutines which are repeat
edly executing, the contents of the stack also display a pattern of 
repeated values. 

Continue forward until the screen contains no activity. When 
the value in the upper-left corner is around 820, you are looking at 
the cassette buffer. The cassette buffer provides a good place for 
machine language programs. Since it is unused by the operating 
system except for tape input and output, values can be safely 
stored in and retrieved from this section of memory. If you scroll 
past the cassette buffer, you will find screen memory. Screen 
memory provides an interesting phenomenon: like a mirror, 
screen memory is now looking at itself. This phenomenon pro
duces a delayed reaction time while the program copies the new 
contents of screen memory to itself. 

Past screen memory, the contents of the BASIC program are 
visible. If you look closely in this area, you can see bits and pieces 
of the BASIC program. The BASIC commands are unrecognizable 
in their normal form but are "tokenized" into unique numbers. 

At the end of our relatively small BASIC program, a pattern of 
characters continues until it ceases around 32768. Here, I have 
placed a simple interface between the user and memory. Hit the 
CLR key. The screen should freeze for a few moments. Continue 
forward in memory until you find a clear screen. Now type a few 
words and watch them appear on the screen. If you wish to de
lete, merely use the delete key. The cursor control keys work, but 
no visible cursor can be found. This display of typed characters 
demonstrates how memory is used to store data. Word processors 
utilize memory in just this fashion. 

The Joumey continues 
Continue forward in memory until the pattern of memory 
changes to random characters. This is the end of free memory for 
user BASIC programs. The next area in memory contains the 
BASIC ROM. This area begins at 40960 and contains the machine 
language program which runs the BASIC language. If you hit 

174 

u 
u 
u 
u 
u 
u 
V 

u 
u 
u 
V 

V 

U 

V 

U 

U 

U 

U 

V 

V 

U 

U 

U 

V 

U 

U 

V 

U 

U 

u 
u 
u 

u 
u 

u 
V 



Memory 7 

SHIFT and the COMMODORE key simultaneously to put the 
machine into lowercase mode, then you may even see some of the 
error messages that BASIC utilizes. 

Continue even further to around 49152, and you will see the 
maze that was generated while you were w¥iting for the program 
to begin. Use the lower two function keys to center the maze and 
then scroll through it. After 49152 ($COOO) there are four kilobytes 
of user area available to the programmer. The first part of this area 
is where the machine language for this program resides. The rest 
of it is used for the maze. Since the 64 contains large quantities of 
RAM available for programs or other data, you can place any sort 
of design or playfield into memory and scroll through it. Think of 
the fantastic adventure games you could create. 

Nearing the End Of the JOumey 
Continue past 50000 and we enter the area of input/output de
vices. First, the 6566 chip with its periodic raster scans which con
stantly change. Further within the code, the next obvious area o~ 
change is the color RAM. The first nybble of each byte in this area 
contains the color for the screen, while the other nybble contains 
random values. This produces an almost hypnotic effect on the 
screen as the values change continuously. (Due to a change in 
operating systems, some 64s may not contain random values in 
the upper nybble of color memory.) The last area of memory is 
the I<ernal ROM (57344-). Change to lowercase and you can see 
the Commodore logo which is on the screen upon power-up. 110 
(Input/Output) messages are also found in this area. 

If you continue further than 65536, then your trip begins 
again back at zero page. 

We have made the journey through over 65,000 bytes of mem
ory and have seen how the operating system interacts with the 
user and how the user can use the memory as a palette for his or 
her own designs. I hope our trip has provided you with new 
ideas for better use of the vast quantities of memory on the Com
modore64. 

A LOok at Memory 
1 POKE53281,1:GOSUB190:GOSUB300 
2 X=0:POKE191,0:POKE55,0:POKE56,128:R=33 

024 
3 IFPEEK(191)=2550RPEEK(191)=0THENPOKE19 

1,PEEK(191) 

175 



7 Memory 

5 GOSUBHJfiJ0 
10 A=PEEK(197):IFA=4THENX=X+40:IFX+40>25 

5THENX=X+40-256:F1=1:GOT020 
11 A=PEEK(197):IFA=3THENX=X+1:IFX+1>255T 

HENX=X+1-256:F1=I:GOT020 
12 A=PEEK(197):IFA=6THENX=X-1:IFX+1<0THE 

NX=X+l+256:Fl=I:GOT020 
13 A=PEEK(197):IFA=5THENX=X-40:IFX-40<0T 

HENX=256+X-40:Bl=I:GOT025 
20 IFPEEK(191)<>255THENIFA=4ANDFI=ITHENZ 

=1:POKEI91,PEEK(191)+Z:F1=0:GOT028 
21 IFPEEK(191)=255THENIFA=4ANDFI=1THENZ= 

I:POKEI91,PEEK(191)-256+Z:F1=0:GOT028 
22 IFPEEK(191)=0THENIFA=5ANDBI=ITHENZ=-1 

:POKEI91,PEEK(191)+256+Z:Bl=0:GOT028 
25 IFPEEK(191)<>0THENIFA=5ANDBI=ITHENZ=

I:POKE191,PEEK(191)+Z:Bl=0 
28 IFPEEK(191)=255ANDPEEK(2)=255THENPOKE 

191,0:POKE2,0 
35 IFX>255THENX=255 
36 IFX<0THENX=0 
39 POKE2,X:SYS49152 
40 PRINT"{HOME}"~PEEK(191)*256+PEEK(2)~: 

GOT03 
190 FORR=49152T049152+65:READJ:POKER,J:N 

EXT: RETURN 
200 DATA 165, 2, 133, 251, 165, 191, 133 

, 252, 169, 0, 133 
210 DATA 253, 169, 4, 133, 254, 162, 4, 

177, 251, 145 
220 DATA 253, 200, 208, 249, 230, 252, 2 

30, 254, 202, 208 
230 DATA 242, 169, 0, 133, 251, 169, 216 

, 133, 252, 162 
240 DATA 4, 169, 0, 145, 251, 200, 2g8, 

251, 230, 252 
250 DATA 202, 208, 246, 96, 0, 255, 255, 

0, 0, 255 
260 DATA 255, 40, 10, 255, 255 
300 DIMA(3) 
310 A(0)=2:A(I)=-80:A(2)=-2:A(3)=80 
320 WL=160:HL=32:SC=49658:A=SC+81 
330 PRINT" {CLR} {BLK}LOADING MAZE (C. BON 

D) " 
340 FORZ=SCTOSC+40:POKEZ,160:NEXT 
350 FORM=SCTOSC+3072:POKEM,160:NEXT 
360 FORM=SCTOSC+3072STEP40:POKEM,32:NEXT 
370 FORM=SC+39TOSC+3072STEP40:POKEM,32:N 

EXT 

176 

u 
u 
u 
u 
u 
u 

U 

u 
v 
v 
u 
u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
V 

u 
V 

U 

V 

U 

U 

V 

U 

U 

U 

U 

U 

V 

V 



410 POKEA,4 
420 J=INT(RND(1)*4):X=J 
430 B=A+A(J):IFPEEK(B)=WLTHENPOKEB,J:POK 

EA+A(J)/2,HL:A=B:GOT0420 
440 J=(J+l)*-(J<3):IFJ<>XTHEN430 
450 J=PEEK(A):POKEA,HL:IFJ<4THENA=A-A(J) 

:GOT0420 
500 J=2 
510 RETURN 
1000 REM 
1010 GETD$:IFD$=""THEN1040 
1011 IFD$=CHR$(20)THENPOKER,32:POKER+l,3 

2:R=R-l:GOT01040 
1012 IF D$=CHR$(157)THEN:R=R-l:GOT01040 
1013 ~IF D$=CHR$(29)THENR=R+l:GOT01040 
1014 IF D$=CHR$(145)THENR=R-41:GOT01040 
1015 IF D$=CHR$(17)THENR=R+39:GOT01040 
1016 IF D$=CHR$(133)ORD$=CHR$(134)THEN10 

40 
1017 IF D$="{CLR}"THENFORT=RTOR+1024:POK 

ET,32:NEXT:GOT01040 
1020 E=ASC(D$):IFE>64THENE=E-64 
1030 R=R+1:IFR<40959ANDR>32768THENPOKER, 

E 
~ 1040 RETURN 

I 
!~ 

Memory 7 

177 



. 7 Memory 

Commodore 64 
Architecture 
Jim Butterfield 

This article allows you a peek inside the structure of the Commodore 64 
and demonstrates some of its extraordinary features. 

Let's build a Commodore 64 - at least in principle. We'll put the 
memory elements together and see how they all fit. 

RAM-64K 
We start with a full64K of RAM. That's the maximum amount of 
memory that the 6510 microprocessor chip can address. 

H we stopped at this point, we'd have problems. First of all, 
the screen is fed from memory, but it would contain nonsense. 
We'll need to put in two extra things: a video chip, and a character 
generator for the video chip to use. Then again, we have no pro
grams of any sort, and no way to get them into RAM. 

Building It Out 
Here's what we will do: we'll add the extra features we need by 
piling them on top of RAM. That way, RAM will be ''hidden'' - if 
we look at that part of memory, we will see the new elements. But 
we'll include a set of switches which will allow us to "flip away" 
the overlaying material and expose the RAM beneath any time we 
choose. More about these later. 

Keep in mind: the RAM is still there, but it's hidden behind 
the new chips. 

Input I output 
We'll take the block of memory at hexadecimal 0000 to DFFF and 
reserve it for our interface chips. These include two CIAs for 
timing and input/output, a SID chip for sound, and a video chip 
to deliver a screen to the television set. 

About the 6566 video chip: its "registers" are located at hex 
0000 to D02E; these locations control how the chip works. But 
when the video chip needs information to put on the screen, it 

178 

v 
U 

U 

U 

U 

V 

V 

V 

V 

U 

U 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

, V 

V 

V 

V 

V 

V 

V 

U 

V 



Memory 7 

gets it directly from RAM memory. For example, the usual place 
for the screen characters is hex 0400 to 07E7. There's a distinction 
here: we control or check the chip by using its register addresses, 
but the chip gets display information from almost anywhere it 
likes. 

The video chip needs to look at RAM to get characters for the 
screen. It also needs to look somewhere else to get a "picture" of 
each character; this allows it to light up the individual dots, or 
"pixels;' that make up a character. There needs to be a table which 
gives details of each character: what it looks like, and how to draw 
it. This table is called the Character Base Table; hardware types 
may just call it the character generator. 

We could put this Character Base Table in RAM and point the 
video chip to it. In fact, we are likely to do this if we want to define 
our own graphics. But on a standard 64, we'd just as soon have 
these characters built-in, in other words, we'll put the Character 
Base Table into ROM memory. 

Now comes the tricky bit. We will put our ROM character 
base (it's 4K long when we allow for both graphics and text) into 
locations hex 0000 to DFFF. Wait a minute! We just put our inter
face chips there! 

No problem. We just pile the memory elements higher. The 
ROM character base sits above the RAM, and then we put the 1/0 
on top. Any time we PEEK these locations, we'll see the ItO. The 
video chip, by the way, has a special circuit allowing it to go direct
ly to the ROM character base, so there's no confusion there. 

If you wanted to look at the character ROM, you'd have to flip 
it to the top somehow. It turns out you are allowed to do this: 
clearing bit two of address one will do the trick. But be sure you 
disable the interrupt first, or you're in serious trouble. After all, 
the interrupt routines expect the ItO to be in place. Bit 2 of 
address 0 is called the CHAREN control line. 

Let's look at a small part of the character base - in BASIC! Be 
sure to do this on a single line, or as part of a program. First, to 
turn the interrupt off and back on again: 

POKE 56333,127: •.•. ~.:POKE 56333,129 

Now, while the interrupt is disabled, flip in the character 
base: 

POKE 56333,127:POKE 1,51: •• ~POKE 1,55:POK 
E 56333,129 

179 



7 Memory 

Finally, let's PEEK at part of a character: 

POKE 56333,127:POKEl,51:X=PEEK(53248):POK 
E l,55:POKE 56333,129:PRINT X 

You should see a value of 60; this is the top of the @ character. 
To see its pixels, we would write it in binary as 00111100 and to see 
the next line of pixels we would repeat the above code with 
X =PEEK(53249). 

Remember that this is ROM; we can PEEK but can't POKE. H 
we wanted a new character set, we would point the video chip to 
some new location. 

KemaiROM 
To allow the computer to work at all, we must have an operating 
system in place. The 64's system is called the Kernal: it's in ROM, 
and placed above RAM at addresses $EOOO to $FFFF. 

We can flip the Kernal away and expose the RAM beneath by 
clearing bit one of address one. Be very careful! The computer 
can't exist for long without an operating system. Either put one 
into the RAM or be prepared for a crash. 

Even if you flip out the Kernal for a moment~ you must be 
sure to disable the interrupt. The ~terrupt vectors themselves are 
in the Kernal; if the interrupt strikes while the Kernal is flipped 
away, well have utter confusion. 

Flipping out the Kernal automatically flips out BASIC as well. 
So bit one of address one, called the HIRAM control bit, switches 
out both ROMs. We can switch BASIC alone, however, by using 
bit zero - the LORAM control bit. 

BASIC ROM 
To run BASIC, we have another ROM which is placed above RAM 
at addresses $AOOO to $BFFF. We may flip it out by clearing bit zero 
(mask one) of address one. 

This is a very useful thing to do. When a word processor, 
spreadsheet calculator, or other program is in the computer, we 
may not need BASIC at all. Flip it away, and we have extra mem
ory for our program. 

DO YOur own BASIC 
We can do even more. If we copy BASIC - carefully! - from its 
ROM into the RAM behind it, we can get BASIC-in-RAM - a 
BASIC we can change to meet our own needs. 

180 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
U 



~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~(', 

Memory 7 

Let's do this, just to show how. Type the following program 
into your Commodore 64: 

100 FOR J=40960 TO 49151 
110 POKE J, PEEK(J) 
120 NEXT J 

Run the program. It will take a minute or so. While it's run
ning, let's talk about that curious line 110. What's the point in 
POKEing a value into memory identical to what's already there? 
Here's the secret: when we PEEK, we see the BASIC ROM; but 
when we POKE, we store information into the RAM beneath. 

The program should say READY; now we have made a copy 
of BASIC in the corresponding RAM. Flip the ROM away with 
POKE 1,54. If the cursor is still flashing, we're there. BASIC is 
now in RAM. How can we prove this? 

Let's try to fix one of my pet peeves (PET peeves?). Whenever 
I try to take the ASC value of a null string, BASIC refuses. Try it: 

PRINT ASC(" '') 
.. will yield an ?ILLEGAL QUANTITY ERROR. 

Now, it's my fixation that you should be able to take the ASCII 
value of a null string, and have BASIC give you a value of zero. 
(Don't ask why; that would take a couple more pages.) By peering 
inside BASIC, I have established that the situation can be 
changed by modifying the contents of address 46991. There is 
usually a value of eight there. Normally, we couldn't change it: it's 
in ROM. But now BASIC is in RAM, and we'll change the ASC 
function slightly by: 

POKE 46991,5 

Now try PRINT ASC(" "); it will print a value of zero. In every 
other way, BASIC is exactly the same. 

Just for fun: you can change some of BASIC's keywords or 
error messages to create your own style of machine. For example, 
POKE 41122,69 changes the FOR keyword; you must type the 
new keyword to get the FOR action. Say liST and see how line 
100 has changed. Alternatively, POKE 41230,85; now you must 
say LUST instead of liST. 

You may go back to ROM BASIC at any time with a POKE 
1,55. 

181 



7 Memory 

Combination Switch 
When we use the lllRAM control to flip out the Kemal, BASIC 
ROM is also removed. Is there any point in flipping both HIRAM 
and LORAM? If you do, the 110 and Character Generator also dis
appear, giving you a solid 64K of RAM. You can't talk to anybody, 
since you have no 110, but you can do it. 

We have named three control lines: CHAREN, which flips 
110 with the Character Base; HIRAM, which flips out Kemal and 
BASIC ROMs; and WRAM, which controls BASIC. In my 
memory maps I've called them D-ROM switch, EF-RAM switch, 
and AB-RAM switch in an attempt to make them more 
descriptive. 

But there are two other control lines, and your program can
not get to them. They are called EXROM and GAME and may be 
changed only by plugging a cartridge into the expansion slot. 
When these lines are switched by appropriate wiring inside the 
cartridge, the memory map changes once again. 

But that's another story. 
For the first time, the machine's architecture is at your 

disposal. If you don't like BASIC, throw it out and replace it with 
your own. The same is true of the Kemal operating system; it's ac
cessible or replaceable. 

New horizons are opening. We'll need to do a lot of traveling 
to reach them. 

Commodore 64 Memory 
Addresses shown in hexadecimal. 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
v 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

c=J I/O U 

182 

I!~I ROM U 
_ RAM V 

U 

V 

U 

V 

~ 



~ 

~ 

Memory 7 
~ 

~ 

~ 

~ Commodore 64 ~ 

~ Memory Map (") 

(") 
Compiled by Jim Butterfield 

(") 

r-, 
Hex Decimal Description 

r-, 
0000 0 Chip data direction register 

(") 0001 1 Chip I/O; memory and tape control 
0003-0004 3-4 Float-Fixed vector 

(") 0005-0006 5-6 Fixed-Float vector 

(") 0007 7 Search character 
0008 8 Scan-quotes flag 

(") 0009 9 TAB column save 
OOOA 10 o =WAD, 1 = VERIFY 

(") OOOB 11 Input buffer pointer/ # subscript 

r-, OOOC 12 Default DIM flag 
0000 13 Type: FF =string, 00 =numeric 

r-, OOOE 14 Type: 80 =integer, 00 =floating point 
OOOF 15 DATA scan/LIST quote/memory flag 

r-, 0010 16 Subscript/FNx flag 
r-, 0011 17 o =INPUT; $40 =GET; $98 =REAO 

0012 18 ATN sign/Comparison eval flag 
(") 0013 19 Current 110 prompt flag 

0014-0015 20-21 Integer value r-, 0016 22 Pointer: temporary string stack 
r-, 0017-0018 23-24 Last temporary string vector 

0019-0021 25-33 Stack for temporary strings 
(") 0022-0025 34-37 Utility pointer area 

r-, 0026-002A 38-42 Product area for multiplication 
002B-002C 43-44 Pointer: Start-of-BASIC 

~ 0020-002E 45-46 Pointer: Start-of-Variables 
002F-0030 47-48 Pointer: Start-of-Arrays 

~ 0031-0032 49-50 Pointer: End-of-Arrays 

r1 
0033-0034 51-52 Pointer: String-storage (moving down) 
0035-0036 53-54 Utility string pointer 

r1 0037-0038 55-56 Pointer: Limit-of-memory 
0039-003A 57-58 Current BASIC line number 

r1 003B-003C 59-60 Previous BASIC line number 

r-, 0030-003E 61-62 Pointer: BASIC statement for CONT 
003F-0040 63-64 Current DATA line number 

r-, 

r1 183 

'(l 



-
U 
r 7 Memory 
U 
-
U 
-
U 
-
U 

0041-0042 65-66 Current DATA address r 

0043-0044 67-68 INPUT vector U 
r' 

0045-0046 69-70 Current variable name \..) 
,0047-0048 71-72 Current variable address ~ 

0049-004A 73-74 Variable pointer for FOR/NEXT U 
004B-004C 75-76 Y-save; op-save; BASIC pointer save U 
004D 77 Comparison symbol accumulator -004E-0053 78-83 Miscellaneous work area, pointers, etc. \..) 

0054-0056 84-86 Jump vector for functions -
0057-0060 87-96 Miscellaneous numeric work area U 

0061 97 Accum#l: Exponent 
~ 

U 
0062-0065 98-101 Accum #l: Mantissa -
0066 102 Accum#l: Sign U 
0067 103 Series evaluation constant pointer --
0068 104 Accum#l hi-order (overflow) U 
0069-006E 105-110 Accum #2: Exponent, Mantissa, sign 

,-

U 
006F 111 Sign comparison, Acc #l vs If2 

---0070 112 Accum #llo-order (rounding) U 
0071-0072 113-114 Cassette buffer length/Series pointer ~ 

0073-008A 115-138 CHRGET subroutine; get BASIC character U 
-007A-007B 122-123 BASIC pointer (within subroutine) U 

008B-008F 139-143 RND seed value .-
0090 144 Status word ST U 
0091 145 Keyswitch PIA: STOP and RVS flags --
0092 146 Timing constant for tape U 

0093 147 LOAD =0, VERIFY =1 U 
0094 148 Serial output: deferred character flag -
0095 149 Serial deferred character U 
0096 150 Tape EOT received -

U 
0097 151 Register save -0098 152 Number of open files U 
0099 153 Input device, normally 0 

U 009A 154 Output CMD device, normally 3 
009B 155 Tape character parity r 

U 
009C 156 Byte-received flag .-
009D 157 Run = 0, Direct mode = $80 U 
009E 158 Tape Pass 1 error log/character buffer G 009F 159 Tape Pass 2 error log corrected 
00AO-00A2 160-162 Jiffy clock HML G 
00A3 163 Serial bit count/EOI flag -
00A4 164 Cycle count U 
00A5 165 Countdown, tape write/bit count 

U 00A6 166 Tape buffer pointer 
00A7 167 Tp Wrt ldr count/Rd pass/inbit U 
00A8 168 Tp Wrt new byte/Rd error/inbit count 

G 00A9 169 Wrt start bit/Rd bit err/stbit 
r 

U 
184 r 

U 
,,- . 

----- ----- \ i 



~ 

~ 

Memory 7 r'l 

~ 

r'l 

r'l OOAA 170 Tp Scan; Count; Ld; End/byte assembly 

r'l OOAB 171 Wr lead length/Rd checksum/parity 
OOAC-OOAO 172-173 Pointer: tape buffer, scrolling 

~ OOAE-OOAF 174-175 Tape end address/End of program 

r'l 
OOBO-OOBl 176-177 Tape timing constants 
00B2-00B3 178-179 Pointer: start of tape buffer 

r'l 00B4 180 1 = Tape timer enabled; bit count 
00B5 181 Tape EOT/RS-232 next bit to send 

r'l 00B6 182 Read character error/outbyte buffer 

r'l 
00B7 183 Number of characters in filename 
00B8 184 Current logical file 

r'l 00B9 185 Current secondary address 
OOBA 186 Current device 

~ OOBB-OOBC 187-188 Pointer to filename -

r'l OOBO 189 Wr shift word/Rd input character 
OOBE 190 # blocks remaining to Wr/Rd 

~ OOBF 191 Serial word buffer 
OOCO 192 Tape motor interlock 

r'l 00CI-00C2 193-194 110 start address 

~ 
00C3-00C4 195-196 Kemal setup pointer 
00C5 197 Last key pressed 

r'l 00C6 198 Number of characters in keyboard buffer 
00C7 199 Screen reverse flag 

r'l 00C8 200 Pointer: end of line for INPUT 

~ 00C9-00CA 201-202 Input cursor log (row, column) 
OOCB 203 Which key: 64 if no key 

~ OOCC 204 o =flash cursor 

r'l 
OOCO 205 Cursor timing countdown 
OOCE 206 Character under cursor 

r'l OOCF 207 Cursor in blink phase 
0000 208 Input from screen/from keyboard 

r'l 0001-0002 209-210 Pointer to screen line 

r'l 
0003 211 Position of cursor on above line 
0004 212 Quote mode flag, 0 = off 

~ 0005 213 Current screen line length 
0006 214 Row where cursor lives 

r'l 0007 215 Last inkey/checksumlbuffer 

r'l 0008 216 Number of INSERTs outstanding 
0009-00F2 217-242 Screen linelink table 

r'l 00F3-00F4 243-244 Screen color pointer 
00F5-00F6 245-246 Keyboard pointer 

r'l 00F7-00F8 247-248 Pointer: RS-232 input buffer 

f') 00F9-00FA 249-250 Pointer: RS-232 output buffer 
0100-01OA 256-266 Floating point to ASCII ~ork area 

~ OlOO-013E 256-318 Tape error log 

r'l 
0100-01FF 256-511 Processor stack area 

r'l 185 

~ 



U 

7 Memory 
U 

U 

U 

U 
0200-0258 512-600 BASIC input buffer U 
0259-0262 601-610 Logical file table 
0263-026C 611-620 Device #table U 
0260-0276 621-630 Secondary address table 
0277-0280 631-640 Keyboard buffer U 
0281-0282 641-642 Start of BASIC Memory U 
0283-0284 643-644 Top of BASIC Memory 
0285 645 Serial bus time-out flag U 
0286 646 Current color code 

U 0287 647 Color under cursor 
0288 648 Screen memory page U 
0289 649 Maximum size of keyboard buffer 
Q28A 650 Repeat all keys U 
028B 651 Repeat speed counter 

U 028C 652 Repeat delay counter 
0280 653 Keyboard Shift/Control flag U 
028E 654 Last shift pattern 
028F-0290 655-656 Pointer: keyboard table setup U 
0291 657 Keyboard shift mode U 0292 658 o =scroll enable 
0293 659 RS-232 control register U 
0294 660 RS-232 command register 
0295-0296 661-662 Bit timing U 
0297 663 RS-232 status register U 
0298 664 Number of bits to send 
0299-029A 665-666 RS-232 speed/code U 
029B 667 RS-232 end of input buffer index 
029C 668 RS-232 start of input buffer U 

0290 669 RS-232 start of output buffer U 
029E 670 RS-232 end of output buffer index 
029F-02AO 671-672 IRQ save during tape 110 u 
02Al 673 CIA2 (NMI) Interrupt Control ~ 

02A2 674 CIAl Timer A control log U 

02A3 675 CIAl Interrupt Log U 
02A4 676 CIAl Timer A enabled flag 
02A5 677 Screen row marker U 
02CO-02FE 704-766 (Sprite 11) 

U 0300-0301 768-769 Error message link 
0302-0303 770-771 BASIC warm start link U 
0304-0305 772-773 Crunch BASIC tokens link . 
0306-0307 774-775 Print tokens link U 
0308-0309 776-777 Start new BASIC code link U 
030A-030B 778-779 Get arithmetic element link 
030C 780 6510 accumulator store U 
0300 781 6510 X-register store 
030E 782 6510 Y-register store U 

U 
186 

U 
-
U 



~ 

~ 

~ Memory 7 
~ 

~ 

~ O~OF 783 6510 status register store 

~ 
0310 784 USR function jump instruction (4C) 
0311-0312 785-786 USR function jump address (B248) 

~ 0313 787 Unused 
0314-0315 788-789 Hardware interrupt ~ector (EA31) 

~ 0316-0317 790-791 Break interrupt vector (FE66) 

r'I 
0318-0319 792-793 NMI interrupt vector (FE47) 
031A-031B 794-795 OPEN vector (F34A) 

~ 031C-031D 796-797 CLOSE vector (F291) 
031E-031F 798-799 Set-input vector (F20E) 

~ 0320-0321 800-801 Set-output vector (F250) 

~ 
0322-0323 802-803 Restore 110 vector (F333) 
0324-0325 804-805 INPUT vector (F157) 

~ 0326-0327 806-807 Output vector (F1CA) 
0328-0329 808-809 Test-SlOP vector (F6ED) 

~ 032A-032B 810-811 GET vector (F13E) 

~ 
032C-032D 812-813 Abort 1/0 vector (F32F) 
032E-032F 814-815 Warm start vector (FE66) 

~ 0330-0331 816-817 LOAD vector (F4A5) 
0332-0333 818-819 SAVE vector . (F5ED) 

~ 0334-033B 820-827 Unused 

~ 
033C-03FB 828-1019 Cassette buffer 
0340-037E 832-894 (Sprite 13) 

~ 0380-03BE 896-958 (Sprite 14) 
03CO-03FE 960-1022 (Sprite 15) 

~ 0400-07FF 1024-2047 Screen memory 

~ 
0800-9FFF 2048-40959 BASIC RAM memory 
8000-9FFF 32768-40959 Alternate: ROM plug-in area 

~ AOOO-BFFF 40960-49151 ROM: BASIC 
AOOO-BFFF 49060-49151 Alternate: RAM 

~ COOO-CFFF 49152-53247 RAM memory, including alternate 

~ DOOO-D02E 53248-53294 Video Chip (6566) 
D400-D41C 54272-54300 Sound Chip (6581 SID) 

~ D800-DBFF 55296-56319 Color nybble memory 

~ 
DCOO-DCOF 56320-56335 Interface chip 1, IRQ (6526 CIA) 
DDOO-DDOF 56576-56591 Interface chip 2, NMI (6526 CIA) 

~ DOOO-DFFF 53248-57294 Alternate: Character set 
EOOO-FFFF 57344-65535 ROM: Operating System 

~ EOOO-FFFF 57344-65535 Alternate: RAM 

~ 
FF81-FFF5 65409-65525 Jump Table, Including: 

FFC6 - Set Input channel 

~ FFC9 - Set Output channel 
FFCC - Restore default 110 channels 

~ FFCF -INPUT 

~ 
FFD2 -PRINT 
FFE1 - Test Stop key 

~ FFE4 -GET 

~ 187 

~ 



7 Memory 

Figure 1. 6510 Processor 1/0 POrt 

$0000 

$0001 

IN IN 
I 

I 

Out 
. 

·.Tape 
Motor 

IN . Out 
I I 

Tape Tal'e 
Sense Wnte 

I I 

Out Out' Out 
I I DDR 0 

D-Rom ErRAM . AB-RAM PR 1 
Switch Switch' Switch 

I I 

Figure 2. 6566 SID Chip 
VI V2 V3 

D400 D407 D40E 
D401 D408 D40F 

D402 D409 D410 
D403 D40A D411 

D404 D40B D412 

D405 D40C D413 

D406 D40D D414 

188 

D415 
D416 

L 
VI V2 V3 

54272 54279 54286 
54273 54280 54287 

542745428154288 
54275 54282 54289 

~ey 54276 54283 54290 

54277 54284 54291 

Release. Time' 
6rns-.24sec 542785428554292 

Voices 
(Write Only) 

Filter & Volume 
(Write Only) 

54293 
54294 

54296 

u 
u 
u 
u 

u 
v 

v 
u 

V 

V 

V 

u 

V 

V 

u 

u 

u 

U 

U 

V 

V 

V 

V 

V 

U 

V 

V 

u 

u 

V 

V, 



ri 

ri 

I'i 

ri 

,-, 
,-, 
ri 

,-, 

D419 

D41A 

D41B 

D41C 

(Read Only) 

Memory 7 

54297 

54298 

54299 

54300 

Sense 

,-, 
ri 

ri 

,-, 
Special voice features (TEST, RING MOD, SYNC) are omitted from the above diagram. 

ri Figure 3.6526 CIA1 Chip 

$DCOO 

$DCOI 

$DC02 
$DC03 ~--"""",""""-""""'""-""""':;'."",...,,.,.. 

$DC04 
$DC05 
$DC06 F~-'-:--,....-,;;......o.."'-~,...-.""':';w..,.-,-:-"""""""':' 

$DC07 

$DCOD 

$DCOE 

$DCOF 

PRA 56320 

PRB 56321 

DDRA 56322 
:..;...,....o.."'-"'O"'+~~ DDRB 56323 

TAL 56324 

TAH 56325 

TBL 56326 

TBH 56327 

ICR 56333 

CRA 56334 

CRB 56335 

189 



v 

7 Memory 
u 

u 
u 

u 
Figure 4. 6526 CIA2 Chip u 

U 
$0000 PRA 56576 

U 

$0001 In 
RS.232 

U In PRB 56577 

Parallel User Port V 
$0002 IN >.)N . Out Out. ~1 Out Out OORA 56578 

U 
$0003 $06 For RS·232 OORB 56579 V 

$0004 
$0005 

TAL 56580 
U 

TAH 56581 U 
Timer A 

U 
$0006 
$0007 

TBL 56582 
TBH 56583 V 

U 

tV rv 
U 

$0000 Timer ICR 56589 
U 

A 
V 

$OOOE Timer CRA 56590 
A Start U 

$OOOF CRB 56591 
Timer U 
B Start 

U 
*Connected but not used by system. 

U 

U, 

U 

U 

V 

V 

V 

U 

U 

U 

U 
190 

U 

U 



Memory 7 

Soft-16 
Douglas D. Nicoll 

This program, "USR(PEEK),; demonstmtes seveml interesting concepts 
about managing the memory of the 64. BASIC programs can be run 
essentially without BASIC, and you can switch between ROM and RAM 
during a program RUN to access an additional 16K of RAM for data 
storage. You'll also see how to use the USR( ) statement. 

An inexpensive 16K RAM expansion for the Commodore 64? Run 
BASIC programs without BASIC or the Kemal? Well, almost. The 
6510 microprocessor has the three ROM banks (BASIC [AB] 
$AOOO-$BFFF; characters [D] $DOOO-$DFFF; and Kemal [EF] 
$EOOO-$FOOO) with blocks of RAM. It switches between ROM and 
RAM with the control port located at $0001. Bit zero in $0001 con
trols AB, bit one controls EF, and bit two controls D. Setting the bit 
to one switches in ROM (the normal state), and zero switches in 
RAM memory. 

In normal BASIC operation, it is possible to POKE values to 
the RAM at the AB and EF locations, but PEEKing these locations 
will show only the ROM data. POKEs and PEEKs to the RAM at D 
work fine, but you can't PEEK the character ROM without setting 
a number of switches so the system won't crash. Thus, without 
the ability to PEEK the hidden RAM memory, AB and EF loca
tions are effectively eliminated from use in BASIC programs. 

''USR(PEEK)" is a valuable machine language utility program 
that opens up the hidden RAM for use in BASIC programs, giv
ing the user 16K of additional memory for data storage. The pro
gram is loaded into $COO1-$COE4 and uses $COOO as a temporary 
storage cell. The vector for the USR( ) function is set (POKE 
785,I:POKE 786,192). BASIC programs are loaded normally, and 
any RAM location can be PEEKed by using X = USR(N), where X 
is any variable and N is any number from 1 to 65535. Any number 
less than 0.5 will set X to -1, 0.5 to 1.9 evaluate as 1, and all other 
decimal numbers are truncated to the integer. If a negative num
ber is given for N, the value returned is for ABS(N). If a number is 
greater than 65535, then X is -1. If N is between 53248 and 57343, X 
is the value of data stored in character ROM (D). 

191 



7 Memory 

Automatic Switching 
How does USR(PEEK) work? The statement X = USR(N) in a 
BASIC program loads N into the floating point accumulator and 
sends the computer to the machine language program pointed to 
by the USR vector. The machine language program evaluates the 
number in the FP accumulator, switches out BASIC and Kernal 
ROM, loads the desired RAM data into the FP accumulator, 
switches BASIC and Kernal ROM back in, and finally sets up the 
FP accumulator so that X contains the values on return to the 
BASIC program. When character ROM is desired, it is switched in 
for the manipulation. 

The techniques used to dynamically switch between RAM 
and ROM have many other uses for programmers who use both 
BASIC and machine language. For example, machine language 
programs can be LOADed under BASIC or Kernal ROM and run 
with BASIC programs - this leaves more space for BASIC pro
grams and variable storage. It is possible to envision LOADing a 
BASIC program editor under BASIC ROM and calling it for re
numbering, searching, etc. 

Type in the program and, after saving a copy, RUN it to see a 
demonstration of how easy it is to use. Then eliminate lines 10-540 
and SAVE it with the name USR(PEEK). To use with your pro
grams, LOAD and RUN USR(PEEK) and then LOAD and RUN 
your own BASIC programs that can be constructed to utilize the 
additional 16K of RAM data storage. 

USR(PEEIO 
1 GOSUB1000:REM SET UP USR{PEEK) 
5 REM**{9 SPACES}USR{PEEK){12 SPACES}** 
10 PRINT"{CLR}USR{PEEK) AT CHARACTER ROM 

" 
20 V$="{HOME}{24 DOWN}" 
30 H$='"'+" {39 RIGHT}" 
40 UC=53248:LC=55296:GC=53760 
50 H=0:V=10:L=83*8+UC:GOSUB500 
60 H=8:V=10:L=3*8+UC:GOSUB500 
70 H=14:V=5:L=85*8+UC:GOSUB500:H=14:V=14 

:L=74*8+UC:GOSUB500 
80 H=22:V=10:L=54*8+UC:GOSUB500 
90 H=30:V=10:L=52*8+UC:GOSUB500 
100 PRINTLEFT${V$,5)7LEFT$(H$,18)7"SC 

(UP}U{2 DOWN}{LEFT}J{UP}64"7LEFT${V$ 
, 22)- -

110 PRINT"PRESS ANY KEY TO CONTINUE"7 

192 

u 
u 
u 
u 
u 
u 

u 
u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
V 

V 

U 

V 

V 

V 

V 

V 

U 

V 

V 

V 

V 

U 

U 

U 

V 

~I 



~ 

~ 

Me~ory7 Ii 

~ 

~ 

~ I2f2J GETA$:IFA$=""THENI2f2J 

~ 
I3f2J PRINT" {CLR}USR(PEEK) INTO BASIC HIDD 

EN RAM" 
r-'I I4f2J PRINTLEFT$(V$,5);"INPUT If2J NUMERS(f2J-

255) TO STORE IN $Af2Jf2Jf2JTO $Af2Jf2JA :" 
~ I5f2J FORI=ITOlf2J 

I6f2J PRINT"NUMBER ";1;": ";:INPUT"";X 
~ I7f2J IFINT(X) < >XORX<f2JORX> 255THENPRINT " INV 

~ 
ALID ENTRY ••• ":GOTOI6f2J 

18f2J POKE4f2J959+I,X:NEXT 
~ I9f2J PRINT" {CLR}USR(PEEK) INTO HIDDEN BAS 

IC RAM" 
~ 2f2Jf2J PRINT:PRINT:PRINT"LOCATION{3 SPACES} 

PEEK{3 SPACES}USR(PEEK)" 
r'l 2f2J5 PRINT"---------------------------" 

21f2J FORI=ITOlf2J:PRINTI+4f2J959,PEEK(I+4f2J959 
~ ),USR(I+4f2J959):NEXT 

~ 
22f2J PRINTLEFT$(V$,22);"PRESS ANY KEY TO 

CONTINUE "; 
~ 23f2J GETA$:IFA$=" "THEN23f2J 

24f2J PRINT" {CLR}USR(PEEK) INTO KERNAL HID 
~ DEN RAM" 

25f2J PRINTLEFT$(V$,5);"INPUT 1f2J NUMERS(f2J-
~ 255) TO STORE IN $Ff2Jf2Jf2JTO $Ff2Jf2JA :" 

r"'l 
26f2J FORI=ITOlf2J 
27f2J PRINT"NUMBER ";1;": "; : INPUT"";X 

~ 28f2J IFINT(X) <>XORX<f2JORX>255THENPRINT"INV 
ALID ENTRY ••• ": GOTOI6f2J 

~ 29f2J POKE61439+I,X:NEXT 
3f2Jf2J PRINT"{CLR}USR(PEEK) INTO HIDDEN KER 

~ NAL RAM" 

n 31f2J PRINT:PRINT:PRINT"LOCATION{3 SPACES} 
PEEK{3 SPACES}USR(PEEK)" 

~ 32f2J PRINT"---------------------------" 
33f2J FORI=ITOlf2J:PRINTI+61439,PEEK(I+61439 

~ ),USR(I+61439):NEXT 
34f2J END 

~ 5f2Jf2J FORJ=LTOL+7:X$="":X=USR(J) 

~ 
51f2J FORI=7TOf2JSTEP-I:IFX=>2tITHENX=X-2tI: 

X$=X$+" {WHT} {RVS} {OFF} ":GOT053f2J 

~ 
52f2J X$=X$+" {RIGHT} " 
53f2J NEXTI:IFJ=LTHENPRINTLEFT$(V$,V); 

Ii 54f2J PRINTLEFT$(H$,H);X$:NEXT:RETURN 
1f2Jf2Jf2J POKE785,I:POKE786,192:REM USR VECTO 

~ R 
If2JIf2J FORI=49153T04938f2J:READX:POKEI,X:NEX 

n T 

~ 
1f2J15 RETURN 

f", 

n 193 

~ 



1020 DATA173,97,0,201,144,208,3,76,188,1 
92,56,201,128,176,3,76,163,192,201, 
145 

1030 DATA144,3,76,163,192,73,128,141,97, 
O,56,169,16,237,97,O,240,13,170,24 

1040 DATA78,98,0,110,99,0,202,224,0,208, 
244,173,98,O,141,78,192,173,99,O 

1050 DATA141,77,192,173,1,0,141:0,192,12 
O,73,7,141,1,O,173,255,255,141,98,O 

1060 DATA173,0,192,141,1,0,88,173,98,0,2 
01,O,208,3,76,140,192,162,8,173,98, 

° 1070 DATA24,42,176,5,202,224,0,208,247,1 
06,141,98,O,73,128,141,102,O,138 

1080 DATA9,128,141,97,0,169,0,141,99,0,1 
41,100,O,141,101,O,96,169,O,141,97, 

° 1090 DATA141,99,0,141,100,0,141,101,0,14 
1,102,O,169,128,141,98,O,96,169,129 

1100 DATA141,97,0,169,128,141,98,0,141,1 
02,O,169,O,141,99,O,141,100,O,141,1 
01,O 

1110 DATA96,56,173,98,0,201,224,144,3,76 
,223,192,201,208,176,3,76,223,192,1 
69,4 

1120 DATA141,72,192,173,97,0,32,26,192,1 
69,7,141,72,192,96,173,97,O,76,11,1 
92 

194 





V 
Q 

U 
Q 

o 
o 
o 
o 
o 
<) 

<) 

o 
o 
o 
o 
o 

" o 
o 

" Q 

" o 

" o 
o 
v 
v 
v 
o 
v 
Q 

" o 
o 
o 



Advanced 8 
Memory 

Assembler in 
BASIC 
Ronald Thibault 

Here is a symbolic Assembler in BASIC for the Commodore 64. 
The original version of this was written by Eric Brandon for the 
PET. I modified this Assembler because there were none available 
for the 64 and no symbolic assemblers that use only a cassette (I 
have no disk). [Disk users need only make the changes shown in 
lines 12025 and 13025 - Editor.] In addition, being cheap, this 
Assembler is good for those who are just starting out in machine 
language programming. 

A symbolic assembler is one that allows the use of variable 
names in the label and operand fields. This Assembler could also 
be used on many other machines using the 6502 with slight modi
fications, most notably the WAD and SAVE commands. 

Since the Assembler is in BASIC, it does have a couple of dis
advantages. The first is that it is slow. The other is that, because it 
resides in memory and needs the BASIC Interpreter, the amount 
of memory available for machine language programs is reduced. 

The major additions to the Assembler from the original are: 

1. Bounds checking on the commands that affect the line 
numbers. 
2. The LOAD and SAVE commands modified for cassette. 
3. Compact Command eliminates blank lines between code. 
4. 4O-column screen printout. 
5. Instructions internal to the program. 

The Assembly Ustlng 
The assembled listing is broken into two segments: the first seg
ment is the memory locations of the variables and labels; the sec
ond is the actual code. The format is as follows: 

Column 
0-5 
6-10 
11-13 

Value 
Line # 
Start of Instruction Address 
Opcode Value 

197 



8 Advanced 
Memory 

14-16 & 17-19 Other Bytes of Instruction 
20-26 Label Field 
27-30 Opcode Field 
31-40 Operand Field 

A note about this program specifically and all Commodore 64 
programs in general. This listing (except where all code would not 
fit on the line) has spaces between code elements to make it more 
readable. Now that we have more memory available there is no 
longer a need to compact the code just to fit it in memory. The 
spaces and REM statements (remember them?) can be taken out 
later for speed. It is much easier to type in and correct/modify 
readable code instead of 80-character strings. So start putting in 
spaces and REM statements. 

Also, you will notice that in the instructions portion of the 
program there is code that stops the printing of the instructions 
after the screen is full, until any key is hit. This is of great help to 
those of us without printers who cannot read 800 characters per 
minute. ' 

Typing in the Assembler In BASIC 
I have left spaces between the code elements to make the code 
more readable. I have omitted the spaces when the line would not 
fit otherwise. H you wish to save typing and memory space, the 
spaces and REM statements can be removed. The instructions 
come at the end of the listing. With the proper adjustments to the 
code, the instructions can also be removed. 

Well, there it is. You are now ready to begin writing your 
machine language routines using this BASIC Assembler. 

BASIC Assembler I Editor 
1 REM ASSEMBLER/EDITOR 2.0 -MODIFIED FOR 

{SPACE}C-64 
2 MEM=50:M2=20 
5 PRINT"{CLR}{WHT}":POKE 53281,0:POKE 532 

80,11 
6 PRINT"INTRUCTIONS ? (Y/N)"; 
8 GET Z$:IF Z$="" OR (Z$<>"Y" AND Z$<>"N" 

) THEN 8 
9 IF Z$="Y" THEN GOSUB 11000 
10 PRINT"{CLR}" 
11 DIM A$(MEM),S$(M2),V(M2),LI(3) 
i5 H$="0123456789ABCDEF" 
100 LN=l 
110 PRINT LN;:TB=5:LT=6:GOSUB 4000:IF IN$ 

="EXIT" THEN 300 

198 

u 
u 
o 
u 
u 
u 
w 
u 
u 
u 
u 
-
u 
v 
u 
u 
u 
u 
u 
.-
u 
-u 
v 
u 
u 
u 
U 

v 
v 
u 
u 
u 
v 
u 
u 
v 
~ 

u 



Advanced 8 
Memory 

120 IF IN$="FIX" THEN LN=LN-1:PRINT CHR$( 
-13*(ASC(GT$)<>13»;:GOTO 110 

125 IF GT$=CHR$(13) THEN PRINT"{UP}"; 
126 IF LN>MEM THEN PRINT"{OOWN}{RIGHT} 

{RVS}LINE LIMIT EXCEEDEO":GOTO 300 
130 A$(LN)=IN$+" ":TB=13:LT=3:GOSUB 4000: 

A$(LN)=A$(LN)+IN$+" " 
160 IF GT$=CHR$(13) THEN 200 
170 TB=18:LT=10:GOSUB 4000:A$(LN)=A$(LN)+ 

IN$ 
190 IF GT$<>CHR$(13) THEN PRINT 
200 LN=LN+1:GOTO 110 
300 PRINT"{OOWN}{RVS}C{OFF}OMPACT {RVS}I 

{OFF}NPUT {Rvs}n{OFF}ELETE I{RVS}N 
{OFF}SERT" 

305 PRINT"{RVS}L{OFF}IST {RVS}S{OFF}AVE L 
{RVS}O{OFF}AD {RVS}A{OFF}SSEMBLE 
{RVS}Q{ OFF}UIT'" 

310 PRINT"COMMANO 1"; 
320 GET CM$:IF CM$="" THEN 320 
325 PRINT CM$:IF CM$<>"I" THEN 360 
340 INPUT"LINE ";LN:IF LN>MEM THEN PRINT" 

{RVS}LINE NUMBER TO LARGE":GOTO 300 
345 IF LN<=0 THEN PRINT"{RVS}LINE NUMBER 

{SPACE}TO SMALL":GOTO 300 
350 GOTO 110 
360 IF CM$="O" THEN 12000 
370 IF CM$="S" THEN 13000 
410 IF CM$<>"O" THEN 460 
420 INPUT"{OOWN}LINES - FROM,TO ";FL,LL 
421 IF FL>LL THEN PRINT"{RVS}INCORRECT LI 

NE NUMBERS":GOTO 300 
423 IF FL>MEM OR LL>MEM THEN PRINT"{RVS}L 

INE NUMBER TO LARGE":GOTO 300 
424 IF FL<=0 ORLL<=0 THEN PRINT"{RVS}LIN 

E NUMBER TO SMALL":GOTO 300 
425 IF FL<>LL THEN 430 
427 FOR T=FL TO MEM-1:A$(T)=A$(T+1):NEXT 

{SPACE}T:GOTO 300 
430 FOR T=LL TO MEM:A$(T-LL+FL)=A$(T):A$( 

T)="":NEXT T:GOTO 300 
460 IF CM$<>"N" THEN 500 
470 INPUT"FIRST LINE,NUMBER";FL,LL 
474 IF FL>MEM THEN PRINT"{RVS}LINE NUMBER 

TO LARGE":GOTO 300 
475 IF FL<=0 OR LL<=0 THEN PRINT"{RVS}INC 

ORRECT OATA":GOTO 300 
476 MARK=0:FOR T=l TO MEM:IF LEN(A$(T»>2 

THEN MARK= T 

199 



SAdvanced 
Memory 

477 NEXT T 
478 IF LL+MARK>MEM THEN PRINT"{RVS}NUMBER 

OF INSERTIONS TO LARGE":GOTO 300 
480 FOR T=MEM-LL TO FL STEP-1:A$(T+LL)=A$ 

(T) :NEXT T 
490 FOR T=FL TO FL+LL-1 :A$ (T)="II" : NEXT T:G 

OTO 300 
500 IF CM$<>"L" THEN 580 
510 INPUT"LINES FIRST,LAST";FL,LL 
512 IF FL>LL THEN PRINT"{RVS}INCORRECT LI 

NE NUMBERS":GOTO 300 
515 IF FL>MEM OR LL>MEM THEN PRINT"{RVS}L 

INE NUMBER TO LARGE":GOTO 300 
517 IF FL<=0 OR LL<=0 TH?EN PRINT"{RVS}LIN 

E NUMBER TO SMALL":GOTO 300 
521 FOR T=FL TO LL:IF LEN(A$(T»=0 THEN P 

RINT T:GOTO 565 
525 LI(1)=0:LI(2)=0:LI(3)=0:LI=0:FOR Q=1 

{SPACE}TO LEN(A$(T» 
540 IF MID$(A$(T),Q,1)=" " THEN LI=LI+1:L 

I(LI)=Q 
545 NEXT Q:IF LI(3)=0 THEN LI(3)=Q-1 
550 PRINT T TAB(5) LEFT$(A${T),LI(1» TAB 

(13) MID$(A$(T),LI(1)+1,LI(2)-LI(1»; 
560 PRINT TAB(18) RIGHT${A$(T),LI(3)-LI(2 

)+1 ) 
565 NEXT T:GOTO 300 
580 IF CM$<>"Q" THEN 600 
590 PRINT"{DOWN}GET BACK IN WITH {RVS}GOT 

o 300{OFF}":END 
600 IF CM$<>"A" THEN 1300 
605 PRINT" {CLR} {RVS}S{OFF}CREEN OR {RVS}P 

{OFF}RINTER ?"; 
610 GET DV$:IF DV$="" THEN 610 
620 PRINT DV$:IF DV$="S" THEN DV=3:GOTO 6 

50 
640 DV=4 
650 CLOSE 1:0PEN 1,DV:SB=1 
660 FOR T=1 TO MEM:GOSUB 10000:IF LB$="" 

{SPACE}THEN 710 
670 IF OC$<>"=" THEN 700 
680 GOSUB 6000:IF LB$="*" THEN PC=NU:OG=N 

U:GOTO 770 
690 S$(SB)=LB$:V(SB)=NU:SB=SB+1 
692 N=V(SB-1):GOSUB 9000 
695 PRINT# 1,S$(SB-1)" =" LEFT${" 

{8 SPACES}",8-LEN{S${SB-1»)"$"R$:GOT 
o 770 

700 S$(SB)=LB$:V{SB)=PC:SB=SB+1 

200 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 



I) 

I) 

I) 

I) 

I) 

I) 702 
705 

I) 

I) 
710 
715 

~ 717 
720 

() 
730 

I) 740 

I) 750 

I) 
760 

I) 770 
790 

~ 800 

~ 805 

I) 

I) 810 
820 

I) 
825 

I) 830 

I) 
840 

I) 865 
866 

~ 
867 

I) 868 

I) 
870 
875 

I) 876 
880 

I) 
890 

() 900 
910 

I) 920 

() 930 
940 

~ 950 
960 

~ 970 
980 

() 990 

I} 

() 

I) 

Acwanced8 
Memory 

N=V(SB-l):GOSUB 9000 
PRINT# l,S$(SB-l)" =" LEFT$(" 
{8 SPACES}",8-LEN(S$(SB-l»)"$"R$ 
IF OC$="" THEN 770 
IF OP$="" THEN PC=PC+l:GOTO 770 
IF OP$="A" THEN PC=PC+l:GOTO 770 
IF LEFT$(OC$,l)<>"B" OR OC$="BIT" OR 
{SPACE}OC$="BRK" 'fHEN 740 
PC=PC+2:GOTO 770 
IF LEFT$(OC$,l)="J" THEN PC=PC+3:GOT9 

770 
GOSUB 6000:IF NU<256 THEN PC=PC+2:GOT 
o 770 
PC=PC+3 
NEXT T 
PC=OG:ER=0 
FOR T=l TO MEM:GOSUB 10000:IF OC$="II 
{SPACE}THEN 1220 
IF OC$="=" THEN 01$=OP$:MV$=" 
(2 SPACES}":PC$="{4 SPACES}":IL=0:GOT 
o 1160 
IF OP$="" THEN AM$="G":IL=l:GOTO 1060 
IF OP$="A" THEN AM$="H":IL=l:GOTO 106 
o 
X=0:Y=0:I=0:M=0:Z=0 
FOR 0=1 TO LEN(OP$):O$=MID$(OP$,O,l): 
IF 0$=")" THEN I=l:GOTO 865 
IF 0$="#" THEN M=l:GOTO 865 
NEXT 0 
FOR 0=1 TO LEN(OP$)-1:0$=MID$(OP$,O,2 
} 
IF O$=",Y" THEN Y=l:GOTO 870 
IF O$=",X" THEN X=l 
NEXT 0 
01$=OP$:GOSUB 6000 
IF NU<256 THEN Z=l 
IF LEFT$(OC$,l)="B" AND OC$<>"BRK" AN 
D OC$<>"BIT" THEN 1000 
IF Z THEN 940 
IF X THEN AM$="K":GOTO 1030 
IF Y THEN AM$="L":GOTO 1030 
IF I THEN AM$="M":GOTO 1030 
AM$="N":GOTO 1030 
IF M THEN AM$="I":GOTO 1030 
IF I AND Y THEN AM$="O":GOTO 1030 
IF I AND X THEN AM$="P":GOTO 1030 
IF X THEN AM$="O":GOTO 1030 
IF Y THEN AM$="R":GOTO 1030 
AM$="S":GOTO 1030 

201 



8 AdvCllloced 
Memory 

U'I2II21 AM$="J": IF NU>PC+1 THEN OS=NU-PC-2: I 
F OS>127 THEN ER=l 

11211121 IF NUMBER<PC+l THEN OS=254+NU-PC:IF 
(SPACE}OS<128 THEN ER=l 

11212121 IF ER=l THEN PRINT"{RVS}TOO LONG CON 
DITIONAL BRANCH":GOTO 3121121 

112125 FO=OS: IL=2 : GOTO 11216121 . 
11213121 IF Z=12I THEN 11215121 
11214121 FO=NU:IL=2:GOTO 11216121 
11215121 SO=INT(NU/256):FO=(NU/256-S0)*256:IL 

=3 . 
11216121 RESTORE:FOR W9=1 TO 56:READ I$:IF LE 

FT$(I$,3)=OC$ THEN CD$=I$:W9=1121121 
11217121 NEXT W9:IF W9=57 THEN PRINT"{Rvs}rLL 

EGAL MNEMONIC":GOTO 3121121 
11218121 FOR W9=4 TO LEN(CD$) STEP 3:IF MID$( 

CD$,W9,1)=AM$ THEN LW=W9:W9=1121121 
11219121 NEXT W9:IF W9<1121121 THEN PRINT"{RVS}IL 

LEGAL ADDRESSING MODE":GOTO 3121121 
11121121 MV$=MID$(CD$,LW+l,2):N$=MV$:GOSUB 7121 

121121 
111121 POKE PC,V:IF IL=l THEN 114121 
112121 POKE PC+l,FO:IF IL=2 THEN 114121 
113121 POKE PC+2,SO 
114121 N=PC:GOSUB 9121121121:PC$=R$:PC=PC+IL 
115121 N=FO:GOSUB 9121121121:FO$=R$:N=SO:GOSUB 9121 

I2II21:S0$=R$ 
116121 IF IL<3 THEN SO$="{2 SPACES}" 
117121 IF IL<2 THEN FO$="{2 SPACES}" 
1175 IF AM$="H" THEN 01$="A" 
118121 PRINT# 1,T LEFT$("{4 SPACES}",4-LEN( 

STR$(T») PC$ " ": 
119121 PRINT# 1,MV$ " " RIGHT$(FO$,2) " " R 

IGHT$(SO$,2) " ": 
12121121 PRINT# 1,LB$ LEFT$("{7 SPACES}",7-LE 

N(LB$» OC$ LEFT$("{4 SPACES}",4-LEN 
(OC$» : 

121121 PRINT# 1,01$:01$="" 
122121 NEXT T:CLOSE l:GOTO 3121121 
13121121 IF CM$<>"C" THEN 32121 
131121 FOR T=l TO MEM:IF LEN(A$(T»>2 THEN 

(SPACE} 134121 
132121 FOR TT=MEM TO T+l STEP -l:IF LEN(A$( 

TT»>2 THEN A$(T)=A$(TT):MARK=TT 
133121 NEXT TT:A$(MARK)="" 
134121 NEXT T 
135121 GOTO 3121121 
3999 END 
4121121121 IN$="":NL=I2I:PRINT TAB(TB): 

202 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
V 

U 

U 

U 

U 

U 

U 

U 

u 
U 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 



,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, . 

,-, 
,-, 
,-, 
,-, 
,-, 
,-, 
,-, 

Advanced 8 
Memory 

41:721:7 PRINT"{RVS} {OFF}{LEFT}", 
41:731:7 GET GT$:IF GT$="" THEN 41:731:7 
41:731 IF GT$>"Z" OR GT$<" " AND GT$<> CHR$ 

{13} AND GT$<>CHR${21:7} THEN 41:731:7 
4035 NL=NL+l 
41:741:7 IF GT$=CHR$ { 21:7} OR GT$=CHR$ {l3} THEN 

4l1:71:7 
41:745 IF GT$=" " THEN PRINT" ",:RETURN 
41:751:7 PRINT GT$,:IN$=IN$+GT$ 
41:761:7 IF NL=LT THEN 411:71:7 
41:771:7 GOTO 41:721:7 
411:71:7 IF GT$<>CHR${21:7} THEN 4151:7 
411:75 IF LEN{IN$}<2 THEN 4120 
4111:7 PRINT" {2 LEFT}"nNL=NL-2:IN$=LEFT${ 

IN$,LEN{IN$}-l}:GOTO 41:721:7 
4121:7 IF LEN{IN$}=1:7 THEN NL=NL-l:GOTO 41:721:7 
4131:7 PRINT" {2 LEFT}",:NL:-:NL-2:IN$='"':GOT 

o 4020 
4l51:7 IF GT$=CHR$(13} THEN PRINT" " 
4161:7 RETURN 
51:71:71:7 DATA ADCN6DS65I69K7DL79P61071Q75 
51:711:7 DATA ANDN2DS25I29K3DL39P21031Q35 
51:721:7 DATA ASLHI:7ANI:7ESI:76KIEQ16 
51:731:7 DATA BCCJ91:7,BCSJBI:7,BEQJF1:7 
51:761:7 DATA BITN2CS24 
51:771:7 DATA BMIJ31:7,BNEJDI:7,BPLJ10,BRKGI:71:7 
5111:7 DATA BVCJ51:7,BVSJ71:7,CLCG1S,CLDGDS 
5151:7 DATA CLIG5S,CLVGBS 
5171:7 DATA CMPNCDSC5IC9KDDLD9PCI0DIQD5 
51S1:7 DATA CPXNECSE4IE1:7 
5191:7 DATA CPYNCCSC4IC1:7 
521:71:7 DATA DECNCESC6KDEQD6 
5211:7 DATA DEXGCA,DEYGSS 
5231:7 DATA EORN4DS45I49K5DLS9P41051Q55 
5241:7 DATA INCNEESE6KFEQF6 
5251:7 DATA INXGES,INYGCS 
5271:7 DATA JMPN4CM6C 
52S1:7 DATA JSRN21:7 
5291:7 DATA LDANADSA5IA9KBDLB9PAI0BIQB5 
531:71:7 DATA LDXNAESA6IA2LBERB6 
5311:7 DATA LDYNACSA4IAeKBCQB4 
5321:7 DATA LSRB4AN4ES46KSEQ56 
5331:7 DATA NOPGEA 
5341:7 DATA ORANI:7DSI:7SII:79KIDL19PI:71011Q1S 
5351:7 DATA PHAG4S,PHPGI:7S,PLAG6S,PLPG2S 
5391:7 DATA ROLH2AN2ES26K3EQ36 
541:71:7 DATA RORB6AN6ES66K7EQ76 
5410 DATA RTIG41:7,RTSG60 
5430 DATA SBCNEDSE5IE9KFDLF9PEI0FIQF5 

203 



U 

8 Advanced 
U 

Memory U 

U 

U 
5440 DATA SECG38,SEDGF8,SEIG78 
5470 DATA STAN8DS85K9DL99P81091Q95 U 
5480 DATA STXN8ES86R96 
5490 DATA STYN8CS84Q94 U 
5500 DATA TAXGAA,TAYGA8,TSXGBA,TXAG8A 

U 5510 DATA TXSG9A,TYAG98 
6000 AD=0 U 
6005 Q$=LEFT$(OP$,l):IF Q$="$" OR Q$="%" 

{SPACE}OR (ASC(Q$»64 AND ASC(Q$)<91 U 
)THEN6030 

6010 IF ASC(Q$»47 AND ASC(Q$)<58 THEN 60 U 
30 

U 6020 OP$=RIGHT$(OP$,LEN{OP$)-l):GOTO 6000 
6030 Q$=RIGHT${OP$,l):Ql=ASC{Q$):IF (Ql>4 U 

7 ANDQl<58)OR{Ql>64 AND Ql<91)THEN60 
50 U 

6035 IF Q$="+" THEN 6050 
6040 OP$=LEFT$(OP$,LEN{OP$)-l):GOTO 6030 U 
6050 IF RIGHT$(OP$,2)=",X" THEN OP$=lJEFT$ 

(OP$,LEN{OP$)-2) u 
6052 IF RIGHT$(OP$,2)=",Y" THEN OP$=LEFT$ 

U (OP$,LEN(OP$)-2) 
6053 IF RIGHT$(OP$,l)=")" THEN OP$=LEFT${ U 

OP$,LEN{OP$)-l) 
6055 IF LEFT${OP$,l)="$" THEN N$=OP$:GOSU U 

B 7000:NUMBER=V:GOTO 6100 
6060 IF LEFT${OP$,l)="%" THEN N$=OP$:GOSU U 

B 8000:NUMBER=V:GOTO 6100 
U 6070 IF ASC(LEFT${OP$,1»<58 THEN NUMBER= 

VAL{OP$):GOTO 6100 U 
6075 IF RIGHT$(OP$,l)="+" THEN AD=AD+l:OP 

$=LEFT$(OP$,LEN{OP$)-l):GOTO 6075 U 
6080 FOR Wl=l TO M2:IF S$(Wl)=OP$ THEN NU 

MBER=V{Wl):Wl=999 U 
6090 NEXT Wl:IF Wl=M2+1 THEN PRINT"{RVS}U 

U NDEFINED SYMBOL ERROR":GOTO 300 
6100 NU=NU+AD:RETURN U 
7000 IF LEFT${N$,l)="$" THEN N$=RIGHT$(N$ 

,LEN(N$)-l) u 
7010 V=0:IF LEN(N$)=4 THEN 7030 
7020 N$=LEFT${"0000",4-LEN(N$»+N$ U 
7030 FOR R2=1 TO 4:D$=MID$(N$,R2,1):TV=AS 

U C{D$)-48:IF TV>9 THEN TV=TV-7 
7040 V=TV*16f{4-R2)+V:NEXT R2:RETURN U 
8000 IF LEFT${N$,l)="%" THEN N$=RIGHT${N$ 

,LEN{N$)-l) U 
8010 V=0:FOR Z=LEN(N$) TO 1 STEP -l:V=V+V 

AL{MID${N$,Z,1»*2f{LEN(N$)-Z):NEXT u 
{SPACE}Z u 

204 
U 

u 
U 



Advanced 8 
Memory 

813213 RETURN 
9131313 FD=INT(N/4f396):N=(N/4f396-FD)*4f396:SD 

=INT(N/256):N=(N/256-SD)*256 
913113 TD=INT(N/16):N=INT«N/16-TD)*16):R$= 

MID$(H$,FD+l,I)+MID$(H$,SD+l,l) 
913213 R$=R$+MID$(H$,TD+l,I)+MID$(H$,N+l,l) 

: RETURN 
113131313 IF A$(T)="" THEN OC$="":LB$="":GOTO 

11311313 
11313135 LI(1)=f3:LI(2)=f3:LI(3)=f3:LI=f3 
11313113 FOR R2=1 TO LEN(A$(T»:IF MID$(A$(T 

),R2,1)=" " THEN LI=LI+1:LI(LI)=R2 
11313213 NEXT R2:IF LI(3)=f3 THEN LI(3)=R2-1 
11313313 LB$=LEFT$(A$(T),LI(I»:OC$=MID$(A$( 

T),LI(I)+1,LI(2)-LI(I» 
11313413 OP$=RIGHT$(A$(T),LI(3)-LI(2)+I) 
1131350 IF LB$=" " THEN LB$="":GOTO 11313713 
11313613 LB$=LEFT$(LB$,LEN(LB$)-l) 
11313713 OC$=LEFT$(OC$,LEN(OC$)-I) 
11313813 IF OP$=" " THEN OP$="":GOTO 11311313 
11313913 OP$=RIGHT$(OP$,LEN(OP$)-l) 
11311313 RETURN 
11131313 PRINT"{CLR}":PRINT"{3 SPACES}THE AS 

SEMBLER STARTS WITH THE FIRST" 
1113113 PRINT"LINE OF THE MACHINE PROGRAM T 

o BE":PRINT"ENTERED." 
1113213 PRINT:PRINT"{3 SPACES}THIS IS INDIC 

ATED BY THE NUMBER I," 
1113313 PRINT"AND A WHITE CURSOR BESIDE IT. 

THIS" 
1113413 PRINT"MEANS THAT YOU ARE AT LINE 1 

{SPACE}AND IT IS" 
111350 PRINT"WAITING FOR INPUT INTO THE LA 

BEL FIELD." 
111360 PRINT:PRINT"{3 SPACES}IF YOU TYPE T 

o THE END OF THE FIELD," 
1113713 PRINT"HIT {RVS}SPACE{OFF}, OR HIT 

{RVS}RETURN{OFF},YOU WILL JUMP" 
111380 PRINT"TO THE NEXT FIELD.":PRINT 
1113913 PRINT"{3 SPACES}THE LENGTH OF THE 

{RVS}LABEL{OFF} FIELD IS" 
1111313 PRINT"{RVS}6{OFF} CHARACTERS, THE 

{RVS}OPCODE{OFF} FIELD IS {RVS}3 
{OFF}," 

111113 PRINT"AND THE {RVS}OPERAND{OFF} FIE 
LD {RVSl1f3{OFF}." 

111213 PRINT: PRIN'l'" {3 SPACES} A {RVS} SPACE 
{OFF} OR {RVS}RETURN{OFF} IN THE 
{RVS}OPERAND{OFF}" 

205 



8 Advanced 
Memory 

11130 PRINT"FIELD WILL PUT YOU AT THE BEG 
INING OF" 

11140 PRINT"THE NEXT LINE." 
11150 PRINT:PRINT"{RVS}TYPE ANY KEY TO CO 

NTINUE." 
11160 GET Z$:IF Z$="" THEN 11160 
11170 PRINT"{CLR}":PRINT"{3 SPACES}THERE 

{SPACE}ARE TWO SPECIAL COMMANDS YOU 
" 

11180 PRINT"CAN TYPE WHILE IN THE {RVS}LA 
BEL FIELD{OFF} THESE" 

11190 PRINT"ARE {RVS}FIX{OFF}, AND {RVS}E 
XIT{OFF}." 

11200 PRINT: PRINT" {2 SPACES}{RVS}FIX{OFF} 
RETURNS YOU TO THE PREVIOUS LINE," 

11210 PRINT"SO THAT YOU CAN CORRECT ANY M 
ISTAKES.":PRINT 

11220 PRINT"{2 SPACES}{RVS}EXIT{OFF} TAKE 
S YOU OUT OF 'l.'HE INPUT" 

11230 PRINT"MODE, AND INTO THE ASSEMBLY/E 
DIT MODE." 

11240 PRINT:PRINT"{3 SPACES}WHEN IN THE 
{RVS}ASSEMBLY/EDIT{OFF} MODE A" 

11250 PRINT"MENU WILL BE DISPLAYED. THE C 
OMMANDS":PRINT"ARE AS FOLLOWS:" 

11260 PRINT:PRINT" C COMPACT THE LISTING 
{SPACE}(ELIMINATE":PRINT"{4 SPACES} 
EMPTY LINES)." 

11270 PRINT" I INPUT MORE CODE (AFTER EDI 
TING) ." 

11280 PRINT"{4 SPACES}THIS ALSO ALLOWS YO 
U TO OVERWRITE" 

11290 PRINT" {4 SPACES} PREVIOUS CODE." 
11295 PRINT:PRINT"{RVS)TYPE ANY KEY TO CO 

NTINUE. {OFF) " 
11296 GET Z$: IF Z$="" THEN 11296 
11300 PRINT"{CLR}":PRINT" D DELETE CODE. 

{SPACE)YOU WILL BE ASKED FOR" 
11310 PRINT"{4 SPACES}STARTING AND ENDING 

LINE NUMBERS." 
11320 PRINT"{4 SPACES}EVERYTHING FROM THE 

FIRST LINE" 
11330 PRINT"{4 SPACES}UP TO, BUT NOT INCLU 

DING THE LAST" 
11340 PRINT"{4 SPACES)WILL BE DELETED. TO 

DELETE ONE" 
11350 PRINT"{4 SPACES) LINE, TYPE IT'S NUM 

BER IN BOTH":PRINT"{4 SPACES}PLACES 
" 

206 

u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 

u 



AdvancedS 
Memory 

11360 PRINT" N INSERT CODE. YOU WILL BE A 
SKED THE" 

11370 PRINT"{4 SPACES}INSERTION POINT AND 
THE #: OF LINES" 

11380 PRINT"{4 SPACES}TO BE INSERTED." 
11390 PRINT" L LIST. YOU WILL BE ASKED FO 

R THE" 
11400 PRINT"{4 SPACES}BEGINING AND ENDING 

LINE NUMBERS." 
11402 PRINT" S SAVE. YOU WILL BE ASKED FO 

R THE" 
11404 PRINT"{4 SPACES}FILENAME OF FILE TO 

BE SAVED." 
11406 PRINT" 0 LOAD. YOU WILL BE ASKED FO 

R THE" 
11408 PRINT"{4 SPACES}FILENAME OF FILE TO 

BE LOADED." 
11410 PRINT" A ASSEMBLE. YOU WILL BE ASKE 

D TO PICK" 
• 11420 PRINT" {4 SPACES}SCREEN OR PRINTER. 

{SPACE}AFTER ASSEMBLY" 
11430 PRINT"{4 SPACES}THE CODE IS IN MEMO 

RY." 
11440 PRINT" Q QUIT THE PROGRAM. IF HIT A. 

CCIDENTALY" 
11450 PRINT"{4 SPACES}YOU CAN RETURN TO P 

ROGRAM WITH" 
11460 PRINT"{4 SPACES}{RVS}GOTO 300{OFF}. 

" 
11465 PRINT:PRINT"{RVS}TYPE ANY KEY TO CO 

NTINUE. {OFF}" 
11466 GET Z$: IF Z$="" THEN 11466 
11470 PRINT"{CLR}":PRINT"{3 SPACES}VARIAB 

LES ARE DEFINED WITH THE" 
11480 PRINT"VARIABLE NAME IN THE LABEL FI 

ELD, AN" 
11490 PRINT"'=' IN THE OPCODE FIELD, AND 

{SPACE}THE MEMORY" 
11500 PRINT"LOCATION OF THE VARIABLE' IN T 

HE OPERAND":PRINT"FIELD." 
11510 PRINT:PRINT"{3 SPACES}THE FIRST LIN 

E,AND ONLY THE FIRST" 
11520 PRINT"LINE, SHOULD BE USED TO DEFIN 

E THE" 
11530 PRINT"ORIGIN OF PROGRAM LOCATION. T 

HIS IS" 
11540 PRINT"DONE WITH AN '.' IN THE LABEL 

FIELD, AND" 
11545 PRINT"THE REST AS IN VARIABLES." 

207 



8 Advanced 
Memory 

ll550 

ll560 

ll570 

ll580 

ll590 

ll600 

ll605 

ll606 
ll6HJ 

ll620 

ll630 

ll640 

ll650 

ll660 

ll670 

ll680 

ll690 

ll700 

ll710 

ll720 

ll730 

ll740 

ll750 

ll760 
ll770 

ll780 

208 

PRINT:PRINT"{3 SPACES}THE FOLLOWING 
CONVENTIONS HOLD:":PRINT 

PRINT"{4 SPACES}# IMMEDIATE ADDRESS 
ING" 
PRINT"{4 SPACES}$ HEXADECIMAL NUMBE 
R (UP TO 4 CHAR)" 
PRINT"{4 SPACES}% BINARY (UP TO 9 C 
HAR) " 
PRINT"{4 SPACES}A ACCUMULATOR ADORE 
SSING" 
PRINT:PRINT"{3 SPACES}DECIMAL ASSUM 
ED BY DEFAULT." 
PRINT:PRINT"{RVS}TYPE ANY KEY TO CO 
NTINUE. {OFF}" 
GET Z$: IF Z$="" THEN 11606 
PRINT"{CLR}":PRINT"{3 SPACES}A SYMB 
OL MUST BEGIN WITH A LETTER," 
PRINT"AND CONTAIN ONLY LETTERS AND 
{SPACE}NUMBERS." 
PRINT:PRINT"{3 SPACES}BECAUSE 'A' I 
S USED IN ACCUMULATOR" 
PRINT"ADDRESSING, IT IS AN ILLEGAL 
{SPACE} SYMBOL. IT" 
PRINT"CAN BE USED WITH OTHER CHARS 
{SPACE}HOWEVER." 
PRINT:PRINT"{3 SPACES}ADDITION WITH 
IN THE OPERAND FIELD IS" 
PRINT"NON-STANDARD. ONLY SYMBOLS CA 
N BE ADDED" 
PRINT"TO. ADDITION IS DONE BY FOLLO 
WING THE" 
PRINT"SYMBOL WITH PLUS SIGN(S). THE 

NUMBER OF" 
PRINT"PLUS SIGNS EQUALS THE NUMBER 
{SPACE}TO BE":PRINT"ADDED." 
PRINT:PRINT"{3 SPACES}SELF-MODIFYIN 
G CODE SHOULD BE PLACED" 
PRINT"BEFORE THE CODE THAT MODIFIES 

IT. " 
PRINT:PRINT"{3 SPACES}MEM=200 AND M 
2=100 CAN BE USED FOR" 
PRINT"LONGER PROGRAMS. HOWEVER THIS 

WILL TAKE" 
PRINT"VERY LONG. LARGER VALUES MAY 
{SPACE}RUN OUT OF" 
PRINT"MEMORY." 
PRINT: PRINT" { RVS} 'rYPE ANY KEY TO CO 
NTINUE. {OFF}" 
GET Z$: IF Z$="" THEN 11780 

u 
u 
u 
u 
V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

U 

V 

V 

U 

V 

V 

V 

V 

U 

V 

V 

V 

V 

V 

V 

Vi 



Advanced 8 
Memory 

11790 PRINT"{CLR}":PRINT"{3 SPACES}THE 
{RVS}LOAD{OFF} AND {RVS}SAVE{OFF} C 
OMMANDS LOAD AND" 

11800 PRINT"SAVE SOURCE CODE ONLY," 
11810 PRINT:PRINT"{3 SPACES}TO USE THE MA 

CHINE CODE, FIRST LOAD" 
11820 PRINT"THE SOURCE CODE, THEN ASSEMBL 

E IT," 
11830 PRINT"FINALLY TYPE 'NEW' (THIS WILL 

CLEAR THE" 
11840 PRINT"BASIC PROGRAM) AND 'SYS' TO T 

HE START" 
11850 PRINT"OF THE MACHINE CODE," 
11860 PRINT:PRINT"{3 SPACES}A NEW BASIC P 

ROGRAM CAN ALSO THEN BE" 
11870 PRINT"TYPED IN TO USE THE MACHINE C 

ODE," 
11880 PRINT: PRINT" {RVS}TYPE A..>qy KEY TO CO 

NTINUE. {OFF}" 
11890 GET Z$: IF Z$="" THEN 11890 
11900 RETURN 
12000 PRINT"LOADING NEW FILE WILL DESTROY 

OLD FILE.":PRINT"LOAD ? (YiN)" 
12003 GET Z$:IF Z$="" OR (Z$<>"Y" AND Z$< 

>"N") THEN 12003 
12005 IF Z$="N" THEN GOTO 300 
12010 INPUT"FILENAME ":FL$ 
12020 OPEN 1,1,0,FL$:REM FOR TAPE 
12025 REM FOR DISK USE: OPEN 1,8,8,"0:"+F 

L$+"S,R" 
12030 FOR T=1 TO MEM:A$(T)="":NEXT T 
12040 FOR T=1 TO MEM 
12050 GET# 1,IO$:IF IO$=CHR$(13) THEN 12070 
12060 A$(T)=A$(T)+IO$:GOTO 12050 
12070 NEXT T 
12080 CLOSE 1 
12090 GOTO 300 
13000 PRINT"DO YOU WANT TO SAVE FILE? (YiN)" 
13003 GET Z$:IF Z$="" OR (Z$<>"Y" AND Z$< 

>"N") THEN 13003 
13005 IF Z$="N" THEN GOTO 300 
13010 INPUT"FILENAME ":FL$ 
13020 OPEN 1,1,1,FL$:REM FOR TAPE 
13025 REM FOR DISK USE: OPEN 1,8,8,"0:"+F 

L$+"S,W" 
13030 FOR T=l TO MEM 
13040 PRINT# 1,A$(T):CHR$(13): 
13050 NEXT T 
13060 CLOSE 1 
13070 GOTO 300 

209 



8 Advanced 
Memory 

John Heilborn 

Although most people who use BASIC have a fair understanding 
of how data is stored in the compute~ few ever really get a clear 
idea of how the BASIC programs themselves are stored. A special 
part of the computer's operating system called the screen editor 
handles all the dirty work of inserting, deleting, and modifying 
BASIC program lines for you. 

There are, however, some functions that are inaccessible 
through the screen edito~ and utilizing them can make writing 
programs much easier. 

The Mysterious special FUnction SymbOls 
The special symbols provide you with some very powerful pro
gramming features. They can also leave you with some very hard
to-read listings when you have made extensive use of the cursor 
control or color control keys within your programs. For example, 
typing the SHIFT-CLEAR/HOME key combination will put an in
verse video heart in your program line. 

By searching your program lines directly in memory, it is pos
sible to locate each of the special symbols. Once they are located, 
you can convert them into words that describe their actual func
tions. This will leave you with programs that are much easier to 
read and modify. 

Where IS the PrOgram? 
BASIC can store programs in several different places in memory, 
but normally BASIC statements begin at memory location 2049. 
Since the program lines themselves are stored in the same format 
no matter where BASIC puts them, all of the examples in this arti
cle will begin at 2049. 

The figure is a diagram of a BASIC statement. It represents 
the first line in a program. 

As you can see from the figure, the BASIC line is broken up 
into sections. The first two bytes in the line contain the memory 
location of the beginning of the next program line. If you were to 

210 

u 
u 
u 
u 
u 
u 

u 
u 
u 

v 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
--, 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 



Advanced 8 
Memory 

PEEK those locations, you would find that they contain two 
separate numbers which combine to represent a hexadecimal 
number. let's take a closer look at how this works and why it is 
done this way. 

structure of a BASIC statement 
The BASIC statement 

Q Q Q Q 
N N N N 

-------
~ 

Next This o 
BASIC Line's 
Statement Number 

Hexadecimal Numbers 
All of the numbers in the computer are actually stored as binary 
numbers. These are numbers that are made up of only ones and 
zeros. While this may seem like an impractical way to store num
bers, it makes perfect sense to the computer because its circuits 
can operate in only one of two conditions - on or off. The ons are 
represented as ones and the offs are zeros. 

The individual ones and zeros are called bits and the com
bined numbers they make (each of which contains eight bits) are 
called bytes. Because there are eight bits in each byte, each byte 
can represent any number between 0 and 255. Since program line 
numbers in BASIC can be greater than 255, it is necessary to use 
two bytes to represent the line numbers. Two bytes together can 
represent any number between 0 and 65535, but the largest line 
number BASIC allows is 63999. 

LOoking Ahead 
To decode the hexadecimal number, multiply the value stored in 
the second byte (high byte) by 256 and add the result to the value 
in the first byte (low byte). Enter the following program line: 

10 REM THIS IS A TEST 

Now PEEK memory locations 2049 (low byte) and 2050 (high 
byte). You'll find that they contain the values 22 and 8. Multiply 8 

211 



u 
u 8 Advanced 

Memory U 

U 

U 

by 256 (2048) and add 22 for a total of 2070. Therefore, the next V 

program line will begin at memory location 2070. u 

UneNumbers V 
The next two memory locations (2051 and 2052) contain the pro- U 
gram line number. The values youl1 get by PEEKing these loca-
tions are 10 and O. Once again, multiply the second number by u 
256 and add it to the first number. This time the result is 10 - our U 
line number! 

Now let's renumber this program. POKE location 2051 with v 
the value 100: 

U 
POKE 2051, 100 

V 
and LIST the program. The line number should now be 100. 
POKEing 100 into location 2052 will cause the line number to V 

jump to 25700. v 
TOkens v 
Every BASIC command has a corresponding token. The token is a 
single number that represents the command. For example, if you V 

PEEK location 2053, the computer will display the tokenized U 
value for the REM statement, 143. The table below contains all of 
the BASIC statements and their tokens. U 

BASIC TOkens v 

END 128 WAD 147 FN 165 FRE 184 V 

FOR 129 SAVE 148 SPC 166 POS 185 U NEXT 130 VERIFY 149 THEN 167 SQR 186 
DATA 131 DEF 150 NOT 168 RND 187 U 
INPUT # 132 POKE 151 STEP 169 LOG 188 
INPUT 133 PRINT # 152 + 170 EXP 189 U 

DIM 134 PRINT 153 - 171 COS 190 V 
READ 135 CONT 154 * 172 SIN 191 
LET 136 LIST 155 I 173 TAN 192 U 
GOTO 137 CLR 156 t 174 ATN 193 
RUN 138 CMD 157 AND 175 PEEK 194 V 

IF 139 SYS 158 OR 176 LEN 195 U 
RESTORE 140 OPEN 159 > 177 STR$ 196 
GOSUB 141 CLOSE 160 178 VAL 197 U 
RETURN 142 GET 161 < 179 ASC 198 

U REM 143 GET # SGN 180 CHR$ 199 
STOP 144 NEW 162 INT 181 LEFT$ 200 v 
ON 145 TAB ( 163 ABS 182 RIGH'I$ 201 
WAIT 146 TO 164 USR 183 MID$ 202 v 

GET # has no separate token. U 

212 V 

U 



Advanced 8 
MemOry 

Changing the value in location 2053 can modify the BASIC 
statement. Change the value in 2053 to 153 with: 

POKE 2053, 153 

Now LIST the program. You have changed the REM statement in
to a PRINT statement! RUN the program to show that the change 
is genuine. 

Special Function Codes 
The special function codes enable you to use some of the 
keyboard control functions that are ordinarily accessible only in 
immediate mode. For example, pressing the key marked CTRL 
and one of the number keys at the top of the keyboard will change 
the color of the characters as they are printed on the screen. By 
using the CHR$ code for that function within a program line, you 
can use the same feature within a program. Enter this line: 

10 PRINT II {RVS}'{RED}RED, {WHT} WHITE, 
{OFF}AND{RVS}g7~BLUE" 

For a complete table of all the special function codes, look at 
the Commodore 64 User's Guide that came with your computer. The 
special function codes are listed with the rest of the CHR$ func
tions in Appendix F. 

ASCllData 
The rest of the information in your programs is stored as ASCII 
data. In other words, if you PEEK a location that has a standard 
character stored in it, it will contain the number that is the ASCII 
value of that character. Enter these lines: 

10 PRINT "THIS IS TEXT" 
20 FOR R=2054 TO 2069 
30 PRINTR;PEEK{R);CHR$(PEEK(R» 
40 NEXT 

This routine displays the data as it would normally be printed 
and then displays the data by memory location, ASCII value, and 
CHR$ code. With this display, it is easy to see that changing a 
value in one of the memory locations between 2056 and 2067 will 
allow you to modify the text directly. 

Zero as a Marker 
Each BASIC statement stored in memory ends with a zero (see 
the figure), which serves as an "end of statement" marker. Note 

213 



8 Advanced 
Memory 

that the marker is a byte with the value of zero, whereas zeroes 
within the statement - for example, the two zeroes in the state
ment GOIO 100 - are stored as the ASCII representation of zero, 
which is 48. 

The zero byte has two other uses in BASIC. The first byte in 
the BASIC RAM area (before the first BASIC statement) must con
tain a zero. Try a PEEK(2048) to check this. Also, two zero bytes as 
the address of the next program line indicate that the end of the 
BASIC program has been reached, so BASIC programs always 
end with three zero bytes in a row. 

EasyUster 
BASIC program listings as they normally appear on the screen 
can be hard to understand. It's difficult to remember what all the 
special characters appearing as inverse video symbols are sup
posed to represent. The following program makes listings much 
easier to read. It goes through the BASIC program in memory 
byte by byte and interprets each BASIC token, special symbol, or 
graphics character. 

To display all of the special symbols and characters, you need 
to generate two tables in memory that contain all the possible 
codes that can appear in a program line. In the program below, 
these are called table A$ and table B$. Table A$ contains the token
ized BASIC commands and table B$ contains the CHR$ codes for 
the graphics characters and the descriptions of the special 
functions. 

To use the program, type it in carefully and SAVE it to tape or 
disk. You can test the program by having it list itself if you tem
porarily omit line 62040 and type RUN. When you wish to make a 
listing, follow these steps to append the Easy Lister program to 
the program you wish to list: 

1. Tell the computer where the end of your current program is 
by typing: 

POKE 43,PEEK(45)-2:POKE 44,PEEK(46) 

2. WAD the Easy Lister program from tape or.disk. 
3. Restore BASIC to its normal starting condition by typing: 

POKE 43,1:POKE 44,8 

When you LIST the program now you should see your original 
program with the lister program added to the end. Activate the 
lister by typing: 

RUN 61000 

214 

u 
u 
u 
u 
u 
u 
u 

u 
u 
v 

u 
u 
v 

v 
u 

v 

v 
u 
u 
u 
v 

u 

u 
u 

u 
u 
u 
u 
u 
v 
v 
v 

u 
v 
v 

v 



Advanced 8 
Memory 

The program as presented assumes that your printer is con
nected as device 4, which is standard for Commodore printers. H 
you are using an RS-232 printer connected as device 2, delete line 
62010 and replace line 61000 with: 

61000 OPEN 1,2,0 

An OPEN statement for device 2 should come before the string 
arrays A$ and B$ are defined because OPENing an RS-232 chan
nel allocates memory for input and output buffers which can 
cause a loss of data in string variables. H you wish to list to the 
screen instead of a printer, simply delete line 62010 and change 
the PRINT #1, statements in lines 62050, 62080, 62110, and 62120 to 
PRINT. 

creating Tables in Memory 
61000 REM ---- SET UP 'A' TABLE 
61010 DIMA$(255),B$(255):FOR R=1 TO 31 
61020 A$(R)="CHR$("+RIGHT$(STR$(R),LEN(ST 

R$(R»-1)+I)":NEXT 
61030 FOR R=32 TO 90 
61040 A$(R)=CHR$(R):NEXT 
61050 FOR R=91 TO 127 
61060 A$(R)="CHR$("+RIGHT$(STR$(R),LEN(ST 

R$(R»-1)+I)":NEXT 
61070 DATA END,FOR,NEXT,DATA,INPUT#,INPUT 

, DIM, READ, LET, GOTO, RUN, IF, RESTORE 
61080 DATA GOSUB,RETURN,REM,STOP,ON,WAIT, 

LOAD, SAVE, VERIFY, DEF, POKE 
61090 DATA PRINT#,PRINT,CONT,LIST,CLR,CMD 

,SYS,OPEN,CLOSE,GET,NEW,TAB(,TO,FN, 
SPC 

61100 DATA THEN,NOT,STEP,+,-,*,/,t,AND,OR 
,>,=,<,SGN,INT,ABS,USR,FRE,POS,SQR, 
RND 

61110 DATA LOG,EXP,COS,SIN,TAN,ATN,PEEK,L 
EN, STR$,VAL,ASC,CHR$,LEFT$, RIGHT$,M 
ID$ 

61120 FOR R=128 TO 202 
61130 READ A$(R): NEXT 
61140 FOR R=203 TO 255 
61150 A$(R)="CHR$("+RIGHT$(STR$(R),LEN(ST 

R$(R»-1)+")":NEXT 
61160 REM ---- SET UP 'B' TABLE ----
61170 DATA 5,WHITE,17,CURSOR DOWN, 18,REVE 

RSE ON,19,HOME,20,DELETE,28,RED,29 

215 



U 

Advanced U 

Memory u 
U 

U 
6118" DATA CURSOR RIGHT,3",GREEN,31,BLUE, U 999 
6119((J READ X:IF X=999 THEN 6121" U 
612"" READ X$:B$(X)=CHR$(91)+X$+CHR$(93): 

GOTO 6119" U 
6121" FOR R=32 TO 128: B$(R)=A$(R):NEXT 
6122((J DATA 129,ORANGE,133,F1,134,F3,135,F U 

5,136,F7,137,F2,138,F4,139,F6,14",F 
U 8 

6123" DATA 144,BLACK,145,CURSOR UP,146,RE U 
VERSE OFF, 147, CLEAR HOME, 148, INSERT 

6124((J DATA 149,BROWN,15",LIGHT RED,151,GR U 
EY 1,152,GREY 2,153,LIGHT GREEN,154 

6125((J DATA LIGHT BLUE,155,GREY 3,156,PURP U 
LE,157,CURSOR LEFT,158,YELLOW,159,C 

U YAN 
6126((J DATA 999 U 
6127((J READ X: IF X=999 THEN 6129((J 
6128" READ X$:B$(X)=CHR$(91)+X$+CHR$(93): U 

GOTO 6127" 
6129((J FOR R=16((J TO 255:B$(R)="CHR$("+RIGH U 

T$(STR$(R),LEN(STR$(R»-l)+")":NEXT 
U 62((J((J((J REM --- READ BASIC STATEMENTS 

62"1" OPEN 1,4 U 
62"2fJ A=2((J51:C=1 
62((J3fJ R=PEEK(A)+«PEEK(A+1»*256) u 
62"4fJ IF R>=61((J"" THEN 6213" 
62"5fJ PRINTi1,RIGHT$(STR$(R),LEN(STR$(R» U 

-1):" " . , 
62"6" A=A+2:GOT062((J9" U 
62((J7" IF(PEE~(A)=((J)AND(PEEK(A+1)=")THEN 6 U 213((J 
62"8" IF PEEK(A)=((J THEN A=A+3:PRINT#1:GOT U 

o 62"3" 
62((J9((J IF PEEK(A)=34 THEN C=C*-l U 
621((J((J IF C=-l THEN 6212" 

U 6211((J PRINTi1,A$(PEEK(A»;:A=A+1:GOT062"7 
((J u 

6212" PRINTi1,B$(PEEK(A»;:A=A+1:GOT062"7 -((J U 
6213((J CLOSE l:END 

U 

V 

U 

U 

U 

U 

216 u 
V 



r--, 

r--, 

r--, 

r--, 

r--, 

r--, 

r-, 

~ 

~ 

(", 

r--, 

r--, 

r--, 

r--, 

r--, 

r-"l 
r--, 

r--, 

r--, 

r--, 

r--, 

r--, 

I'"'"') 

r--, 

r--, 

r--, 

I'"'"') 

r-'\ 

~ 

(""1 

r--, 

r--, 

I'"'"') 

~ 

~ 

~ 

Advanced 8 
Memory 

Micromon-64 
Bill Vee 

A machine language monitor is an essential tool for developing 
and debugging assembly language programs. It is especially use
ful on the Commodore 64 as it provides a much more powerful 
way to explore the inner workings of the computer. Micromon-64 
is just such a monitor. It is based on my version of Micromon for 
theVIC-20. 

Commands 
What follows is a listing of all the commands available with 
Micromon-64. The listing includes a short explanation and the 
format needed. 

ASsembler 
.A 401F AO 14 03 LDA $0314 CHECK IRQ VECIOR 
.A 4022 AE 15 03 LOX $0315 
.A 4025 C9 91 CMP #$91 
.A 4027 00 04 BNE $4020 
.A 4029 
The initial input of this command requires a starting address in 
hexadecimal. Once you have input one line, the assembler out
puts the command letter A followed by the address of the next in
struction. Assembler instructions are all3-character mnemonics 
followed by an optional operand field. Operand data is taken to 
be hexadecimal and must be prefixed with a $. Immediate data 
must be further prefixed with a #. All address references are spec
ified in hexadecimal and are absolute. Relative branches are calcu
lated by the assembler by using the difference between the target 
and the current addresses of the branch. A colon (:) can be used 
to terminate a line so that comments can follow. To exit the 
assembler, hit the RETURN key after the address prompt. 

Break Set 
.B 2000 0010 

Break Set allows you to break execution of code after a specified 
address has occurred for a specified number of times. Code 
execution must be started with the Quick trace command. If no 

217 



8 Advanced 
Memory 

count is specified, execution stops at first occurrence of the speci
fied address. For th~ example, execution breaks on the sixteenth 
time the instruction at location $2000 is executed. 

Compare Memory 
,C 2000 2FFF COOO 

Comparison of two memory blocks is done with output of 
addresses of the locations in the first block that have data bytes 
mismatching data bytes in corresponding relative locations in the 
second block. The command requires that the low and high 
addresses of the first block be specified followed by the low 
address of the second block. For the example, the first memory 
block from $2000 to $2FFF is compared to the second memory 
block from $COOO to $CFFF. Compare can be stopped by hitting 
the RUN/SIDP key during output of mismatched data location 
addresses. 

Disassembler 
,0 4015 401C 

" 4015 A9 OF LOA #$OF 

" 4017 A2 45 LOX #$45 

" 4019 80 16 03 STA $0316 

" 401C 8E 17 03 STX $0317 

A block of code can be disassembled and printed by specifying 
the low and high addresses for the block. The RUN/SIDP key can 
be used to halt output. If only one address is specified, then only 
the instruction at that address is disassembled. 
,0 4001 
" 4001 4C 15 40 IMP $4015 

Machine code can be edited by using the CRSR keys to move to 
and modify the bytes. Hit the RETURN key to enter the changes 
into memory. The new code is disassembled and redisplayed on 
the same line. Also, the address of the next instruction is dis
played on the following line to assist you in making further 
changes. However, if you disassemble a block of code and then 
make a change in the middle of the block on the screen, take care 
you don't overwrite more than you intended by hitting the 
RETURN key too many times. In other words, don't hit RETURN 
while the cursor is sitting on a line beginning with a comma 
followed by an address plus one or more data bytes unless you 
want to change and disassemble that instruction. The comma is a 

218 

v 
V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

U 

U 

V 

V 

U 

V 

V 

U 

U 

U 

U 

U 

U 

u 
U 

U 

U 

v 
V 

U 

U 

V 

u 



AdvancedS 
Memory 

"hidden" command which you can use to enter hexadecimal data 
into memory with disassembly of the data as you enter it. Hitting 
RETURN with no data after the address gets you out of the com
mand. Moving the cursor to the top or bottom of the screen with 
one or more disassembled lines displayed causes disassembly 
down or up in memory respectively. 

exit Mlcromon 
.E 
Restore the IRQ and BRK interrupt vectors, reset the tape buffer to 
$033C, and then exit to the BASIC environment. The E command 
should be used to exit Micromon when the normal LOAD, SAVE, 
and VERIFY commands are to be used in the BASIC environ
ment. Always use SYS49152 to access or reenter Micromon-64 
located at $COOO. 

Fill Memory 
.F 2000 3FFF 00 
.F 4000 47FF FF 

Fill a block of memory with the data byte specified. Memory is 
written from low to high, and no check is made on the writes. For 
the first example, memory area from $2000 to $3FFF is zeroed. For 
the second example, memory area from 14000 to $47FF has the 
bits set to all ones. 

Co Run 
.G 
.G 2000 

The register image shown by the register display command is set 
into the microprocessor registers prior to execution of machine 
language code at full speed. For the first example, execution be
gins at the address given for PC (Program Counter) in the register 
display. For the second example, execution begins at the address 
specified, which is $2000. 

You should have a BRK instruction (value 00) in your code to 
generate a breakpoint for software interrupt back into Micromon. 
On BRK, the register image is saved and displayed. Also, the 
address of the instruction following the BRK is saved in PC for 
execution continuation later if another Go Run command is 
given. If a BRK is never executed, you cannot get back into 
Micromon. The RUN/SIDP and RESIDRE keys can be used to 

219 



8 Advanced 
Memory 

halt execution. A NMI (Non-Maskable Interrupt) is generated 
which puts you into the BASIC environment. A SYS49152 is 
needed to reenter Micromon at $COOO. 

Hunt Memory 
.n 1000 5FFF ~CII CHARACfER STRING 
.n 0000 1000 01 02 03 04 05 06 

A block of memory specified by a low and a high address is 
scanned from low to high for a maximum of 32 characters or bytes 
of data. The address of each occurrence is printed out. During 
address output, the hunt can be stopped with the RUN/SIDP 
key. For the examples shown, the first is for characters and the 
second is a data byte sequence. A match is always found at $0365, 
as that is where the match characters or data are stored. 

Jump to Mlcromon SUbroutine 
.J 3000 

The machine language subroutine at location $3000 is called 
while remaining in the Micromon environment. The subroutine 
must exit by using a RTS (ReTurn from Subroutine) instruction 
which causes a return to the command input section of 
Micromon. The machine image as shown by the register display 
command is not used, nor is it disturbed when the subroutine re
turns to Micromon. 

LOAD Memory from Device 
.L 4000 "TEST FILE" 08 

Search for and, if found, load into memory starting at $4000 the 
data file on device #8 named TEST FILE. Device #8 is the 1541 
floppy disk which requires that a filename be specified. H the de
vice number is not specified, it defaults to device #1, which is the 
cassette tape. For tape, if no filename is specified, the first file 
found is loaded. The last address loaded is determined by the 
length of the data file. The BASIC memory pointers are not af
fected by this load. When loading from tape, the original memory 
addresses and name of the last file read can be inspected by doing 
a memory display of the tape buffer, which is located at $0375 for 
Micromon. 

220 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
U 

u 
U 

U 



r1 

(\ 

1'1 

() 

() 

(\ 

() 

1'1 

() 

() 

() 

1'1 

() 

() 

1'1 

() 

r1 

() 

1'1 

() 

1'1 

() 

1'1 

() 

() 

() 

() 

() 

() 

Memory Display 
oM 4E70 4E80 . 4E70 49 43 32 30 .. 
.. 4E78 52 4F 4D 4F 
.. 4E80 2E 30 20 20 
oM 4E88 
.. 4E88 4C 20 59 45 

20 4D 49 
4E 20 56 
20 42 49 

45 20 32 

43 
31 
4C 

32 

Advanced 8 
Memory 

IC20MIC 
ROMONVl 
.OBIL 

L YEE22 

Display memory in eight-byte segments followed by AScn 
translation. The bytes following the address may be modified by 
moving the cursor over the data and overstriking with the new 
data. Changes are entered into memory when RETURN is hit. As 
with the comma disassembly command, the address of the next 
memory area is output to assist in further changes. The colon is 
also a ''hidden'' command you can use by inputting colon plus 
address and hexadecimal data. If one or more memory display 
lines are on the screen, moving the cursor to the top or bottom of 
the screen causes scrolling and display of the next segment of 
eight bytes down or up in memory. 

NewLOcater 
oN 2000 2003 6000 COOO CFFF 
.N 2FB5 2FFE 6000 COOO CFFF W 
The first example fixes all three-byte instructions in the memory 
area from $2000 to $2003 by adding $6000 to the absolute address 
in the two bytes following the instruction opcode. Any absolute 
addresses found that are outside the range from $COOO to $CFFF 
are not adjusted. Also, if a bad opcode is encountered, the pro
cessing stops with a disassembly and display of the bad opcode. 
The second example searches for two-byte or word addresses, 
and those found in the range from $COOO to $CFFF are adjusted 
by having $6000 added to their value. 

1'1 Offset or Branch calculate 
.0 1004 1000 FA 

Calculate the offset for branch instructions. The first address is for 
the location containing the branch opcode, and the second 
address is the branch target address. Addresses and the resulting 
displayed offset byte are in hexadecimal. 

221 



8 Advanced 
Memory 

Print Switcher 
.P 
H the output is to the screen, then switch the output to the RS-232 
channel (device #2). H the output is not to the screen, restore the 
output to the screen with the RS-232 channel left active until the 
RS-232 output buffer is drained. Note that opening the RS-232 
channel grabs 512 bytes for 110 buffering from the top of BASIC 
memory . 
• P 0000 

Regardless of the output, dear the RS-232 channel and set output 
to the screen. 
.P CCBB 

H the output is to the screen, set CC into the RS-232 command 
register at $0294 and BB into the RS-232 control register at $0293. 
This command is invalid if output is not currently to the screen. 

H you have a VIC printer on the serial 110 port, don't use this 
command for printing. Instead, use the CMD statement in the 
BASIC environment to redirect screen output to the VIC printer 
prior to entering Micromon as follows: 

OPEN4,4:CMD4:SYS491S2:PRINT#4:CIDSE4 

This line causes all screen output to go to the VIC printer until 
you exit Micromon with either the E or X command. The 
SYS49152 is used to access Micromon at $COOO. 

OUICkTraCe 
.Q 
.Q 4000 

Each instruction is executed as in the Walk command, but no out
put occurs. The address specified in the Break Set command is 
checked for the break on the Nth occurrence. Execution is not at 
full speed. Hitting the RUN/SIDP key will break execution which 
displays S* followed by the register image saved. For the first 
example, begin trace at the address in PC of the register display. 
For the second example, begin trace at location $4000. 

Register Display 
.R 

., 

222 

PC IRQ SR AC XR YR SP 
C04E C391 32 32 00 lC F7 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 



Advanced 8 
Memory 

The machine image saved is initialized by execution of a BRK in
struction when Micromon is first entered. This image can be 
modified by positioning the cursor over the register values to be 
changed and overstriking with the new values. The changes are 
entered into the saved image when you hit the RETURN key. The 
semicolon is also a "hidden" command you can. use directly. 

save MemOry to Device 
.S 4000 5000 "TEST FILE" 08 

Save memory from $4000 up to, but not including, $5000 onto de
vice #8, which is the 1541 floppy disk. If the device number is not 
specified, it defaults to device #1, which is the cassette tape. The 
name TEST FILE is placed in the tape file header or in the disk 
directory for the file saved. Note that files saved on tape or disk 
with the Micromon Save command can be loaded back into the 
original memory area while in the BASIC environment. The non
relocating form of the Load command in BASIC must be used. For 
the file saved in the example, executing the line 

LOAD "TEST FILE'~8,1 

while in BASIC will load the data in TEST FILE back to the $4000 
to $4FFF memory area. The BASIC memory pointers will be dis
turbed, so a New command should be executed to reset these 
pointers. Note that the BASIC memory pointers are not disturbed 
by the Micromon Load, Save, or Verify commands. 

Transfer Memory 
.T 4000 4FFF 6000 

Transfer a copy of the data from the memory block at $4000 to 
$4FFF into the memory block at $6000 to $6FFF. Transfer begins at 
the high location of each block. For the example shown, the first 
byte copied is from $4FFF into $6FFF. The last byte copied is from 
$4000 into $6000. This is an important consideration when the 
source and destination memory blocks overlap. 

VerifY Memory from Device 
.v 4000 "TEST FILE" 08 

Search for and, if found, verify against memory starting at $4000 
the data file on device #8 named TEST FILE. Device #8 is the 1541 
floppy disk which requires that a filename be specified. If the de
vice number is not specified, it defaults to device #1, which is the 

223 



8 Advanced 
Memory 

cassette tape. For tape, if no filename is specified, the first file 
found is verified. When verifying from tape, the original memory 
addresses and name of the last file verified can be inspected by 
doing a memory display of the tape buffer which is located at 
$0375 for Micromon. 

walk COde 
.w 
.W 4000 

The walk begins by setting microprocessor registers to the 
machine image shown in the register display. A single instruction 
is executed, an IRQ is generated, and the new machine image is 
saved and displayed as SR, AC, XR, YR, Sp, followed by address, 
machine language, and disassembly of the next instruction to be 
executed. Hitting the RUN/SlOP key stops walking. Hitting the J 
key while walking finishes execution of a subroutine at full speed. 
You can hit J when the next instruction to be executed is the JSR to 
the subroutine to be run at full speed. Or you can hit J when you 
are actually within the subroutine. Walk resumes on return from 
the subroutine. Hitting any other key during walking causes 
execution of the next instruction. Caution: Hitting J when you ar~ 
walking in mainline code will probably cause unpredictable re
sults. The most likely result is an attempted return to BASIC as 
Micromon is accessed by a SYS command and the return address 
is in the stack. For the examples shown, the first begins the walk
ing at the address given by PC of the register display. The second 
begins the walking at a specified address, which is $4000. 

Exit to BASIC 
.X 
Exit to the BASIC environment while leaving the Micromon 
vectors in the IRQ and BRK interrupt vector locations. The tape 
buffer is also left at $0375. This command allows you to operate in 
the BASIC environment but still trap execution of a BRK instruc
tion via Micromon's breakpoint or software interrupt handler. 
However, in addition, certain IRQ interrupt conditions such as 
the moving of the cursor to the top or bottom of the screen with 
output from a 0, M, or $ command displayed will cause scrolling 
and reentry into Micromon via its IRQ interrupt handler. 

224 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 



ASCII Conversion 
· "8 42 66 0100 0010 

AdvancedS 
Memory 

An ASCII, graphics, or control character is input to obtain the 
hexadecimal, decimal, or binary values for the character. 

Decimal conversion 
• # 16706 4142 A 8 0100 0001 0100 0010 

A decimal number is input to obtain the hexadecimal, ASCII 
characters of the two bytes; and binary values for the decimal 
number. 

Hexadecimal conversion 
.$4142 16706 A B 0100 0001 0100 0010 

A hexadecimal number is input to obtain the decimal, ASCII 
characters for the two bytes, and binary values for the hexa
decimal number. The up/down CRSR key can be used to scroll 
the screen to get decreasing/increasing hexadecimal numbers 
converted once you have entered one number with this 
command. 

Binary Conversion 
· %0100000101000010 4142 16706 A 8 

A binary number is input to obtain the hexadecimal, decimal, and 
ASCII characters of the two bytes for the binary number. 

Checksum Memory 
.&: cooo CFFF ASOO 

The data for the memory block from $COOO to $CFFF inclusive is 
byte-summed and displayed. 

COmmand End TOne 
.( 

Enable the command end tone. A continuous tone will be gener
ated at the end of execution of the next command. The tone can 
be turned off but still be enabled by just hitting the RETURN key. 
No tone is generated if there is an error while inputting the next 
command. This command is handy whenever you want to start a 
task that takes a long time to execute in Micromon but do not 

225 



8 Adlvanced 
Memory 

want to continually watch the screen for task completion. Exam
ples are saves and loads of large files to and from the cassette 
tape . 
. ) 
Disable the command end tone. 

Addition 
. + un 2222 3333 

Two hexadecimal numbers are input to obtain their modulo 16 
sum. 

Subtraction 
.- 3333 un 2222 

Two hexadecimal numbers are input, and the second is sub
tracted from the first to obtain their difference. Subtraction is 
done with twos complement arithmetic. 

Disk Directory 

. > 0 "BILL YEE VICDSKl" BY 2A 
17 "COMM-64 MICROMON" PRG 
8 "VIol BOOfSTRAP" PRG 
639 IBIDCKS FREE. 

Input of > followed by RETURN interrogates and displays the 
1541 floppy disk directory on the screen. Output can be halted by 
hitting the RUN/SlOP key. The space bar causes output to wait. 

TYping in Micromon-64 
In order to enter Micromon-64 you must use the "Machine Lan
guage Editor (MLX)" program found in Appendix A and the 
DATA listing found at the end of this article. It is important to read 
the article that accompanies the MLX program. It may seem like 
extra work at first to have to type in two programs, but you'll save 
time later when you end up with a virtually error-free program. 

In order to use MLX you must know the starting and ending 
addresses of Micromon-64. 

The starting address is 49152. 
The ending address is 53247. 
Enter these addresses when prompted by MLX. 

226 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 



Advanced 
Memory 

LOading Micromon from Disk or Tape 
Once you have SAVEd Micromon-64 to disk or tape using the 
Machine Language Editor, you will want to LOAD it back into 
memory for future use. Follow these steps to LOAD from BASIC: 

1. Type NEW and press RETURN. 
2. Type CLR and press RETURN. 

227 



Advanced 
Memory 

3. WAD Micromon-64 
Tape type WAD "MICROMON-64'~l,l 
Disk type WAD "MICROMON-64'~8,l 
Press RETURN 
4. Once Micromon-64 is in memory, type NEW and press 
RETURN. 
5. Type CLR and press RETURN. 
6. Type SYS49152 and press RETURN. 

Relocation 
I located Micromon-64 in the 4K byte address space from $COOO to 
$CFFF. This space is above the BASIC ROM area and so is not in
cluded with the contiguous area defined for BASIC RAM. How
ever, you may still want to relocate Micromon-64 elsewhere, and 
as with VIC Micromon, this version can be relocated with its own 
commands. For example, to relocate it into the $2000 to $2FFF 
memory area, use the following sequence of operations. 
.T COOO CFFF 2000 

The Micromon code at $COOO to $CFFF is copied into the memory 
area from $2000 to $2FFF . 

• - 2000 COOO 

The difference is $6000. This value must be added to all absolute 
address references in Micromon to convert from the $COOO to 
$CFFF range into the $2000 to $2FFF range. The New Locater 
command IS used to do this conversion as follows. 
.N 2000 2003 6000 COOO CFFF 
.N 2012 2E6D 6000 COOO CFFF 

The Micromon machine language code at $2000 to $2FFF and 
$2012 to $2E6D is scanned for absolute address references. Those 
found with values in the range from $COOO to $CFFF are adjusted 
by adding $6000 to give new absolute addresses. These new 
addresses allow the code at $2000 to $2FFF to execute properly in 
that address space. 
.N 2FBS 2FFE 6000 COOO CFFF W 

The Micromon command vector table at $2FBS to $2FFE is 
scanned for two-byte or word addresses. Those found with 
values in the range from $COoo to $CFFF are adjusted by adding 
$6000 to give new absolute addresses. The result is a new set of 
address vectors to allow the Micromon command handler to 
access the command routines in the $2000 to $2FFF address 
space. 

228 

u 
u 
u 
u 
u 
u 
u 

u 
u 
u 
u 
u 
u 
u 

u 
u 
u 

u 
u 
u 
u 
u 
v 

u 
u 
u 
u 
u 

U 

U 

U 

U 

U 

U 

u 

U 



Advancedl8 
Memory 

Finally, there are seven locations which must be changed 
directly. Use the memory display command to display these loca
tions. Change the values by moving the cursor over the old value, 
entering the new value, and hitting the RETURN key to enter the 
changes into memory. If you don't wish to display the current 
contents, you can input the colon command followed by the 
address and new data byte in hexadecimal. Hi~ RETURN to enter 
the data into memory. 

After you have completed all of the operations shown, you can 
save the relocated Micromon code to tape or disk with the 
Micromon SAVE command as follows. 

For tape: 

.S 2000 3000 "NEW FILENAME" 

For disk: 
.S 2000 3000 "NEW FILENAME" 08 

You should leave the original Micromon code for $COOO to 
$CFFF on disk or tape as a permanent backup. The relocated 
Micromon at $2000 to $2FFF can be tested by first exiting 
Micromon at $COOO with the E command. Then, from BASIC en
vironment use SYS8192 to enter the relocated COMM-64 
Micromon code at $2000. To insure that there are no addresses in 
the relocated code still having a value from $COOO to $CFFF, you 
can zap the Micromon code at $COOO to $CFFF with the Fill Mem
ory command as f9llows . 
• F COOO CFFF 00 

Successful execution of this command and subsequent suc
cessful exercising of most of the other Micromon commands 
verify that the code has been relocated properly. As a further 
check, for the version given in this article, relocation to the 

229 



Advanced 
Memory 

memory area from $2000 to $2FFF should include a change of the 
last byte at location $2FFF from $A9 to $E9. This should result in a 
$2000 to $2FFF checksum of $9800 using Micromon's checksum 
memory command. Checksum for Micromon-64 Vl.3 at $COOO to 
$CFFF is $8EOO. 

Micromon-64 
49152 :12~,~76,~21,192,169,~18,~84 
49158 :~32,21~,255,169,157,~32,~93 
49164 :21~,255,~96,~32,~21,253,111 
4917~ :~32,~24,229,169,223,162,~89 
49176 :197,141,~22,~~3,142,~23,~4~ 
49182 :~~3,173,~2~,~~3,174,~21,168 
49188 :~~3,2~1,145,2~8,~~4,224,~53 
49194 :195,24~,~~9,141,~96,~~3,214 
492~~ :142,~97,~~3,~32,164,2~~,174 
492~6 :169,117,133,178,169,128,18~ 
49212 :141,138,~~2,133,157,162,~25 
49218 :215,~32,~96,2~6,142,~72,~61 
49224 :~~3,142,1~~,~~3,~88,~~~,152 
4923~ :2~6,~61,~~3,2~8,~~3,2~6,253 
49236 :~6~,~~3,~32,163,197,162,189 
49242 :~66,169,~42,~76,~77,2~1,2~9 
49248 :169,~63,~32,21~,255,169,226 
49254 :~~~,~44,169,~17,141,~~4,221 
4926~ :212,~32,163,197,169,~46,159 
49266 :~32,21~,255,169,~~~,141,153 
49272 :~78,~~3,141,~86,~~3,141,~6~ 
49278 :1~~,~~3,162,127,154,~32,192 
49284 :156,2~~,2~1,~46,24~,249,2~~ 
4929~ :2~1,~32,24~,245,162,~36,~3~ 
49296 :221,144,2~7,2~8,~19,141,~6~ 
493~2 :~73,~~3,138,~1~,17~,189,221 

493~8 :181,2~7,133,251,189,182,~19 
49314 :2~7,133,252,1~8,251,~~~,~89 
4932~ :2~2,~16,229,~76,~96,192,211 
49326 :162,~~2,2~8,~~2,162,~~~,198 
49332 :lS~,251,2~8,~~9,18~,252,236 
49338 :2~8,~~3,238,~86,~~3,214,17~ 
49344 :252,214,251,~96,169,~~~,15~ 
4935~ :141,~78,~~3,~32,~19,194,153 
49356 :162,~~9,~32,~72,2~1,2~2,114 
49362 :2~8,25~,~96,162,~~2,181,~85 
49368 :25~,~72,189,~83,~~3,149,194 
49374 :25~,1~4,157,~83,~~3,2~2,253 
4938~ :2~8,241,~96,173,~84,~~3,~~9 
49386 :172,~85,~~3,~76,244,192,238 
49392 :165,253,164,254,~56,229,~81 

230 

v 
V 

U 

U 

V 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 
, 

U. 



11 

11 

11 Advanced 8 
Memory 

11 

11 

11 49398 :251,141,083,003,152,229,081 
11 49404 :252,168,013,083,003,096,099 

49410 :169,000,240,002,169,001,071 
11 49416 :141,087,003,032,219,199,177 

49422 :032,163,197,032,240,192,102 
11 49428 :032,049,200,144,024,032,245 

11 
49434 :231,192,144,127,032,089,073 
49440 :193,230,253,208,002,230,124 

11 49446 :254,032,047,201,172,086,062 
49452 :003,208,110,240,232,032,101 

11 49458 :231,192,024,173,083,003,244 
49464 :101,253,133,253,152,101,025 

11 49470 :254,133,254,032,213,192,116 

11 
49476 :032,089,193,032,231,192,069 
49482 :176,081,032,174,192,032,249 

11 49488 :178,192,172,086,003,208,151 
49494 :070,240,235,162,000,161,186 

11 49500 :251,172,087,003,240,002,079 
49506 :129,253,193,253,240,011,153 

11 49512 :032,008,200,032,072,201,137 

11 
49518 :032,225,255,240,042,096,232 
49524 :032,246,199,032,177,201,235 

11 49530 :240,030,174,086,003,208,095 
49536 :028,032,240,192,144,023,019 

11 49542 :096,032,100,200,141,075,010 
49548 :003,032,124,193,173,075,228 

11 49554 :003,129,251,032,047,201,041 
49560 :208,243,076,096,192,076,019 

11 49566 :104,192,032,116,193,032,059 

11 
49572 :156,200,201,039,208~018,218 
49578 :032,156,200,157,101,003,051 

11 49584 :232,032,180,201,240,032,069 
49590 :224,032,208,243,240,026,131 

11 49596 :142,089,003,032,111,200,253 
49602 :144,214,157,101,003,232,021 

11 49608 :032,180,201,240,009,032,126 

11 
49614 :103,200,144,200,224,032,085 
49620 :208,238,142,074,003,032,141 

11 49626 :163,197,162,000,160,000,132 
49632 :177,251,221,101,003,208,161 

11 49638 :010,200,232,236,074,003,217 
49644 :208,242,032,104,193,032,023 

11 49650 :047,201,032,124,193,176,247 

11 
49656 :227,032,032,196,032,240,239 
49662 :192,144,013,160,044,032,071 

11 49668 :196,192,032,111,194,032,249 
49674 :225,255,208,238,032,171,115 

11 49680 :197,208,138,032,061,201,085 
49686 :032,008,200,032,072,201,055 

11 

11 231 

('I 



u 
U 8 Advanced U Memory 
U 

U 

49692 :032,201,205,072,032,207,009 V 
49698 :194,104,032,230,194,162,182 
49704 :006,224,003,208,020,172,161 U 
49710 :077,003,240,015,173,088,130 

V 49716 :003,201,232,177,251,176,068 
49722 :029,032,101,194,136,208,246 V 
49728 :241,014,088,003,144,014,056 
49734 :189,233,206,032,142,197,045 U 
49740 :189,239,206,240,003,032,217 
49746 :142,197,202,208,210,096,113 U 
49752 :032,123,194,170,232,208,023 

U 49758 :001,200,152,032,101,194,006 
49764 :138,142,074,003,032,015,248 U 
49770 :200,174,074,003,096,173,058 
49776 :077,003,032,122;194,133,161 U 
49782 :251,132,252,096,056,164,045 
49788 :252,170,016,001,136,101,032 U 
49794 :251,144,001,200,096,168,222 

U 49800 :074,144,011,074,176,023,126 
49806 :201,034,240,019,041,007,172 U 49812 :009,128,074,170,189,152,102 
49818 :206,176,004,074,074,074,250 V 
49824 :074,041,015,208,004,160,150 
49830 :128,169,000,170,189,220,018 U 
49836 :206,141,088,003.041,003,142 
49842 :141,077,003,152,041,143,223 V 
49848 :170,152,160,003,224,138,007 

V 49854 :240,011,074,144,008,074,229 
49860 :074,009,032,136,208,250,137 U 
49866 :200,136,208,242,096,177,237 
49872 :251,032,101,194,162,001,181 U 
49878 :032,206,192,204,077,003,160 
49884 :200,144,240,162,003,192,137 V 
49890 :003,144,241,096,168,185,039 
49896 :246,206,141,084,003,185,073 U 
49902 :054,207,141,085,003,169,129 

U 49908 :000,160,005,014,085,003,255 
49914 :046,084,003,042,136,208,001 U 
49920 :246,105,063,032,210,255,143 
49926 :202,208,234,076,072,201,231 V 
49932 :032,246,199,169,003,032,181 
49938 :158,195,160,044,076,049,188 U 
49944 :197,169,008,133,186,169,118 

U 49950 :001,162,165,160,207,032,245 
499~6 :189,255,169,096,133,185,039 V 49962 :032,213,243,165,186,032,145 
49968 :180,255,165,185,032,150,247 U 
49974 :255,169,000,133,144,160,147 
49980 :003,132,183,032,165,255,062 U 

U 
232 

U 

U. 



~ 

~ 
Advanced 8 

f'J Memory 

1'1 

~ 

~ 49986 :133,195,032,165,255,133,211 

~ 
49992 :196,164,144,208,062,164,242 
49998 :183,136,208,235,166,195,177 

~ 50004 :165,196,032,205,189,169,016 
50010 :032,032,022,231,032,165,092 

~ 50016 :255,166,144,208,038,201,084 
50022 :000,240,024,032,022,231,139 

~ 50028 :032,225,255,240,026,032,150 

~ 
50034 :228,255,240,232,201,032,022 
50040 :208,228,032,228,255,240,031 

~ 50046 :251,208,221,169,013,032,252 
50052 :022,231,160,002,076,061,172 

f'J 50058 :195,032,066,246,076,104,089 
50064 :192,169,204,072,169,119,045 

~ 50070 :072,008,072,072,072,108,042 

~ 
50076 :096,003,141,075,003,072,034 
50082 :032,156,200,032,016,201,031 

~ 50088 :208,248,104,073,255,076,108 
50094 :114,194,032,032,196,174,148 

~ 50100 :086,003,208,013,032,240,250 
50106 :192,144,008,032,200,195,189 

~ 50112 :032,225,255,208,238,076,202 

~ 
50118 :014,194,032,163,197,162,192 
50124 :046,169,058,032,030,200,227 

~ 50130 :032,072,201,032,008,200,243 
50136 :169,008,032,250,200,169,020 

~ 50142 :008,032,171,195,032,072,220 
50148 :201,032,004,192,234,234,101 

~ 50154 :160,008,162,000,161,251,208 

~ 
50160 :072,041,127,201,032,104,049 
511'166 :176,011'2,169,046,11'32,2111',113 

~ 
511'172 :255,169,000,133,212,032,029 
50178 :047,201,136,208,231,076,133 

~ 50184 :229,202,032,246,199,169,061 
50190 :008,032,158,195,032,171,098 

~ 50196 :197,032,200,195,169,058,103 
511'202 :141,119,002,076,061,197,110 

~ 50208 :032,246,199,133,253,134,005 

~ 
511'214 :254,032,180,201,240,011'3,180 
50220 :032,251,199,076,163,197,194 

~ 50226 :032,065,200,133,253,134,099 
50232 :254,162,000,142,102,003,207 

~ 50238 :032,156,200,201,032,240,155 

~ 
50244 :244,157,079,003,232,224,239 
50250 :003,208,241,202,048,020,028 

~ 
50256 :189,079,003,056,233,063,191 
50262 :160,11'11'5,074,110,102,003,028 

~ 50268 :110,101,003,136,208,246,128 
50274 :240,233,162,002,032,180,179 

1'1 

~ 233 

,-., 



u 
v 8 Advanced 

Memory V 

U 

U 

53283 :231,243,334,231,358,243,354 U 
53286 :333,231,332,243,243,332,123 
53292 :133,197,176,315,332,124,325 U 
53298 :233,164,251,132,252,133,233 

U 53304 :251,169,048,157,131,333,089 
50313 :232,157,101,333,232,208,343 U 
53316 :217,142,384,333,162,333,236 
53322 :142,386,033,162,333,142,169 U 
50328 :375,333,173,386,333,032,312 
53334 :135,194,174,388,333,142,126 U 
53343 :085,333,173,189,354,237,134 

V 53346 :332,131,197,189,246,236,117 
53352 :332,131,197,162,336,224,133 U 
53358 :333,238,323,172,377,333,153 
53364 :243,315,173,388,333,231,143 V 
53373 :232,169,348,176,333,332,113 
53376 :398,197,136,238,241,314,373 U 
53382 :388,333,144,314,189,233,139 

U 53388 :236,332,131,197,189,239,152 
53394 :236,243,333,332,131,197,229 U 53403 :232,238,213,240,336,332,398 -
53436 :398,197,332,398,197,173,331. \.) 
53412 :384,033,235,375,333,238,346 
53418 :127,332,349,233,172,377,131 U 
53424 :333,243,347,173,385,333,331 
53433 :231,157,238,332,332,243,133 U 
50436 :192,144,331,136,233,238,117 -

53442 :111,152,342,174,383,033,363 U 

53448 :224,133,168,238,033,176,157 V 
53454 :333,356,176,396,232,232,245 
53463 :138,172,377,333,208,333,117 V 
53466 :185,252,333,145,251,136,235 
53472 :238,248,173,386,333,145,135 U 
53478 :251,163,365,143,119,332,315 

U 53484 :332,171,197,332,196,192,134 
53493 :332,111,194,169,332,141,225 V 
53496 :123,332,141,125,332,165,137 
53532 :252,332,148,197,142,121,194 V 
53538 :332,141,122,332,165,251,247 
53514 :332,148,197,142,123,332,214 U 
53523 :141,124,332,169,337,133,152 

V 53526 :198,376,134,192;332,131,329 
53532 :197,142,374,333,174,375,253 U 53538 :333,221,131,333,243,313,175 
53544 :104,134,238,386,333,243,119 U 
53550 :333,376,149,196,376,396,232 
53556 :192,232,142,375,333,174,174 U 
53562 :374,333,~96,231,348,144,184 

U 53568 :333,231,371,396,356,396,147 

U 
234 U 

V 



~ 

~ 

~ Advanced 8 
Memory 

~ 

~ 

~ 513574 :2135,1378,13133,2138,1326,1396,246 

~ 
5135813 :1372,1374,1374,1374,1374,1332,1336 
513586 :1339,21313,1713,1134,1341,1315,211 

~ 513592 :1376,1339,21313,169,1313,1332,177 
513598 :2113,255,169,13113,1344,169,255 

~ 5136134 :145,1332,2113,255,173,1317,236 
5136113 :2138,13139,1316,141,1317,2138,13139 

~ 513616 :1396,234,234,141,1363,13133,187 

~ 
513622 :13138,1134,1341,239,141,1362,1317 
513628 :13133,142,1364,13133,1413,1365,1131 

~ 513634 :13133,1134,1324,1135,13131,141,1368 
5136413 :1361,13133,1134,1135,131313,141,1113 

~ 513646 :13613,13133,169,128,141,1372,1319 
513652 :13133,2138,1331,1332,164,21313,13913 

~ 513658 :1332,221,253,216,1134,141,169 

~ 
513664 :1365,13133,1134,141,1364,13133,11313 
5136713 :1134,141,1363,13133,1134,141,1326 

~ 513676 :1362,13133,1134,141,1361,13133,1136 
513682 :1134,141,13613,13133,173,13213,239 

~ 513688 :13133,141,1368,13133,173,1321,153 
513694 :13133,141,1367,13133,186,142,1336 

~ 513700 :1366,13133,1388,173,1362,13133,151 

~ 
5137136 :1341,1316,2413,13133,1376,1378,216 
513712 :192,1344,1372,13133,13813,1331,1913 

~ 513718 :173,13613,13133,2135,1391,13133,1353 
513724 :2138,1137,173,1361,13133,2135,1325 

~ 5137313 :13913,13133,2138,1399,173,1394,197 
513736 :13133,2138,1391,173,1395,13133,1139 

~ 513742 :2138,1383,169,128,141,1372,1387 

~ 
513748 :13133,1348,1318,1378,1372,13133,1326 
513754 :144,2113,174,1366,13133,154,1349 

~ 5137613 :169,197,1372,169,186,1372,169 
513766 :1376,1322,199,1332,163,197,255 

~ 513772 :1332,1336,2131,141,1375,13133,13613 
513778 :1613,131313,1332,13132,2131,173,146 

~ 513784 :1361,13133,174,13613,13133,133,1318 

~ 
5137913 :251,134,252,1332,1372,2131,13213 
513796 :169,1336,141,1378,13133,1332,1355 

~ 
5138132 :1322,194,1332,228,255,2413,1361 
5138138 :251,2131,13133,2138,13133,1376,1394 

~ 513814 :1134,192,2131,1374,2138,1377,214 
5138213 :169,13131,141,1372,13133,2138,214 

~ 513826 :13713,2136,1395,13133,2136,1394,1344 
513832 :13133,165,145,2131,127,2138,225 

ri 513838 :1358,162,1383,1376,1391,192,1344 

~ 
513844 :169,131313,2413,1318,173,1392,13813 
5138513 :13133,174,1393,13133,141,1394,158 

~ 513856 :13133,142,1395,13133,169,1364,132 
513862 :2138,13132,169,128,141,1372,126 

~ 

~ 235 

("'\ 



U 

8 Advanced U 

Memory U 

U 

U 
50868 :003,032,180,201,240,015,083 U 50874 :201,032,208,110,032,085,086 
50880 :200,032,243,200,032,180,055 U 
50886 :201,208,099,032,163,197,074 
50892 :173,072,003,240,055,162,141 U 
50898 :000,173,017,208,168,041,049 
50904 :016,240,016,152,041,239,152 U 
50910 :141,017,208,234,234,160,192 U 50916 :012,202,208,253,136,208,223 
50922 :250,120,169,084,141,004,234 U 
50928 :220,142,005,220,173,014,246 
50934 :220,041,128,009,017,141,034 U 
50940 :014,220,169,223,162,197,213 
50946 :141,068,003,142,067,003,170 V 
50952 :174,066,003,154,120,173,186 U 50958 :068,003,174,067,003,032,105 
50964 :168,2"0,173,060,003,072,184 U 
50970 :173,061,003,072,173,062,058 
50976 :003,072,173,063,003,174,008 U 
50982 :064,003,172,065,003,064,153 
50988 :076,096,192,032,065,200,193 U 
50994 :141,090,003,142,091,003,008 

U 5100" :169,000,141,092,003,141,090 
51006 :093,003,032,082,200,141,101 U 51012 :092,003,142,093,003,076,221 
51018 :104,192,032,219,199,141,193 U 
51024 :098,003,142,099,003,032,201 
51030 :082,200,141,079,003,142,221 U 
51036 :080,003,032,082,200,141,118 
51042 :081,003,142,082,003,032,185 U 
51048 :180,201,240,010,032,207,206 U 51054 :255,201,087,208,003,238,078 
51060 :078,003,032,049,200,174,140 U 
51066 :086,003,208,024,032,231,194 
51072 :192,144,019,172,078,003,224 U 
51078 :208,026,177,251,032,135,195 
51084 :194,170,189,246,206,208,073 U 
51090 :006,032,196,192,076,104,240 

U 51096 :192,172,077,003,192,"02,022 
51102 :208,051,240,003,140,077,109 0 
51108 :003,136,056,177,251,170,189 
51114 :237,079,003,200,177,251,093 U 
51120 :237,080,003,144,030,136,038 
51126 :173,081,003,241,251,200,107 V 
51132 :173,082,003,241,251,144,058 

U 51138 :016,136,024,138,109,098,203 
51144 :003,145,251,200,177,251,203 0 
51150 :109,099,003,145,251,032,077 
51156 :047,201,136,016,250,048,142 U 

U 
236 

U 

U 



~ 

~ 

~ Advanced 8 
Memory 

~ 

~ 

~ 51162 :158,032,065,200,133,253,035 
~ 51168 :134,254,032,082,200,141,043 

51174 :084,003,142,085,003,032,067 
~ 51180 :156,200,032,085,200,133,018 

51186 :251,134,252,096,032,065,048 
!1 51192 :200,176,246,032,085,200,163 

r-\ 51198 :176,003,032,082,200,133,112 
51204 :253,134,254,096,165,252,134 

~ 51210 :032,015,200,165,251,072,233 
51216 :074,074,074,074,032,039,127 

!1 51222 :200,170,104,041,015,032,072 
51228 :039,200,072,138,032,210,207 

~ 51234 :255,104,076,210,255,024,190 

!1 
51240 :105,246,144,002,105,006,136 
51246 :105,058,096,162,002,181,138 

~ 51252 :250,072,181,252,149,250,182 
51258 :104,149,252,202,208,243,192 

!1 51264 :096,169,000,141,089,003,050 
51270 :032,156,200,201,032,240,163 

~ 51276 :249,032,124,200,176,008,097 

!1 
51282 :032,156,200,032,103,200,037 
51288 :144,007,170,032,103,200,232 

~ 51294 :144,001,096,076,096,192,187 
51300 :032,116,193,169,000,141,239 

~ 51306 :089,003,032,156,200,201,019 
51312 :032,208,009,032,156,200,237 

~ 51318 :201,032,208,015,024,096,182 

~ 
51324 :032,145,200,010,010,010,019 
51330 :010,141,089,003,032,156,049 

~ 51336 :200,032,145,200,013,089,047 
51342 :003,056,096,201,058,008,052 

~ 51348 :041,015,040,144,002,105,239 
51354 :008,096,032,180,201,208,111 

!1 51360 :250,076,101,192,169,145,069 

!1 
51366 :162,195,141,020,003,142,061 
51372 :021,003,096,032,180,201,193 

I'i 51378 :240,055,032,246,199,165,091 
51384 :251,005,252,240,034,165,107 

~ 51390 :154,201,003,208,158,165,055 
51396 :251,141,147,002,165,252,130 

~ 51402 :141,148,002,169,002,170,066 

~ 
51408 :168,032,186,255,032,192,049 
51414 :255,162,002,032,201,255,097 

~ 51420 :076,117,192,169,002,032,040 
51426 :195,255,169,003,133,154,111 

I !1 51432 :076,104,192,165,154,201,100 
I 51438 :003,240,220,208,241,141,011 
!1 51444 :061,003,142,060,003,096,097 

51450 :141,075,003,160,000,032,149 
!1 

~ 237 

~ 



u 
U 

SAdvanced 
Memory U 

U 

U 
51456 :072,201,177,251,032,015,236 U 
51462 :200,032,047,201,206,075,255 
51468 :003,208,240,096,032,103,182 U 
51474 :200,144,008,162,000,129,149 
51480 :251,193,251,208,105,032,040 U 
51486 :047,201,206,075,003,096,146 

U 51492 :169,062,133,251,169,003,055 
51498 :133,252,169,005,096,230,159 U 
51504 :251,208,009,230,255,230,207 
51510 :252,208,003,238,086,003,076 U 
51516 :096,152,072,032,163,197,004 
51522 :104,162,046,032,030,200,128 U 
51528 :169,032,076,210,255,032,078 
51534 :030,200,162,000,189,118,009 V 
51540 :207,032,210,255,232,224,220 U 51546 :028,208,245,160,059,032,054 
51552 :061,201,173,060,003,032,114 U 
51558 :015,200,173,061,003,032,074 
51564 :015,200,032,072,201,173,033 U 
51570 :067,003,032,015,200,173,092 
51576 :068,003,032,015,200,032,214 U 
51582 :036,201,032,250,200,076,153 

U 51588 :104,192,076,096,192,032,056 
51594 :065,200,032,243,200,032,142 U 
51600 :082,200,141,068,003,142,012 
51606 :067,003,032,036,201,141,118 U 
51612 :075,003,032,156,200,032,142 
51618 :016,201,208,248,240,219,014 U 
51624 :032,207,255,201,032,240,111 
51630 :249,208,006,032,000,200,101 U 
51636 :032,207,255,201,013,096,216 

U 51642 :160,001,132,186,169,000,066 
51648 :162,101,160,003,032,189,071 U 
51654 :255,168,032,246,199,173,247 
51660 :073,003,201,083,208,008,012 U 
51666 :032,180,201,240,175,032,046 
51672 :251,199,032,168,201,240,027 U 
51678 :041,201,034,208,163,032,133 

U 51684 :207,255,201,034,240,011,152 
51690 :145,187,230,183,200,192,091 U 51696 :081,144,240,176,145,032,034 
51702 :180,201,240,014,032,103,248 U 
51708 :200,041,031,240,133,133,006 
51714 :186,032,168,201,208,217,246 U 
51720 :169,000,133,185,173,073,229 
51726 :003,201,083,208,012,169,178 U 
51732 :251,166,253,164,254,032,116 U 51738 :216,255,076,104,192,073,174 
51744 :076,240,002,169,001,166,174 U 

U 
238 

U 

U 



Ii 

n 
n AdVancecJI8 

Memory 
n 
Ii 
I] 51750 :251,164,252,032,213,255,181 

51756 :165,144,041,016,240,234,116 
!) 51762 :169,105,160,163,032,030,197 

I] 
51768 :171,076,096,192,032,246,101 
51774 :199,032,165,192,076,104,062 

n 51780 :192,032,246,199,032,047,048 
51786 :201,032,047,201,032,000,075 

n 51792 :200,032,072,201,032,240,089 
51798 :192,144,010,152,208,021,045 n 51804 :173,083,003,048,016,016,175 

n 51810 :008,200,208,011,173,083,013 
51816 :003,016,006,032,015,200,120 

n 51822 :076,104,192,076,096,192,078 
51828 :032,246,199,032,138,202,197 

11 51834 :~76,104,192,032,163,197,118 
51840 :162,046,169,036,032,030,091 

11 51846 :200,032,008,200,032,234,072 

Ii 
51852 :202,032,176,202,032,072,088 
51858 :201,032,150,202,032,153,148 

I] 51864- :202,032,072;201,162,004,057 
51870 :169,048,024,014,084,003,244 

11 51876 :046,085,003,105,000,032,179 
51882 :210,255,202,208,239,096,100 

n 51888 :165,252,166,251,141,085,212 

11 51894 :003,142,084,003,032,072,006 
51900 :201,165,252,032,196,202,212 

11 51906 :165,251,170,032,072,201,061 
51912 :138,041,127,201,032,008,235 

11 51918 :176,010,169,018,032,210,053 
51924 :255,138,024,105,064,170,200 

11 51930 :138,032,210,255,169,000,254 

11 
51936 :133,212,040,176,202,169,132 
51942 :146,076,210,255,032,072,253 

11 51948 :201,166,251,165,252,076,067 
51954 :205,189,032,005,203,176,028 

11 51960 :065,032,072,201,032,008,146 
51966 :200,032,141,202,076,104,241 

11 51972 :192,162,004,169,000,133,152 

11 
51978 :252,032,194,203,032,043,254 
51984 :203,133,251,032,034,203,104 

11 51990 :032,061,203,202,208,247,207 
51996 :008,032,072,201,040,096,221 

11 52002 :032,180,201,240,015,201,135 
52008 :032,240,011,201,048,144,204 

11 52014 :011,201,058,176,007,041,028 
52020 :015,096,104,104,024,096,235 

Ii 52026 :076,096,192,133,254,165,206 

Ii 
52032 :252,072,165,251,072,006,114 
52038 :251,038,252,006,251,038,138 

n 
n 239' 

n 



U 

SAdvanced tv 
Memory tv 

tv 

U 
52044 :252,104,101,251,133,251,144 
52050 :104,101,252,133,252,006,162 U 
52056 :251,038,252,165,254,101,125 U 52062 :251,133,251,169,000,101,231 
52068 :252,133,252,096,032,194,035 U 
52074 :203,141,085,003,072,072,170 
52080 :032,072,201,032,072,201,210 V 
52086 :104,032,015,200,032,072,061 
52092 :201,104,170,169,000,032,032 V 
52098 :241,202,032,072,201,032,142 V 52104 :150,202,076,104,192,032,124 
52110 :159,203,032,072,201,032,073 V 
52116 :008,200,032,234,202,032,088 
52122 :176,202,076,104,192,162,042 V 
52128 :015,169,000,133,251,133,093 
52134 :252,032,194,203,032,043,154 V 
52140 :203,032,188,203,032,034,096 

U 52146 :203,032,188,203,202,208,190 
52152 :247,076,072,201,074,038,124 V 
52158 :251,038,252,096,032,156,247 
52164 :200,201,032,240,249,096,190 U 
52170 :169,015,141,024,212,169,164 
52176 :000,141,005,212,169,240,207 V 
52182 :162,068,160,149,141,006,132 
52188 :212,142,001,212,140,000,159 V 
52194 :212,076,101,192,000,032,071 V 52200 :000,200,076,235,199,032,206 
52206 :231,203,024,165,251,101,189 U 
52212 :253,133,251,165,252,101,119 
52218 :254,133,252,076,013,204,158 U 
52224 :032,231,203,032,240,192,162 
52230 :132,252,173,083,003,133,014 U 
52236 :251,032,072,201,032,008,096 

V 52242 :200,076,104,192,169,000,247 
52248 :170,168,141,024,212,076,047 U 
52254 :218,203,000,120,032,021,112 
52260 :253,088,169,060,133,178,149 U 
52266 :174,066,003,154,165,115,207 
52272 :201,230,240,149,108,000,208 U 
52278 :160,032,231,203,032,049,249 

U 52284 :200,032,072,201,160,000,213 
52290 :140,084,003,140,085,003,009 U 
52296 :032,240,192,144,027,172,111 
52302 :086,003,208,022,024,177,086 U 
52308 :251,109,084,003,141,084,244 
52314 :003,152,109,085,003,141,071 U 
52320 :085,003,032,047,201,076,028 

U 52326 :072,204,173,085,003,032,159 
52332 :015,200,173,084,003,032,103 U 

240 
U 

U 

U 



,-., 
,-., 
,-., AdVaD1Cedl8 

Memory 
I) 

Ii 

Ii 52338 :015,200,076,104,192,173,106 
I) 52344 :100,003,208,004,165,198,030 

52350 :208,003,076,129,234,173,181 
Ii 52356 :119,002,201,017,208,125,036 

52362 :165,214,201,024,208,240,166 
I) 52368 :165,209,133,253,165,210,255 

Ii 
52374 :133,254,169,025,141,094,198 
52380 :003,160,001,032,084,206,130 

Ii 52386 :201,058,240,026,201,044,164 
52392 :240,022,201,036,240,018,157 

Ii 52398 :206,094,003,240,205,056,210 
52404 :165,253,233,040,133,253,233 r-.. 52410 :176,225,198,254,208,221,188 

I) 
52416 :141,073,003,032,013,206,148 
52422 :176,184,173,073,003,201,240 

Ii 52428 :058,208,017,024,165,251,159 
52434 :105,008,133,251,144,002,085 

Ii 52440 :230,252,032,200,195,076,177 
52446 :244,204,201,036,240,026,149 

r-.. 52452 :032,201,205,032,111,194,235 

I) 
52458 :169,000,141,078,003,160,017 
52464 :044,032,019,194,169,000,186 

r-.. 52470 :133,198,076,014,194,076,169 
52476 :129,234,032,047,201,032,159 

I) 52482 :125,202,076,244,204,201,030 
52488 :145,208,240,165,214,208,164 

I) 52494 :236,165,209,133,253,165,151 

,-., 52500 :210,133,254,169,025,141,184 
52506 :094,003,160,001,032,084,144 

I) 52512 :206,201,058,240,026,201,196 
52518 :044,240,022,201,036,240,053 

I) 52524 :018,206,094,003,240,021,114 
52530 :024,165,253,105,040,133,002 

r-.. 52536 :253,144,225,230,254,208,090 
52542 :221,141,073,003,032,013,033 

Ii 52548 :206,144,003,076,129,234,092 

r-.. 52554 :173,073,003,201,058,240,054 
52560 :006,201,036,240,029,208,032 

Ii 52566 :039,032,208,205,056,165,023 
52572 :251,233,008,133,251,176,120 

I) 52578 :002,198,252,032,203,195,212 
52584 :169,000,133,198,032,008,132 

Ii 52590 :206,076,112,192,032,208,168 

I) 
52596 :205,032,178,192,032,128,115 
52602 :202,076,104,205,032,208,181 

r--, 52608 :205,165,251,166,252,133,020 
52614 :253,134,254,169,016,141,077 

I) 52620 :094,003,056,165,253,237,180 
52626 :094,003,133,251,165,254,022 ,-., 

Ii 241 

r-.. 



ul 
U 8 Advanced 
U Memory 

U 

U 
52632 :233,OOO,133,252,O32,201,235 U 
52638 :205,O32,111,194,O32,24O,2O4 
52644 :192,24O,OO7,176,243,206,2O4 U 
5265O :O94,OO3,208,224,238,O77,246 
52656 :OO3,173,O77,OO3,O32,171,123 U 
52662 :195,162,OOO,161,251,142,O69 

U 52668 :O78,OO3,169,O44,O32,O67,O69 
52674 :201,O32,O22,194,O76,1O4,O55 U 
5268O :205,162i000,161,251,076,031 
52686 :135,194,166,21O,O32,215,134 U 
52692 :205,166,244,232,232,232,243 
52698 [134,173,134,254,162,OOO,O51 U 
52704 :134,172,169,O4O,133,253,101 

V 5271O :16O,192,162,OO3,136,177,O36 
52716 :172,145,253,152,208,248,134 

U 52722 :198,173,198,254,202,O16,OO3 
52728 :241,169,O32,166,21O,134,176 U 
52734 :254,132,253,16O,O39,145,213 
5274O :253,136,O16,251,169,O19,O8O U 
52746 :O76,21O,255,192,O4O,208,223 
52752 :OO2,O56,O96,O32,O84,206,236 V 
52758 :201,O32,24O,243,136,O32,138 

U 52764 :O61,206,17O,O32,O61,2O6,252 
5277O :133,251,134,252,169,255,204 V 52776 :141,1OO,OO3,133,204,165,O18 
52782 :207,24O,O1O,165,2O6,164,O14 U 
52788 :211,145,209,169,OOO,133,151 
52794 :207,O24,O96,O32,O84,2O6,195 U 
528OO :O32,145,2OO,O1O,O1O,O1O,215 

U 52806 :O1O,141,O89,OO3,O32,O84,173 
52812 :206,O32,145,2OO,O13,O89,249 U 52818 :OO3,O96,177,253,2OO,O41,O84 
52824 :127,201,O32,176,OO2,OO9,123 U 
5283O :O64,O96,189,152,205,O32,O64 
52836 :21O,255,232,208,247,O96,O68 U 
52842 :OOO,OOO,OOO,OOO,OOO,147,253 
52848 :O17,O32,O32,O18,O32,O32,O19 U 
52854 :O32,O32,O77,O73,O67,O82,225 

U 5286O :O79,O77,O79,O78,O45,O54,O24 
52866 :O52,O32,O32,O67,O79,O77,213 U 
52872 :O8O,O85,O84,O69,O33,O32,OO7 

" 

52878 :O32,O66,O79,O79,O75,O83,O44 U 
52884 :O32,O32,O32,O32,O64,OO2,O86 
5289O :O69,OO3,208,OO8,O64,OO9,OO3 U 
52896 :O48,O34,O69,O51,208,OO8,O66 

U 52902 :O64,OO9,O64,OO2,O69,O51,169 
52908 :208,OO8,O64,OO9,O64,OO2,O15 U 52914 :O69,179,208,OO8,O64,OO9,2O3 
5292O :OOO,O34,O68,O51,208,14O,173 U 

U 
242 

U 

VI 
~ 



r-'I 

r-'I 

() Advanced 8 
Memory 

() 

Ii 

() 52926 :068,000,017,034,068,051,172 
52932 :208,140,068,154,016,034,048 

r'I 52938 :068,051,208,008,064,009,098 

r'I 52944 :016,034,068,051,208,008,081 
52950 :064,009,098,019,120,169,181 

!l 52956 :000,033,129,130,000,000,000 
52962 :089,077,145,146,134,074,123 

Ii 52968 :133,157,044,041,044,035,174 
52974 :040,036,089,000,088,036,015 

() 52980 :036,000,028,138,028,035,253 

() 52986 :093,139,027,161,157,138,197 
52992 :029,035,157,139,029,161,038 

() 52998 :000,041,025,174,105,168,007 
53004 :025,035,036,083,027,035,253 

() 53010 :036,083,025,161,000,026,093 
53016 :091,091,165,105,036,036,036 

() 53022 :174,174,168,173,041,000,248 

r'I 
53028 :124,000,021,156,109,156,090 
53034 :165,105,041,083,132,019,075 

r'I 53040 :052,017,165,105,035,160,070 
53046 :216,098,090,072,038,098,154 

() 53052 :148,136,084,068,200,084,012 
53058 :104,068,232,148,000,180,030 

r'I 53064 :008,132,116,180,040,110,146 
53070 :116,244,204,074,114,242,048 

() 53076 :164,138,000,170,162,162,112 

() 53082 :116,116,116,114,068,104,212 
53088 :178,050,178,000,034,000,024 

() 53094 :026,026,038,038,114,114,202 
53100 :136,200,196,202,038,072,184 

r'I 53106 :068,068,162,200,013,032,145 
53112 :032,032,032,080,067,032,139 

r'I 53118 :032,073,082,081,032,032,202 

() 
53124 :083,082,032,065,067,032,237 
53130 :088,082,032,089,082,032,031 

r'I 53136 :083,080,065,066,067,068,061 
53142 :070,071,072,076,077,078,082 

r'I 53148 :081,082,040,084,087,088,106 
53154 :044,058,059,036,035,034,172 

() 53160 :043,045,079,073,074,037,007 

r'I 
53166 :038,069,086,041,062,255,213 
53172 :255,186,201,175,200,050,223 

!l 53178 :196,047,199,002,193,249,048 
53184 :193,135,193,156,198,160,203 

Ii 53190 :193,186,201,176,195,076,201 
53196 :199,160,198,080,201,202,220 

r-'I 53202 :203,006,193,176,198,042,004 
53208 :204,012,195,010,196,137,202 

!l 53214 :201,116,202,244,202,104,011 

!l 

!l 243 

!l 



8 Advanced 
MemOry 

53220 :203,237,203,000,204,069,120 
53226 :202,096,192,060,202,141,103 
53232 :203,055,204,033,204,186,101 
53238 :201,022,204,025,195,096,221 
53244 :192,096,192,255,000,000,219 

244 

u 
u 
u 
u 
u 
u 
V 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
o 
u 
u 
u 
u 
u 
u 

, 
U 

U 

U 

U 

U 

U 

U 

U 





V 
Q 

U 
Q 

o 
o 
o 
o 
o 
<) 

<) 

o 
o 
o 
o 
o 

" o 
o 

" Q 

" o 

" o 
o 
v 
v 
v 
o 
v 
Q 

" o 
o 
o 



~ 

r') 

r') 

r') 

r') 

r') 

r') 

t"", 

r') 

I) 

r') 

r') 

r') 

t"", 

r') 

r') 

t"", 

t"", 

r') 

t"", 

r') 

r') 

I) 

r') 

r') 

r') 

r') 

r') 

r') 

r') 

r') 

r') 

r') 

r') 

r') 

r') 

Appendix A 

USingthe 
MacHine 
Language Editor: 
MLX 
Charles Brannon 

Remember the last time you typed in the BASIC loader for a long 
machine language program? You typed in hundreds of numbers 
and commas. Even then, you couldn't be sure if you typed it in 
right. So you went back, proofread, tried to run the program, 
crashed, went back and proofread again, corrected a few typing 
errors, ran again, crashed again, rechecked your typing ... Frus
trating, wasn't it? 

Until now, though, that has been the best way to get machine 
language into your computer. Unless you happen to have an . 
assembler and are willing to wrangle with machine language on 
the assembly level, it is much easier to enter a BASIC program 
that reads DATA statements and POKEs the numbers into 
memory. 

Some of these ''BASIC loaders" will use a checksum to see if 
you've typed the numbers correctly. The simplest checksum is 
just the sum of all the numbers in the DATA statements. If you 
make an error, your checksum will not match up with the total. 
Some programmers make your task easier by including check
sums every few lines, so you can locate your errors more easily. 

Now, MLX comes to the rescue. MLX is a great way to enter 
all those long machine language programs with a minimum of 
fuss. MLX lets you enter the numbers from a special list that looks 
similar to DATA statements. It checks your typing on a line-by-line 
basis. It won't let you enter illegal characters when you should be 
typing numbers. It won't let you enter numbers greater than 255. 

247 



Appendix 

It will prevent you from entering the numbers on the wrong line. 
In short, MLX will make proofreading obsolete. 

Tape or Disk COpies 
In addition, MLX will generate a ready-to-use copy of your 
machine language program on tape or disk. You can then use the 
LOAD command to read the program into the computer, just like 
a BASIC program. Specifically, you enter: 

LOAD "program name'~l,l (for tape) 
or 
WAD "program name'~8,1 (for disk) 
To start the program, you need to enter a SYS command that 
transfers control from BASIC to your machine language program. 
The starting SYS will always be given in the article which presents 
the machine language program in MLX format. 

usingMLx 
Type in and SAVE MLX (you'll want to use it in the future). When 
you're ready to type in the machine language program, RUN 
MLX. MLX will ask you for two numbers: the starting address 
and the ending address. For Micromon-64, these numbers should 
be: 49152 and 53247 respectively. 

You'll then get a prompt showing the specified starting 
address. (For Micromon-64, the prompt will be: 49152 ) 

The prompt is the current line you are entering from the 
MLX-format listing. Each line is six numbers plus a checksum. If 
you enter any of the six numbers wrong, or enter the checksum 
wrong, the 64 will sound a buzzer and prompt you to reenter the 
entire line. If you enter the line correctly, a pleasant bell tone will 
sound and you may go on to enter the next line. 

A Special Editor 
You are not using the normal Commodore 64 BASIC editor with 
MLX. For example, it will only accept numbers as input. If you 
need to make a correction, press the INST/DEL key; the entire 
number is deleted. You can press it as many times as necessary, 
back to the start of the line. If you enter three-digit numbers as 
listed, the computer will automatically print the comma and go 
on to accept the next number in the line. If you enter less than 
three digits, you can press either the comma, space bar, or 
RETURN key to advance to the next number. The checksum will 
automatically appear in inverse video; don't worry - it's high
lighted for emphasis. 

248 

v 
u 
u 
u 
--

U 

V 

U 

U 

U 

V 
--, 

V 

V 

U 

V 

V 

V 

U 

V 

V 

U 

V 

V 
~ 

U 

V 

V 

U 

V 

V 
-~ 

U 

V 

V 

V 

U 

V 
- -
V 

U 



Appendix A 

When testing it, I've found MLX to be an extremely easy way 
to enter long listings. With the audio cues provided, you don't 
even have to look at the screen if you're a touch-typist. 

DOne at Last! 
When you get through typing, assuming you type your machine 
language program all in one session, you can then save the com
pleted and bug-free program to tape or disk. Follow the instruc
tions displayed on the screen. If you get any error messages while 
saving, you probably have a bad disk, or the disk was full, or you 
made a typo when entering the MLX program. (Sorry, MLX can't 
check itself!) 

Command Control 
What if you don't want to enter the whole program in one sitting? 
MLX lets you enter as much as you want, save the completed por
tion, and then reload your work from tape or disk when you 
want to continue. MLX recognizes these few commands: 

SHIFf-S: Save 
SHIFf-L: Load 
SHIFf-N: New Address 
SHIFT-D: Display 

Hold down SHIFf while you press the appropriate key. You 
will jump out of the line you've been typing, so I recommend you 
do it at a new prompt. Use the Save command to store what 
you've been working on. It will write the tape or disk file as if 
you've finished. Remember what address you stop on. The next 
time you RUN MLX, answer all the prompts as you did before, 
then insert the disk or tape containing the stored file. When you 
get to the entry prompt (49152: for Micromon-64), press SHIFf-L 
to reload the file into memory. You'll then use the New Address 
command (SHIFf..N) to resume typing. 

New Address and Display 
After you press SHIFf-N, enter the address where you previously 
stopped. The prompt will change, and you can then continue 
typing. Always enter a New Address that matches up with one of 
the line numbers in the special listing, or else the checksums 
won't match up. You can use the Display command to display a 
section of your typing. After you press SHIFf..D, enter two 
addresses within the line number range of the listing. You can 
stop the display by pressing any key. 

249 



A Appendix 

trickY Stuff 
The special commands may seem a little confusing, but as you 
work with MLX, they will become valuable. For example, what if 
you forgot where you stopped typing? Use the Display command 
to scan memory from the beginning to the end of the program. 
When you see a bunch of 17O's, stop the listing (press a key) and 
continue typing where the 170's start. Some programs contain 
many sections of 17O's. To avoid typing them, you can use the 
New Address command to skip over the blocks of 170's. Be care
ful, though; you don't want to skip over anything you should type. 

You can use the Save and Load commands to make copies of 
the completed machine language program. Use Load command 
to reload the tape or disk, then insert a new tape or disk and use 
the Save command to create a new copy. 

One quirk about tapes made with the MLX Save command: 
when you load them, the message ''FOUND program" may ap
pear twice. The tape will load just fine, however. 

Programmers will find MLX to be an interesting program 
which protects the user from most typing mistakes. Some screen 
formatting techniques are also used. Most interesting is the use of 
ROM I<ernal routines for WADing and SAVEing blocks of mem
ory. To use these routines, just POKE in the starting address (low 
byte/high byte) into memory locations 251 and 252 and POKE the 
ending address into locations 254 and 255. Any error code for the 
SAVE or LOAD can be found in location 253 (an error would be a 
code less than ten). 

I hope you will find MLX to be a true labor-saving program. 
Since it has been tested by entering actual programs, you can 
count on it as an aid for generating bug-free machine language. 
Be sure to save MLX; it will be used for future applications in 
COMPUTE! Magazine, COMPUTEt's Gazette and COMPUTE! 
Books. 

Machine Language Editor (MOO 
100 PRINT"{CLR}{RED}";CHR$(142);CHR$(8);: 

POKE53281,1:POKE53280,1 
101 POKE 788,52:REM DISABLE RUN/STOP 
110 PRINT" {RVS} {40 SPACES}"; 
120 PRINT"{RVS}{15 SPACES}{RIGHT}{OFF} 

g*a£{RVS} {RIGHT} {RIGHT}{2 SPACES} 
g*aTOFF}g*a£{RVS}£{RVS} 
{13 SPACES}V; -

250 

~. 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

u 
U 

U 

U 

U 

U· 

U 
-

U 

U 

U 

U 

v 
U 

U 

U 

U 

U 



l 

~ 

f', 

~ 

f', 

f', 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

f', 

~ 

~ 

f', 

~ 

~ 

~ 

~ 

f', 

,-, 

Appendix A 

130 PRINT"{RVS}{15 SPACES}{RIGHT} gG~ 
{RIGHT} {2 RIGHT} {OFF}£{RVS}£g*~ 
{OFF}g*HRVS}{13 SPACEST" i -

140 PRINT" {RVS}{40 SPACES}" 
150 V=53248:POKE2040,13:POKE2041,13:FORI= 

832T0894:POKEI,255:NEXT:POKEV+27,3 
160 POKEV+21,3:POKEV+39,2:POKEV+40,2:POKE 

V, 144:POKEV+l,54:POKEV+2,192:POKEV+3, 
54 

170 POKEV+29,3 
180 FORI=0T023:READA:POKE679+I,A:POKEV+39 

,A:POKEV+40,A:NEXT 
185 DATA169,251,166,254,164,255,32,216,25 

5,133,253,96 
187 DATA169,0,166,251,164,252,32,213,255, 

133,253,96 
190 POKEV+39,7:POKEV+40,7 
200 PRINT"{2 DOWN}{PUR}{BLK}{3 SPACES}A F 

AILSAFE MACHINE LANGUAGE EDITOR 
{5 DOWN}" 

210 PRINT"g5H2 UP}STARTING ADDRESS? 
{8 SPACES}{9 LEFT}"i:INPUTS:F=l-F:C$= 
CHR$ (3l+119*F) 

220 IFS<2560R(S>40960ANDS<49152)ORS>53247 
THENGOSUB3000:GOT0210 

225 PRINT:PRINT:PRINT 
230 PRINT"g5~{2 UP}ENDING ADDRESS? 

{8 SPACES}{9 LEFT}"i:INPUTE:F=l-F:C$= 
CHR$ (31+119*F) 

240 IFE<2560R(E>40960ANDE<49152)ORE>53247 
THENGOSUB3000:GOT0230 

250 IFE<STHENPRINTC$i"{RVS}ENDING < START 
{2 SPACES}":GOSUB1000:GOTO 230 

260 PRINT:PRINT:PRINT 
300 PRINT I {CLR}" i CHR$(14):AD=S:POKEV+21,0 
310 PRINTRIGHT$(10000"+MID$(STR$(AD),2),5 

)i":"i: FORJ=lT06 
320 GOSUB570:IFN=-1THENJ=J+N:GOT0320 
390 IFN=-211THEN 710 
400 IFN=-204THEN 790 
410 IFN=-206THENPRINT:INPUT"{DOWN}ENTER N 

EW ADDRESS"iZZ -
415 IFN-;;-206THENIFZZ<SORZZ>ETHENPRINT" 

{RVS}OUT OF RANGE":GOSUB1000:GOT0410 
417 IFN=-206THENAD=ZZ:PRINT:GOT0310 
420 IF N<>-196 THEN 480 
430 PRINT:INPUTIDISPLAY:FROM"iF:PRINT,"TO 

" i :INPUTT - - -

251 



A Appendix 

44121 IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAS 
T"iSi"{LEFT}, NOT MORE THAN"iE:GOT043 
121 

45121 FORI=FTOTSTEP6:PRINT:PRINTRIGHT$("12I121121 
12I"+MID$(STR$(I),2),5)i":"i 

451 FORK=I2IT05:N=PEEK(I+K):PRINTRIGHT$("12I121 
"+MID$(STR$(N),2),3)i","i 

46121 GETA$:IFA$>""THENPRINT:PRINT:GOT031121 
47121 NEXTK:PRINTCHR$(2121)i:NEXTI:PRINT:PRIN 

T:GOT031121 
48121 IFN<12I THEN PRINT:GOT0310 
49121 A(J)=N:NEXTJ 
5al2l CKSUM=AD-INT(AD/256)*256:FORI=lT06:CK 

SUM=(CKSUM+A(I»AND255:NEXT 
51121 PRINTCHR$(1~);:GOSUB57121:PRINTCHR$(20) 

515 IFN=CKSUMTHEN53121 
52121 PRINT:PRINT"LINE ENTERED WRONG : RE-E 

NTER":PRINT:GOSUBII2II2II2I:GOT031121 
53121 GOSUB2121121121 
54121 FORI=lT06:POKEAD+I-1,A(I):NEXT:POKE54 

272,12I:POKE54273,12I 
55121 AD=AD+6:IF AD<E THEN 31121 
56121 GOTO 71121 
57121 N=I2I:Z=12I 
58121 PRINT"g+~"i 
581 GETA$:IFA$=""THEN581 
585 PRINTCHR$(2121)i:A=ASC(A$):IFA=130RA=44 

ORA=32THEN67121 
59121 IFA>128THENN=-A:RETURN 
6121121 IFA<>2121 THEN 63121 
61121 GOSUB69121:IFI=lANDT=44THENN=-1:PRINT" 

{LEFT} (LEFT}"i:GOT069121 
62121 GOT057121 
63121 IFA<480RA>57THEN58121 
64121 PRINTA$i:N=N*1121+A-48 
65121 IFN>255 THEN A=2121:GOSUBl121121I21:GOT060121 
66121 Z=Z+1:IFZ<3THEN58121 
67121 IFZ=I2ITHENGOSUBl121I21I21:GOT0570 
68121 PRINT","i:RETURN 
69121 S%=PEEK(21219)+256*PEEK(21121)+PEEK(211) 
691 FORI=lT03:T=PEEK(S%-I) 
695 IFT<>44ANDT<>58THENPOKES%-I,32:NEXT 
7121121 PRINTLEFT$("(3 LEFT}",I-1)i:RETURN 
71121 PRINT"{CLR}{RVS}*** SAVE ***{3 DOWN}" 
72121 INPUT"{DOWN} FILENAME"iF$ 
73121 PRINT: PRINT" (2" DOWN} {Rvs}'r{OFF}APE OR 

(RVS}D{OFF}ISK: (TID)" -
74121 GETA$:IFA$<>"T"ANDA$<>"D"THEN74121 
75121 DV=1-7*(A$="D"):IFDV=8THENF$="I2I:"+F$ 

252 

v) 
U 

U 

U 

U 

u 

u 
u 
u 
V 

u 
u 
V 

u 

U 

u 
u 
u 
'-.) 

u 
u 
V 

V 

V 

u. 
U 

u 

V 

u 
u 
V 

u 
u 
V 
- -
U 

U 
~ 



Appendix A 

760 OPEN 1,DV,1,F$:POKE252,S/256:POKE251, 
S-PEEK(252)*256 

765 POKE255,E/256:POKE254,E-PEEK(255)*256 
770 POKE253,10:SYS 679:CLOSE1:IFPEEK(253) 

>90RPEEK(253)=0THENPRINT"{DOWN}DONE." 
: END -

780 PRINT"{DOWN}ERROR ON SAVE.{2 SPACES}T 
RY AGAIN.": I'FDV=l THEN720 -

781 OPEN15,8,15:INPUT#15,DS,DS$:PRINTDS:D 
S$:CLOSE15:GOT0720 

790 PRINT"{CLR}{RVS}*** LOAD ***{2 DOWN}" 
800 INPUT"{2 DOWN} FILENAME":F$ 
810 PRINT:PRINT"{2 DOWN} {RVS}T{OFF}APE OR 

{RVS}D{OFF} ISK: (T/D)" -
820 GETA$:IFA$<>"T"ANDA$<>"D"THEN820 
830 DV=1-7*(A$="D"):IFDV=8THENF$="0:"+F$ 
840 OPEN 1,DV,0,F$:POKE252,S/256:POKE251, 

S-PEEK(252)*256 
850 POKE253,10:SYS 691:CLOSE1 
860 IFPEEK(253»9 OR PEEK(253)=0 THEN PRI 

NT: PRINT: GOT0310 
870 PRINT"{DOWN}ERROR ON LOAD.{2 SPACES}T 

RY AGAIN.{DOWN}":IFDV';;'lTHEN800 -
880 OPEN15,8,15:INPUT#15,DS,DS$:PRINTDS:D 

S$:CLOSE15:GOT0800 
1000 REM BUZZER 
1001 POKE54296,15:POKE54277,45:POKE54278, 

165 
1002 POKE54276,33:POKE 54273,6:POKE54272, 

5 
1003 FORT=lT0200:NEXT:POKE54276,32:POKE54 

273,0:PPKE54272,0:RETURN 
2000 REM BELL SOUND 
2001 POKE54296,15:POKE54277,0:POKE54278,2 

47 
2002 POKE 54276,17:POKE54273,40:POKE54272 

,0 
2003 FORT=lT0100:NEXT:POKE54276,16:RETURN 
3000 PRINTC$:"{RVS}NOT ZERO PAGE OR ROM": 

GOT01000 

253 



V 
Q 

U 
Q 

o 
o 
o 
o 
o 
<) 

<) 

o 
o 
o 
o 
o 

" o 
o 

" Q 

" o 

" o 
o 
v 
v 
v 
o 
v 
Q 

" o 
o 
o 





V 
Q 

U 
Q 

o 
o 
o 
o 
o 
<) 

<) 

o 
o 
o 
o 
o 

" o 
o 

" Q 

" o 

" o 
o 
v 
v 
v 
o 
v 
Q 

" o 
o 
o 



~ 

n 
(j 

(j 

~ 

f) 

n 
n 
n 
(j 

n 
n 
n 
n 
n 
n 
n 
n 
n 
ri 

Ii 

Ii 
n 
n 
n 
Ii 

n 
(i 

n 
r"i 
(i 

.('j 

I~ 

APpendlxB 

A Beginner's 
OUide to Typing 
InPrograms 
What IS a PrOgram? 
A computer cannot perform any task by itself. Like a car without 
gas, a computer has potential, but without a program, it isn't going 
anywhere. Most of the programs in this book are written in a 
computer language called BASIC. BASIC is easy to learn and is 
built into all Commodore 64s. 

BASIC programs 
Computers can be picky. Unlike the English language, which is 
full of ambiguities, BASIC usually has only one right way of 
stating something. Every letter, character, or number is signifi
cant. A common mistake is substituting a letter such as 0 for the 
numeral 0, a lowercase I for the numeral 1, or an uppercase B for 
the numeral 8. Also, you must enter all punctuation such as 
colons and commas just as they appear in the magazine. Spacing 
can be important. To be safe, type in the listings exactly as they 
appear. 

Braces and Special Characters 
The exception to this typing rule is when you see the braces, such . 
as {DOWN}. Anything within a set of braces is a special character 
or characters that cannot easily be listed on a printer. When you 
come across such a special statement, refer to "How To Type In 
Programs:' 

About DATA statements 
Some programs contain a section or sections of DATA statements. 
These lines provide information needed by the program. Some 
DATA statements contain actual programs (called machine lan
guage); others contain graphics codes. These lines are especially 
sensitive to errors. 

257 



BAPpell1d1IX 

If a single number in anyone DATA statement is mistyped, 
your machine could lock up, or crash. The keyboard and S'IOP 
key may seem dead, and the screen may go blank. Don't panic -
no damage is done. To regain control, you have to turn off your 
computer, then turn it back on. This will erase whatever program 
was in memory, so always SAVE a copy of your program before you 
RUN it. If your computer crashes, ·you can LOAD the program 
and look for your mistake. 

Sometimes a mistyped DATA statement will cause an error 
message when the program is RUN. The error message may refer 
to the program line that READs the data. The error is still in the 
DATA statements, though. 

Get to KnOW YOur Machine 
You should familiarize yourself with your computer before 
attempting to type in a program. Learn the statements you use to 
store and retrieve programs from tape or disk. You'll want to save 
a copy of your program, so that you won't have to type it in every 
time you want to use it. Learn to use your machine's editing func
tions. How do you change a line if you made a mistake? You can 
always retype the line, but you at least need to know how to back
space. Do you know how to enter inverse video, lowercase, and 
control characters? It's all explained in your computer's manuals. 

A OuiCk Review 
1} Type in the program a line at a time, in order. Press RETURN at 
the end of each line. Use backspace or the back arrow to correct 
mistakes. 

2} Check the line you've typed against the line in the printed listing. 
You can check the entire program again if you get an error when 
you RUN the program. 

3} Make sure you've entered statements in brackets as the appro
priate control key (see ''How To Type Programs" elsewhere in 
the book). 

258 

--
U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 
u 
u 
u 
u 
u 
U 

U 

U 

u 
U 

U 

U 

U 

U 

U 





V 
Q 

U 
Q 

o 
o 
o 
o 
o 
<) 

<) 

o 
o 
o 
o 
o 

" o 
o 

" Q 

" o 

" o 
o 
v 
v 
v 
o 
v 
Q 

" o 
o 
o 



APpendlXC 

HOw To Type 
In PrOgrams 
Many of the programs which are listed in this book contain spe
cial control characters (cursor control, color keys, inverse video, 
etc.). To make it easy to know exactly what to type when entering 
one of these programs into your computer, we have established 
the following listing conventions. 

Generally, any Commodore 64 program listings will contain 
words within braces which spell out any special characters: 
{DOWN} would mean to press the cursor down key. {5 SPACES} 
would mean to press the space bar five times. 

To indicate that a key should be shifted (hold down the SHIFT 
key while pressing the other key), the key would be underlined in 
our listings. For example, 2. would mean to type the S key while 
holding the shift key. This would appear on your screen as a 
"heart" symbol. If you find an underlined key enclosed in braces 
(e.g., {lO N }), you should type the key as many times as indicated 
(in our example, you would enter ten shifted N's). 

If a key is enclosed in special brackets, [< >], you should hold 
down the Commodore key while pressing the key inside the special 
brackets. (The Commodore key is the key in the lower-left corner 
of the keyboard.) Again, if the key is preceded by a number, you 
should press the key as many times as necessary. 

Rarely, you'll see a solitary letter of the alphabet enclosed in 
braces. These characters can be entered on the Commodore 64 by 
holding down the CTRL key while typing the letter in braces. For 
example, {A} would indicate that you should press CTRL-A. 

About the quote mode: you know that you can move the cursor 
around the screen with the CRSR keys. Sometimes a programmer 
will want to move the cursor under program control. That's why 
you see all the {LEFT }'s, {HOME }'s, and {BLU}'s in our pro
grams. The only way the computer can tell the difference be
tween direct and programmed cursor control is the quote mode. 

Once you press the quote (the double quote, SHIFT-2), you 
are in the quote mode. If you type something and then try to 
change it by moving the cursor left, you11 only get a bunch of 

261 



C Appendix 

reverse-video lines. These are the symbols for cursor left. The 
only editing key that isn't programmable is the DEL key; you can 
still use DEL to back up and edit the line. Once you type another 
quote, you are out of quote mode. 

You also go into quote mode when you INSerT spaces into a 
line. In any case, the easiest way to get out of quote mode is to just 
press RETURN. You11 then be out of quote mode, and you can 
cursor up to the mistyped line and fix it. 

Use the following table when entering cursor and color con-
trolkeys: 

Usting COnventions 
When You When You 
Read: 're 5: See: Read: .ress: See: 
{CLEAR} 1 SHIFt' 1 CLR/HOME II (GRN) I crRL 10 II 
(HOME) CLR/HOME • (SLU) I crRL 10 • (up) I SHIFt' I 'CRSRt • (YEL) I crRL 10 • (DOWN) ,CRSRt II {Fl} fl • (LEFT) 1 SHIFt' I ~CRSR"I Iii (F2) f2 • {RIGHT} ~CRSR~ • (F3) f3 • (RVS) I crRL I C!J • (F4) f4 • (OFF) IcrRLI~ • (FS) f5 • (SLK) I crRLI LQ • (F6) f6 • (WHT) 1 crRL 1 CQ • (F7) r7 • (RED) IcrRLIG] • (F8) f8 • (CYN') 1 crRLIG] IiL " 1--1 • (PUR) IcrRLI~ III t I SHIFt' I []] • 

262 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

u 
u 
u 
u 
u 
u 



("'., 

("'., 

r-, 

r-, 

r-, 

("'., 

("'., 

r-, 

("'., 

("'., 

r-, 

r'1 
r-, 

r'1 

r'1 

r'1 

r-, 

r-, 

r'1 

r'1 

("'., 

("'., 

("'., 

("'., 

r-, 

("'., 

("'., 

Ii 
("'., 

("'., 

Ii 

Ii 
("'., 

r'1 

("'., 

Index 
addresses 183-90 
AD5R envelope 8-9, 13, 20-21, 22, 161 
animation 7 
arrays 63-64 
ASCU 19, 146, 213 
assembler 197-209 
attack (see AD5R envelope) 
BASIC 4, 180-81, 210-16 

AB532 
GET 122 
G05UB21,24 
GOI028 
IF ... THEN 26 
LI5T45 
ON 30-31 
REM 44-48 
5TR$24 
TAB 23 
tokens 212-13 
WAIT 39-43 

BASIC Assembler 197-209 
BASIC Interpreter ROM 3 
BASIC statement 210-11 
binary numbers 147-48 
bit 171, 211 
bitmap graphics 6 
bitwise AND 27-28 
byte 172, 211 
CATALOG 121 
Central Processing Unit (CPU) 144 
chained menus 16-17 
character base 76, 80, 179 
character graphics 5-6 
character sets (see also redefined 

characters) 5 
chips, Commodore 643 
collision 7, 94, 95 
Commodore 64 architecture 70, 86, 178-82 
Commodore 64, similarities with PET 4, 

88-89 
Complex Interface Adapter (CIA) 9-10, 1D7, 

144, 178, 189, 190 
control register 147 
decay (see AD5R envelope) 
delay loop 26-27 
DIRECTORY 121 
diskette 

backup 137-42 
directory 122-25 
D05135-36 

files 61, 63 
menu 126-34 

editing 210 
exclusive-OR 39 
expander slot 143 
extended background color mode 6, 72 
fine scrolling (see scrolling) 
fire button (see joystick button) 
flag26,29 
game ports (see joystick port) 
graphics ~ 69-104 
high-resolution 6, 71-72, 89-90 
hexadecima1211-12 
jiffy (see also TI$ and timer) 40 
joystick 42, 49-53, 107-14 

button 108 
memory locations 49-52, 108-10 
port 1D7, 143 
reading 109-10 

initialization 20-21 
Input/Output Port 3 
interrupts 78, 97-98, 100-3, 179 
mQ102 
Kemal3,180 
keyboard code 19 
keyboard control function 213 
kilobyte 172 
LED 150-51 
light pen 77!J8 
LI5Tmg a program, prevention of 44-48 
locations 183-90 
logical AND 108 
logical Nor 109 
memory 171-77, 211-13 

bit171,211 
byte 172, 211 
kilobyte 172 
map 183-90 
nybble 171.!72 
organization 171.!72, 211 
pages 172 
stack 174 

memory map 183-90 
menus (see also diskette menu) 15-17, 54-60 
Micromon-64 217-44 
microprocessor 3 
monitor 217-44 
Movable Object Blocks (MOBs) (see sprite) 
multicolor character mode 5-6, 75~6 
music 161-65 

263 



nested menus 16 
Non-Maskable Interrupt (NMI) 220 
nybble 171-72 
page flipping 7 
pages of memory 172 
Peripheral Data Register 107-8 
program writing 11-35 

feedback 18 
initialization 18-19, 20-21 
main loop 25-28 
menus 15-17 
organizing 14-15 
planning 12 
user friendly 14-15 

quote mode 46-47 
RAM 4, 144, 171, 178, 191 
raster interrupts 7-8, 77, 78, 97, 103-4 
Raster Register 96 
redefined characters 5, 88 
release (see ADSR envelope) 
ROM 144, 148, 191,228 
ROM Character Generator 70, 86, 179 
screen editor 210 
screen memory 69, 172 
scrolling 5 
serial plug 143 
65023 
6510 3, 178, 188, 191 
65183 
65263, 9-10, 189, 190 
6566 3, 5, 69-104, 178, 188 
sound 6-7, 12-13, 162 

264 

sound addresses (see also Sound Interface 
Device) 13 

Sound Interface Device (SID) 3, 8-9, 144, 
161, 178, 188 

split screens 96-104 
sprites 6-7, 78, 80-85, 91-95, 107-14 

memory locations SO, 82 
movement 83-84, 110-12, 113-14 

stack 174 
string variables 61-62 
structured programming 25 
sustain (see ADSR envelope) 
symbolic assembler 197-209 
tape files 61, 64-65 
TI$ (see also jiffies and timer) 40, 100 
timer (see also jiffies and TI$) 101-2, 103, 

166-67 
tokens 212-13 
trigger (see joystick button) 
User Port 143-56 

edge connector 149 
input device 149-50 
memory locations 149 
output device 146-47 
peripheral device 150 
programming 153 

variable 19-20, 61-64 
Video Interface Controller (VIC) 5, 69-104, 

107, 144, 178.!79 
video matrix 69, 76 
video port 143 
waveform (see sound) 

v 
U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 

U 
u 
u 
u 
U. 

U 

U 

U 

U 

U 

U 

u 
U 

u 
u 
V 

U 

U 

u 
U 

U 

u 

l....J0 ' 
--.~ 



If you've enjoyed the articles in this book, you'll find the 
same style and quality in every monthly issue of COMPUTE! 
Magazine. Use this form to order your subscription to 
COMPUTE!. 

For Fastest SeNice, 
Call Our Toll-Free US Order Line 

800-334-0868 
In NC call 919-275-9809 

COMPUTE! 
P.o. Box 5406 
Greensboro. NC 27403 

My Computer Is: 
D Commodore 64 D TI-99/4A D Timex/Sinclair D V1C-20 D PET 
D Radio Shack Color Computer DApple D Atari D other __ _ 
D Don't yet have one ... 

D $24 One Year US Subscription 
D $45 Two Year US Subscription 
D $65 Three Year US Subscription 
Subscription rates outside the US: 
D$30Canada 
D $42 Europe, Australia, New Zealand/Air Delivery 
D $52 Middle East, North Africa, Central America/Air Mail 
D $72 Elsewhere/Air Mail 
D $30 International Surface Mail (lengthy, unreliable delivery) 

Name 

Address 

City State Zip 

Country 

Payment must be in US Funds drawn on a US Bank; International Money 
Order, or charge card. 
D Payment Enclosed 
D MasterCard 
Acct. No. 
z()..s 

DViSA 
D American Express 

Expires / 



I _ 

COMPUTE! Books· 
P.o. Box 5406 Greensboro. NC 27403 

Ask your retailer for these COMPUTE! Books. If he or she 
has sold out, order directly from COMPUTE! 

For Fastest Service 
Call Our TOLL FREE US Order Line 

800-334-0868 
In Ne call 919-275-9809 

Quantity TItle 

___ Machine Language for Beginners 

___ Home Energy Applications 

___ COMPUTEI's First Book of VIC 

___ COMPUTEI's Second Book of VIC 

___ COMPUTEI's First Book of VIC Games 

___ COMPUTEI's First Book of 64 

___ COMPUTEI's First Book of Atari 

___ COMPUTEI's Second Book of Atari 

___ COMPUTErs First Book of Atari Graphics 

___ COMPUTEI's First Book of Atari Games 

___ Mapping The Atari 

___ lnsideAtari DOS 

___ The Atari BASIC Sourcebook 

___ Programmer's Reference Guide for TI-99/4A 

___ COMPUTE!'s First Book ofTI Games 

___ Every Kid's First Book of Robots and Computers 

___ The Beginner's Guide to Buying A Personal 
Computer 

PrIce Total 

$14.95t __ 
$14.95t __ 
$12.9st __ 
$12.9st __ 
$12.9St __ 
$12.9St __ 
$12.9st __ 
$12.9St __ 
$12.9st __ 
$12.9St __ 
$14.9St __ 
$19.9st __ 
$12.9St __ 
$14.9st __ 
$12.9St __ 
$4.95* __ 

$ 3.95* __ _ 
• Add $1 shipping and handling. Ou1slde US add $5 air mall; $2 

surface mall. 
t Add $2 shipping and handling. Outside US add $5 air mail; $2 

surface mall. 

Please add shipping and handling for each book 
ordered. 

Total enclosed or to be charged. 

All orders must be prepaid (money order, check. or charge). All 
payments must be in US funds. NC residents add 4% sales tax. 
o Payment enclosed Please charge my: 0 VISA 0 MasterCard 
o American Express Acc t. No. Expires / 

Name 

Address 

City State Zip 

Country 
Allow 4-5 weeks for delivery. 

20-5 

, ~ 

V, 

U 

U 

U 

U 

U 

V 

U 

U 

U 

U 

U 

o 
V 
u 
0! 
u 
u 
u 
V 
U 

o 
U 

V 
u 
U 
I..) 

U 
U 
u 
U 
u 
u 
u 
U 

~ 



() 

" <) 
n 
("> 

o 
o 
o 
("> 

o 
o 
o 
o 

" ('> 

o 

" o 
o 
('> 

o 
o 
o 
o 
o 
o 

" o 
o 
o 
o 
o 
o 
o 
o 
() 



COMPUTE!'s '"' I 

First Book of Commodore 64 
COMPUTEt's First Book of the Commodore 64 includes some of the 
best articles and programs from COMPUTE! Magazine and 
COMPUTEt's Gazette, plus many more that have never before ap
peared in print. 

There are dozens of complete, ready to type in programs. 
And, because you will see and type in every program line, you 
will discover many techrriques to use in your own programming. 

Here's a sample of what youll find inside: 

• A beginner's introduction to programming 

• An explanation of 64 architecture 

• How to create programs which use joysticks 

• A memory map 
• A tutorial on how to create attractive and mearringful 

program menus 

• A machine language assembler written in BASIC 

• "Micromon-64;' a complete monitor with numerous extra 
functions 

• How to add sprites to your programs 

No matter whether you are an advanced programmer or just 
starting out, COMPUTEt's First Book of the Commodore 64 has much 
that you will find useful. Edited with the clarity and care which 
has made COMPUTE! Publications today's leading publisher of 
personal computing magazines and books. 

ISBN 0-942386-20-5 $12.95 




